JPH02214123A - Mos-type semiconductor device - Google Patents

Mos-type semiconductor device

Info

Publication number
JPH02214123A
JPH02214123A JP3357589A JP3357589A JPH02214123A JP H02214123 A JPH02214123 A JP H02214123A JP 3357589 A JP3357589 A JP 3357589A JP 3357589 A JP3357589 A JP 3357589A JP H02214123 A JPH02214123 A JP H02214123A
Authority
JP
Japan
Prior art keywords
amount
semiconductor device
ldd
type impurity
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3357589A
Other languages
Japanese (ja)
Other versions
JP2708525B2 (en
Inventor
Masaaki Aoki
正明 青木
Kazuo Yano
和男 矢野
Tatsuya Ishii
達也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3357589A priority Critical patent/JP2708525B2/en
Publication of JPH02214123A publication Critical patent/JPH02214123A/en
Application granted granted Critical
Publication of JP2708525B2 publication Critical patent/JP2708525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize a highly reliable operation, at a temperature of liquid nitrogen, of an LDD-structure MOS transistor by a method wherein an implantation amount of phosphorus ions of an LDD layer is specified in order to eliminate a deterioration in a performance to be caused by an increase in an LDD resistance at a low temperature. CONSTITUTION:An n-channel MOS transistor having an n-type impurity region whose impurity concentration is lower than an impurity concentration in other source and drain regions is provided; the low-concentration n-type impurity region is formed by implanting phosphorus ions of an amount of 1.5X10<13> or higher and 2.5X10<14>cm<-2> or lower. In addition, a cooling means used to cool this device down to an operating temperature of 150 or lower is provided. Thereby, a deterioration rate of hot carriers at 77K is reduced as compared with a value of conventional devices; the deterioration rate at 77K is made minimum and is reduced to a value, at room temperature, of the conventional devices.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低温、特に液体窒素温度で動作させることを特
徴とするMOSデバイスに係り、従来よりもホットキャ
リア耐性に優れ、かつ高速動作が可能なLDD構造MO
Sデバイスに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a MOS device that is characterized by being operated at low temperatures, particularly at liquid nitrogen temperatures, and which has superior hot carrier resistance than conventional devices and is capable of high-speed operation. LDD structure MO
Regarding S devices.

C従来の技術〕 従来MoSトランジスタの高耐圧構造としては。C. Conventional technology] As for the high voltage structure of conventional MoS transistors.

アイ・イー・イー・イー、ジャーナル オブソリッドス
テートサーキツツ、ニス シー15 (1980年)、
第424頁から432頁(IEEE  J。
I.E.E., Journal of Solid State Circuits, Nisshi 15 (1980),
pp. 424-432 (IEEE J.

of 5olid−5tate C1rcuits、S
 C−15,424。
of 5olid-5tate C1rcuits,S
C-15,424.

1980)において論じられているようなライトリ−・
ドープト・ドレイン(LightlyDoped Dr
ain)構造、略してLDD構造があった0本構造はソ
ース・ドレイン拡散層のゲート電極に接する領域に低不
純物濃度層(LDD層)を形成してドレイン近傍の電界
を緩和することにしたものである。そして、LDD層の
燐イオン打込量の室温での最適値は、1984年アイ・
イー・デー・エム テクニカルダイジェスト、第774
頁から第777頁(1984I EDM、 Tech、
 Dig、 p、 774)において示されているよう
に、101δ(!−″!、もしくはその近傍の値である
Lightly, as discussed in (1980)
LightlyDoped Dr
ain) structure, abbreviated as LDD structure, is one in which a low impurity concentration layer (LDD layer) is formed in the region of the source/drain diffusion layer in contact with the gate electrode to alleviate the electric field near the drain. It is. The optimal value for the amount of phosphorus ion implanted into the LDD layer at room temperature was determined by the 1984 I.
EDM Technical Digest, No. 774
Pages 777 (1984I EDM, Tech,
Dig, p, 774), it is 101δ (!-''!, or a value close to it).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記LDD構造MOSトランジスタは低温動作
について配慮されておらず、これを液体窒素温度で動作
させると低不純物濃度層(L D D層)の抵抗値がキ
ャリアフリーズアウト効果で増大し動作電流値が減少す
るとともに、LDD構造MOSトランジスタに固有のホ
ットキャリア劣化が増大するとの問題があった。
However, the LDD structure MOS transistor described above does not take into account low temperature operation, and when it is operated at liquid nitrogen temperature, the resistance value of the low impurity concentration layer (LDD layer) increases due to the carrier freeze-out effect, and the operating current value decreases. There is a problem in that as the amount of hot carriers decreases, hot carrier deterioration inherent to LDD structure MOS transistors increases.

