JPH02213500A - Method for flattening surface of semiconductor substrate with high precision - Google Patents

Method for flattening surface of semiconductor substrate with high precision

Info

Publication number
JPH02213500A
JPH02213500A JP3334589A JP3334589A JPH02213500A JP H02213500 A JPH02213500 A JP H02213500A JP 3334589 A JP3334589 A JP 3334589A JP 3334589 A JP3334589 A JP 3334589A JP H02213500 A JPH02213500 A JP H02213500A
Authority
JP
Japan
Prior art keywords
substrate
electrode
projecting part
semiconductor substrate
high precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3334589A
Other languages
Japanese (ja)
Inventor
Kunihiko Kitagawa
北川 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP3334589A priority Critical patent/JPH02213500A/en
Publication of JPH02213500A publication Critical patent/JPH02213500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To flatten the surface of a semiconductor substrate with high precision by opposing an acicular electrode to a fine projecting part on the substrate dipped in a soln., carrying out electropolishing and selectively dissolving the fine protrusion. CONSTITUTION:The Si substrate 1 specularly finished by ordinary mechanical polishing is dipped in an electrolyte 4 contg. 5% HF in a cell 3. The acicular electrode 2 is dipped in opposition to the substrate 1, and a power source 5 capable of adjusting the voltage and current is connected to the electrode 2 and the substrate 1. Meanwhile, the matching precision of the worked surface is inspected and the fine projecting part is detected by a flatness measuring instrument (not shown in the figure) using the conventional optical or electromagnetic methods such as the optical interference method and the impedance variation method. The tip of electrode 2 is then opposed to the fine projecting part. Electropolishing is carried out under such conditions, hence the fine projecting part is completely dissolved, and the surface of the substrate 1 is flattened with high precision. Since the worked surface is kept clean by this method, the semiconductor devices can be highly integrated.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、部分的に微小とつ部を有する半導体基板の
微小とつ部を取り除き、部分的に高精度で平坦面とする
加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of processing a semiconductor substrate partially having minute ridges by removing the minute ridges and partially forming a flat surface with high precision.

従来の技術 半導体基板は、単結晶インゴットから切断、研摩、エツ
チングおよびポリッシングなどの加工工程を経て仕上げ
られる。
BACKGROUND OF THE INVENTION Semiconductor substrates are manufactured from single crystal ingots through processing steps such as cutting, grinding, etching, and polishing.

そして、半導体基板には高い平坦度が要求されるため、
通常上記加工工程において平面研削盤やラッピング盤な
どによる機械加工により鏡面仕上げが行われる。
And since high flatness is required for semiconductor substrates,
Usually, in the above-mentioned processing step, a mirror finish is performed by machining using a surface grinder, a lapping machine, or the like.

機械加工は加工速度が速い利点がおるが、シリコン基板
の表面近傍に機械的損傷領域を形成し、その損傷内に異
物、不純物がたまりやすい。高い清浄度が要求されるシ
リコン基板は、加工)麦に被加工物を洗浄しても、これ
らの異物、不純物を完全に取り除くことは困難である。
Although machining has the advantage of high processing speed, it forms a mechanically damaged area near the surface of the silicon substrate, and foreign matter and impurities tend to accumulate within the damaged area. Silicon substrates require a high level of cleanliness, and even if the workpiece is cleaned, it is difficult to completely remove these foreign substances and impurities.

しかし、機械研摩はバッチ処理的に手軽にでき、しかも
従来要求されている程度の平坦度は一応機械研摩で対処
できていた。そのため、半導体基板の鏡面加工に電解研
摩を利用することはなかった。
However, mechanical polishing can be easily carried out in a batch process, and the level of flatness conventionally required can be achieved by mechanical polishing. Therefore, electrolytic polishing has not been used for mirror finishing of semiconductor substrates.

最近、デバイスにおけるリソグラフィー技術と関連して
、半導体基板に部分的領域の平坦度が高いことが要求さ
れるようになった。しかし、通常のメカノケミカル研摩
で仕上げられた基板表面の平坦度は、部分的に精度が要
求仕様から外れることが多々ある。ところが、平坦度の
精度が外れた基板は、再度通常の研摩を行っても修正で
きる保証が少ない。
Recently, in connection with lithography technology for devices, it has become necessary for semiconductor substrates to have high flatness in partial regions. However, the flatness of the substrate surface finished by ordinary mechanochemical polishing often deviates from the required specifications in some areas. However, there is little guarantee that a substrate whose flatness is not accurate can be corrected even if it is polished again using normal polishing.

発明が解決しようとする課題 ゛上記のごとく、部分的領域の平坦度が高いことが要求
される半導体基板において、部分的に平坦度の精度が要
求仕様から外れた基板の修正が容易に、かつ確実にでき
る方法の出現が望まれる。
Problem to be Solved by the Invention: As described above, in a semiconductor substrate where high flatness is required in a partial region, it is possible to easily correct a substrate whose flatness accuracy partially deviates from the required specification. It is hoped that a reliable method will emerge.

この発明は、上記の要望を満たす半導体基板の高精度平
坦面加工方法を提供するものでおる。
The present invention provides a high-precision flat surface processing method for semiconductor substrates that satisfies the above requirements.

課題を解決するための手段 上記目的を達成するため、この発明の高精度平坦面加工
方法は、通常のメカノケミカル研摩または電解研摩で鏡
面加工を施した半導体基板を、当該半導体基板と電気化
学的に反応する液体中に浸漬して光学的または電磁気的
方法により微小とつ部を検出し、当該微小とつ部に針状
電極を対向して電解研摩を行い、加工面に存在する微小
とつ部を選択的に溶解して部分的に高精度平坦化を行う
のである。
Means for Solving the Problems In order to achieve the above object, the high-precision flat surface processing method of the present invention involves electrochemically processing a semiconductor substrate that has been mirror-finished by ordinary mechanochemical polishing or electrolytic polishing. Microscopic pits are detected by optical or electromagnetic methods by immersing them in a liquid that reacts with High-precision planarization is performed by selectively dissolving the parts.