本発明の目的は上記の低温でのLDD抵抗増大による性
能劣化の問題を解決し、LDD構造MOSトランジスタ
の液体窒素温度での高信頼度動作を可能とすることにあ
る。
An object of the present invention is to solve the problem of performance deterioration due to an increase in LDD resistance at low temperatures, and to enable highly reliable operation of an LDD structure MOS transistor at liquid nitrogen temperature.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、LDD層の燐イオン打込み量を1.5 X
 1011Scs″″” 以上テ、2.5 X 10”
cm−2以下の量とすることにより達成される。より正
確な最適化はLDD層の燐イオン打込み量を1014a
1″″!、またはその近傍の値とすることにより達成さ
れる。
The above purpose is to increase the amount of phosphorus ions implanted into the LDD layer by 1.5
1011Scs″″” or more, 2.5 x 10”
This is achieved by setting the amount to less than cm-2. A more accurate optimization is to increase the phosphorus ion implantation amount of the LDD layer to 1014a.
1″″! , or a value near it.

〔作用〕[Effect]

本発明の作用を新たに得た実験効果を用いて説明する。 The effect of the present invention will be explained using newly obtained experimental results.

第2図はLDD構造nMOSトランジスタのDCストレ
ス実験結果を示したものである。
FIG. 2 shows the results of a DC stress experiment on an LDD structure nMOS transistor.

DCストレスとして印加したドレイン電圧は5vであり
、ゲート電圧は基板電流が最大となる値に設定している
。縦軸はストレスを10000秒印加した後の非飽和領
域のトランスコンダクタンスGmの劣化率を示しており
、横軸はLDD層の燐イオン打込量(am−”)を示し
ている。第2図には、0℃(氷水)と77にの面温度条
件でのホットキャリアによるGm劣化率対しDD部燐イ
オン打込量の関係を示した。室温に近い0℃では、従来
1984年アイ・イー・デー・エム テクニカルダイジ
ェスト、第774頁から777頁において示されている
結果と同様に、打込量10 ”cm−”において劣化量
が最小となった。しかし液体窒素温度では、イオン打込
量10工8GW″″2の従来デバイスはストレス時間1
0000秒で、約10″′lの大きなGm劣化を生じて
いる。これはLDD層抵抗がキャリアフリーズアウト効
果で増大するためである。これに対しイオン打込量を1
.5X101δ以上で2.5X10”■−2以下の量と
すれば上記キャリアフリーズアウト効果を弱めることが
出来、従来デバイスよりも液体窒素温度(77K)での
劣化率を低減できる。またこの時の77に劣化率は室温
劣化率(約1O−2)の7倍以内に低減でき、産業的実
用性が確保される。イオン打込量を3×1018以上で
2.lX10”(!1″″2以下の量とすれば室温劣化
率の5倍以内という産業的実用価値の有る信頼度が77
にで確保される。さらに、イオン打込量を5×1013
以上テ1.8 X 10”a++−2以下の量とすれば
、室温劣化率の3倍以内という産業的実用価値の有る信
頼度が77 Kで確保される。
The drain voltage applied as DC stress was 5V, and the gate voltage was set to a value that maximized the substrate current. The vertical axis shows the deterioration rate of the transconductance Gm in the non-saturated region after applying stress for 10,000 seconds, and the horizontal axis shows the amount of phosphorus ion implantation (am-'') in the LDD layer. Fig. 2 showed the relationship between the Gm deterioration rate due to hot carriers and the amount of phosphorus ion implanted in the DD under surface temperature conditions of 0°C (ice water) and 77°C.・Similar to the results shown in D.M. Technical Digest, pages 774 to 777, the amount of deterioration was the minimum at an implantation amount of 10 "cm-".However, at liquid nitrogen temperature, the amount of ion implantation decreased. Conventional device of 10 hours 8 GW″″2 has stress time of 1
0000 seconds, a large Gm deterioration of about 10''l occurs. This is because the LDD layer resistance increases due to the carrier freeze-out effect. In contrast, when the ion implantation amount is reduced to 1
.. If the amount is 5X101δ or more and 2.5X10"■-2 or less, the above carrier freeze-out effect can be weakened, and the deterioration rate at liquid nitrogen temperature (77K) can be reduced compared to conventional devices. Also, at this time 77 The deterioration rate can be reduced to within 7 times the room temperature deterioration rate (approximately 1O-2), ensuring industrial practicability.If the ion implantation amount is 3×1018 or more, If the following amount is used, the reliability level, which has industrial practical value within 5 times the room temperature deterioration rate, is 77.
Secured by. Furthermore, the ion implantation amount was increased to 5×1013
If the amount is less than 1.8 x 10''a++-2, reliability with industrial practical value of within three times the room temperature deterioration rate can be ensured at 77 K.

さらにより正確な最適化として、イオン打込量を101
4as−”またはその近傍の値とすることにより、77
にでのホットキャリアによるGm劣化率をほぼ室温値並
に抑えることが出来る。
Furthermore, as a more accurate optimization, the ion implantation amount was increased to 101
By setting the value to 4as-” or its vicinity, 77
It is possible to suppress the Gm deterioration rate due to hot carriers to almost the room temperature value.

LDD層の燐イオン打込量を1018an−2以下とし
たときもLDD部での電界緩和効果が強く効いて77に
での劣化率を低減できるが、一方寄生抵抗増大になる動
作電流低下が問題となる。
Even when the amount of phosphorus ions implanted into the LDD layer is set to 1018an-2 or less, the electric field relaxation effect in the LDD part is strong and the deterioration rate at 77 can be reduced, but on the other hand, the problem is that the operating current decreases due to an increase in parasitic resistance. becomes.

第3図にはLDD構造nMOSトランジスタの寄生抵抗
測定結果を示す、LDD層の燐イオン打込量が0.4 
X I O”(!1−”の寄生抵抗対ゲート電圧特性カ
ーブ(a)および、同イオン打込量が10”a1″″2
の特性カーブ(b)が示すように、燐イオン打込み量が
10”cm−”を下回ると77にでの寄生抵抗が目立っ
て大きくなってしまう、この寄生抵抗増大は動作電流の
大きな低下を生じる。
Figure 3 shows the parasitic resistance measurement results of an LDD structure nMOS transistor.The amount of phosphorus ion implanted into the LDD layer is 0.4.
Parasitic resistance vs. gate voltage characteristic curve (a) of
As shown in the characteristic curve (b), when the phosphorus ion implantation amount is less than 10"cm-", the parasitic resistance at 77 becomes noticeably large.This increase in parasitic resistance causes a large decrease in the operating current. .

本発明のようにLDD層打込量を1.5×1013以上
で2.5X102以下の量、または3X10”8以上で
2.lX102以下の量、または5×1013以上で1
.8 X 101’以下の量、さらに10”(!l−”
またはその近傍の値とした時は、カーブ(C)。
As in the present invention, the LDD layer implantation amount is 1.5×1013 or more and 2.5×102 or less, or 3×10”8 or more and 2.1×102 or less, or 5×1013 or more and 1
.. 8 x 101' or less, plus 10"(!l-"
or a value close to it, curve (C).

(d)、(e)が示すように77にでの寄生抵抗はほぼ
従来型室温値並の値(カーブ(f))を示すことが明ら
かである。このように本発明は77にでの寄生抵抗を増
すことなく、77にでのホットキャリア劣化率を従来よ
りも大幅に低減できる。
As shown in (d) and (e), it is clear that the parasitic resistance at 77 has a value (curve (f)) that is almost the same as the conventional room temperature value. In this manner, the present invention can significantly reduce the hot carrier deterioration rate at 77 compared to the conventional method without increasing the parasitic resistance at 77.