作   用 液中に浸漬した半導体基板の微小とつ部に針状電極を対
向して電解研摩を行い、加工面に存在する微小とつ部を
選択的に溶解することにより、部分的に高精度平坦化を
行うことができ、要求精度を満した平坦度で再仕上げで
きる。
Electrolytic polishing is performed by placing a needle-like electrode facing the micro-protrusions of the semiconductor substrate immersed in the working solution, and by selectively dissolving the micro-protrusions present on the machined surface, high precision is achieved locally. It can be flattened and refinished with flatness that meets the required accuracy.

また、半導体基板は陽極として電解研摩されるため、半
導体基板の加工面から不純物が取り除かれ清浄面に仕上
げることができる。
Furthermore, since the semiconductor substrate is electrolytically polished as an anode, impurities are removed from the processed surface of the semiconductor substrate, resulting in a clean surface.

実施例 実施例1 この発明の詳細を第1図に基いて説明する。Example Example 1 The details of this invention will be explained based on FIG.

通常の機械研摩により鏡面仕上げされたシリコン基板(
1)を電解液(4)として5%旺を入れた電解液槽(3
)に浸漬する。また、シリコン基板(1)に対向して針
状電極(2)を浸漬する。この針状電極(2)の先端は
針状にとがるか、または小球状で突出させ、研摩加工し
たい位置に電気力線が集るように形成する。そして、シ
リコン基板(1)と針状電極(2)の間に調整可能な電
圧、電流を出力できる電!(5)を接続する。
A silicon substrate that has been mirror-finished by ordinary mechanical polishing (
1) as the electrolyte (4) and an electrolyte tank (3) containing 5% oxygen.
). Further, a needle electrode (2) is immersed opposite the silicon substrate (1). The tip of this needle-shaped electrode (2) is sharpened into a needle shape or protruded into a small spherical shape so that lines of electric force are concentrated at the position desired to be polished. And an electric current that can output adjustable voltage and current between the silicon substrate (1) and the needle electrode (2)! Connect (5).

図示しない通常の光干渉法やインピーダンス変化法など
の光学的または電磁気的方法による平坦度計測器を使っ
て加工面の加工精度を調べ微小とつ部を検出する。そし
て、針状電極(2)の先端を微小とつ部に対向した近接
位置に調整する。
Using a flatness measuring instrument (not shown) that uses an optical or electromagnetic method such as a normal optical interferometry method or an impedance variation method, the machining accuracy of the machined surface is checked and minute dents are detected. Then, the tip of the needle electrode (2) is adjusted to a close position facing the minute prong.

この方法により電解研摩を行えば、研摩速度は液温と印
加電圧量により調整される。したがって、電場印加条件
は微小とつ部の形状によって決められる。
When electrolytic polishing is performed using this method, the polishing speed is adjusted by the liquid temperature and the amount of applied voltage. Therefore, the conditions for applying the electric field are determined by the shape of the microscopic portion.

また、加工面上に複数の微小とつ部がある場合は、例え
ばコンピュータ制御したX−Yステージにより針状電極
を位置合せして連続的に電解研摩する。
Furthermore, if there are a plurality of microscopic pits on the surface to be machined, the needle-like electrodes are aligned using, for example, a computer-controlled X-Y stage, and electrolytic polishing is performed continuously.

今、下記の条件で電解研摩を行ったところ、鏡面加工し
たあとの微小とつ部を完全に取り除き、高精度平坦面に
仕上げることができた。
When we performed electrolytic polishing under the following conditions, we were able to completely remove the microscopic ridges left after mirror polishing and create a highly accurate flat surface.

シリコン基板:機械研摩により鏡面仕上げした直径5イ
ンチ基板 針状白金電極:陰極を印加 印加電流電圧条件:50〜160 mA々、3〜6■電
   解   液: 5重量%HF 電解液温度:10〜25℃ 実施例2 次の条件で直径6インチのシリコン基板に通常の電解研
摩を行い鏡面仕上げした。
Silicon substrate: 5-inch diameter substrate with mirror finish by mechanical polishing Needle-shaped platinum electrode: Apply cathode Applied current and voltage conditions: 50 to 160 mA, 3 to 6 Electrolyte solution: 5% by weight HF Electrolyte temperature: 10 to 25° C. Example 2 A silicon substrate with a diameter of 6 inches was subjected to ordinary electrolytic polishing under the following conditions to give it a mirror finish.

電  解  液:I HF:2 )12sO4:5 H
2Oを混合 電解液温度:20〜80℃ 板状白金電極:陰極 印加電流電圧条件二80〜200 mA4. 0.5〜
6■上記電解研摩により鏡面加工されたシリコン基板に
実施例1と同じ要領で微小とつ部を選択的に電解研摩し
て高精度平坦面に仕上げた。
Electrolyte: IHF:2)12sO4:5H
2O mixed electrolyte temperature: 20~80℃ plate-shaped platinum electrode: cathode applied current voltage conditions 280~200 mA4. 0.5~
6) In the same manner as in Example 1, minute ridges were selectively electrolytically polished on the silicon substrate mirror-finished by the electrolytic polishing described above to obtain a high-precision flat surface.

発明の効果 この発明は、通常のメカノケミカル研摩または電解研摩
で鏡面加工されたシリコン基板に針状電極を使って微小
とつ部を選択