〔実施例〕〔Example〕

以下本発明の説明を実施例を用いて行なう0本発明によ
る第1の実施例を第1図に示す、第1図はLDD構造n
チャネルMOSトランジスタであり、LDD層燐イオン
打込量を10”3−”としている、1はp型Si基板、
6はSiO工膜、7はポリシリコンからなるゲート電極
である。4,5は低不純物濃度のドレイン、ソース(n
″″)層であり、燐を50KaV以下で1Q140−2
の量打ち込んで形成する。その接合深さ(X j )は
0.3μm以下であり、表面不純物濃度は1016〜1
0s。
The present invention will be explained below using examples. A first example according to the present invention is shown in FIG. 1.
It is a channel MOS transistor, and the amount of phosphorus ion implanted in the LDD layer is 10"3-", 1 is a p-type Si substrate,
6 is a SiO film, and 7 is a gate electrode made of polysilicon. 4 and 5 are low impurity concentration drain and source (n
"") layer, phosphorus is 1Q140-2 at 50KaV or less
Form by punching in the amount of The junction depth (X j ) is 0.3 μm or less, and the surface impurity concentration is 1016 to 1
0s.

3″″Sである。8はゲート電極側壁部に形成したスペ
ーサ酸化膜であり、LDD層形成後HLD(High 
Temperature−Low Pressure 
Deposition)法で堆積したものである。2,
3はスペーサ8を形成後、砒素(A@)イオンを10 
”〜101saa−”イオン打釘みして形成した高濃度
n型領域であり、nMOSトランジスタのドレイン・ソ
ースとなる。
It is 3″″S. 8 is a spacer oxide film formed on the side wall of the gate electrode, and after forming the LDD layer, the HLD (High
Temperature-Low Pressure
The film was deposited by a method (deposition). 2,
3, after forming the spacer 8, 10 arsenic (A@) ions are added.
"~101saa-" This is a high concentration n-type region formed by ion hammering, and becomes the drain and source of the nMOS transistor.

本実施例において実測した液体窒素温度(77K)での
寄生抵抗値は第3図に示すようにゲート電圧5vで約1
00Ωであり、従来デバイス(LDD層燐イオン打込量
; 1018am−”)の室温寄生抵抗値にほぼ等しい
値となった。また本実施例によればその77にでのGm
劣化率は、第2図に示すようにフォアワードモードで1
0−2 リバースモードで4×10″″2に低減出来、
77にでのホットキャリア信頼性を改善することができ
た。
The parasitic resistance value actually measured in this example at the liquid nitrogen temperature (77K) was approximately 1 at a gate voltage of 5V, as shown in Figure 3.
00Ω, which is almost equal to the room temperature parasitic resistance value of the conventional device (LDD layer phosphorus ion implantation amount: 1018 am-”). Also, according to this example, the Gm at 77
The deterioration rate is 1 in forward mode as shown in Figure 2.
0-2 Can be reduced to 4 x 10''2 in reverse mode,
We were able to improve the hot carrier reliability at 77.

本実施例ではLDD層燐イオン打込量を1014dll
″″!としたが、打込量を1.5 X 10”以上で2
.5 X 10”m−” 以下(1)量トスレば77に
劣化率を室温値の7倍以内におさえて産業的実用性が確
保できる。また3×1013以上で2.lX101番0
11″″!以下の量、および5X10”8以上で1.8
×10”(!1″″2以下の量としても、77に劣化率
をそれぞれ従来型室温値の5倍以内の値および3倍以内
の値におさえて産業的実用性を確保できる。
In this example, the amount of phosphorus ion implanted in the LDD layer was 1014 dll.
″″! However, if the driving amount is 1.5 x 10” or more, 2
.. 5 x 10"m-" or less (1) If the amount of strain is 77, the deterioration rate can be suppressed to within 7 times the room temperature value and industrial practicability can be ensured. Also, 2.3×1013 or more. lX101 No. 0
11″″! 1.8 in the following amounts and 5X10”8 or more
Even if the amount is less than 10"(!1""2), industrial practicability can be ensured by suppressing the deterioration rate to within 5 times and within 3 times the conventional room temperature value, respectively.

本発明の第2の実施例を第4図に示す。A second embodiment of the invention is shown in FIG.

本実施例は非対称低濃度ドレイン(LDD)型判 7チヤネルMoSトランジスタの発明例であり、本実施
例が第1の実施例と異なるところは、第1の実施例の低
不純物濃度ソース、5の代わりに。
This example is an invention example of an asymmetric low concentration drain (LDD) type 7-channel MoS transistor, and the difference between this example and the first example is that the low impurity concentration source of the first example, instead.

不純物濃度の高いn型不純物領域9を形成している点に
ある。低濃度ドレイン4は第1の実施例と同様に燐を5
0KeV以下で10”01″″工の量、打外部端子から
見た実効ゲート電圧を低下させることなく、ホットキャ
リア耐圧を増加で肴る。そして低濃度ドレイン濃度の最
適化で77にでの素子劣化を従来デバイスに比べて約1
桁低減できる。
The point is that an n-type impurity region 9 with a high impurity concentration is formed. The low concentration drain 4 contains 5 phosphorus as in the first embodiment.
At 0 KeV or less, the hot carrier breakdown voltage can be increased without reducing the effective gate voltage seen from the external terminal with the amount of 10"01" processing.Then, by optimizing the low concentration drain concentration, the element in 77. Deterioration is reduced by approximately 1 compared to conventional devices.
It can be reduced by orders of magnitude.

〔発明の効果〕〔Effect of the invention〕

本発明はLDD構成MOSトランジスタの低濃度ドレイ
ン部燐イオン打込み量を1.5X10”δ1−1以上2
.5X10”C11−2以下の量としたもので、これに
より77にでのホットキャリア劣化率を従来デバイス値
よりも低減できた。
In the present invention, the amount of phosphorus ion implanted in the low concentration drain portion of an LDD configuration MOS transistor is 1.5×10”δ1−1 or more2
.. The amount was set to 5×10”C11-2 or less, which made it possible to reduce the hot carrier deterioration rate at 77 mm compared to the conventional device value.

また本発明は上記燐イオン打込量を10”(1m−”ま
たはその近傍の値としたもので、これにより77にでの
劣化率を最小化でき従来デバイスの室温値並に低減でき
た。
Further, in the present invention, the amount of phosphorus ion implanted is set to 10'' (1 m-'') or a value in the vicinity thereof, thereby minimizing the deterioration rate at 77°C and reducing it to the same level as the room temperature value of conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す図、第2図は本発
明デバイスのホットキャリア信頼性を示す図、第3図は
本発明デバイスの寄生抵抗結果を示す図、第4図は本発
明の第2の実施例を示す図である。 1・・・p型Si基板、 2・・・ドレイン、 3・・・ソース、 4・・・低濃度ドレイン、 5・・・低濃度ソース、 6・・・ 第 図 図
FIG. 1 is a diagram showing the first embodiment of the present invention, FIG. 2 is a diagram showing the hot carrier reliability of the device of the present invention, FIG. 3 is a diagram showing the parasitic resistance results of the device of the present invention, and FIG. FIG. 2 is a diagram showing a second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...p-type Si substrate, 2...drain, 3...source, 4...low concentration drain, 5...low concentration source, 6...Fig.

Claims (1)

【特許請求の範囲】 1、ドレインまたはソース領域の少なくとも一方のうち
ゲート電極に隣接する表面部分に、不純物濃度が他のド
レイン・ソース領域の不純物濃度よりも低いn型不純物
領域を有するnチャネルMOSトランジスタを有し、前
記の低濃度n型不純物領域が燐イオンを1.5×10^
1^3以上で2.5×10^1^4cm^−^2以下の
量だけ打込んで形成されていることを特徴とする半導体
装置であり、かつ該装置を150以下の動作温度に冷却
するための冷却手段を具備した半導体装置。 2、該低濃度n型不純物領域が燐イオンを3×10^1
^3以上で2.1×10^1^4cm^−^2以下の量
だけ打込んで形成されていることを特徴とする特許請求
の範囲第1項記載の半導体装置。 3、該低濃度n型不純物領域が燐イオンを5×10^1
^8以上で1.8×10^1^4cm^−^2以下の量
だけ打込んで形成されていることを特徴とする特許請求
の範囲第1項記載の半導体装置。 4、該低濃度n型不純物領域が燐イオンを10^1^4
cm^−^2の量またはその近傍の量だけ打込んで形成
されていることを特徴とする特許請求の範囲第1項記載
の半導体装置。 5、液体窒素温度、またはその近傍の温度範囲で動作さ
せることを特徴とする特許請求の範囲第1項、第2項、
第3項および第4項のいずれかに記載の半導体装置。
[Claims] 1. An n-channel MOS having an n-type impurity region in a surface portion of at least one of the drain and source regions adjacent to the gate electrode, the impurity concentration of which is lower than that of the other drain and source regions. It has a transistor, and the low concentration n-type impurity region absorbs phosphorus ions at 1.5×10^
A semiconductor device characterized in that it is formed by implanting an amount of 1^3 or more and 2.5 x 10^1^4 cm^-^2 or less, and the device is cooled to an operating temperature of 150 or less. A semiconductor device equipped with a cooling means for 2. The low concentration n-type impurity region absorbs 3×10^1 phosphorus ions.
2. The semiconductor device according to claim 1, wherein the semiconductor device is formed by implanting an amount equal to or larger than ^3 and equal to or less than 2.1 x 10^1^4 cm^-^2. 3. The low concentration n-type impurity region absorbs 5×10^1 phosphorus ions.
2. The semiconductor device according to claim 1, wherein the semiconductor device is formed by implanting an amount equal to or larger than ^8 and equal to or less than 1.8 x 10^1^4 cm^-^2. 4. The low concentration n-type impurity region absorbs phosphorus ions by 10^1^4
2. The semiconductor device according to claim 1, wherein the semiconductor device is formed by implanting an amount of .cm^-^2 or an amount in the vicinity thereof. 5. Claims 1 and 2, characterized in that the device is operated at liquid nitrogen temperature or a temperature range in the vicinity thereof.
The semiconductor device according to any one of Items 3 and 4.
JP3357589A 1989-02-15 1989-02-15 MOS type semiconductor device Expired - Fee Related JP2708525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3357589A JP2708525B2 (en) 1989-02-15 1989-02-15 MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3357589A JP2708525B2 (en) 1989-02-15 1989-02-15 MOS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH02214123A true JPH02214123A (en) 1990-08-27
JP2708525B2 JP2708525B2 (en) 1998-02-04

Family

ID=12390331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3357589A Expired - Fee Related JP2708525B2 (en) 1989-02-15 1989-02-15 MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP2708525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925914A (en) * 1997-10-06 1999-07-20 Advanced Micro Devices Asymmetric S/D structure to improve transistor performance by reducing Miller capacitance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925914A (en) * 1997-10-06 1999-07-20 Advanced Micro Devices Asymmetric S/D structure to improve transistor performance by reducing Miller capacitance

Also Published As

Publication number Publication date
JP2708525B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US7211845B1 (en) Multiple doped channel in a multiple doped gate junction field effect transistor
US6495882B2 (en) Short-channel schottky-barrier MOSFET device
US6051452A (en) Method for manufacturing a semiconductor device with ion implantation
JPH07312423A (en) Mis type semiconductor device
JPH06342883A (en) Mosfet and cmos device
JPH08236758A (en) Asymmetrical mos device and its manufacture
US20090170269A1 (en) High voltage mosfet devices containing tip compensation implant
US7221019B2 (en) Short-channel Schottky-barrier MOSFET device and manufacturing method
JPH0715009A (en) Vertical mos field-effect transistor
TW501204B (en) Method to adjust the threshold-voltage of a MOS-transistor
JPH03209876A (en) Micro-misfet and manufacture thereof
US7084026B2 (en) Semiconductor device and method for fabricating the same
US7736961B2 (en) High voltage depletion FET employing a channel stopping implant
JP2000340795A (en) Semiconductor logic element and logic circuit using the same
JPH02214123A (en) Mos-type semiconductor device
JPH0571190B2 (en)
JPH0582067B2 (en)
US6727149B1 (en) Method of making a hybrid SOI device that suppresses floating body effects
JPH04179160A (en) Semiconductor device
JPH08255903A (en) Semiconductor device and fabrication thereof
JPH0350771A (en) Semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
US20060286759A1 (en) Metal oxide semiconductor (MOS) device having both an accumulation and a enhancement mode transistor device on a similar substrate and a method of manufacture therefor
JP3516336B2 (en) Transistor having variable threshold voltage and method for manufacturing the same
KR970010684B1 (en) Silicon on insulator element structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees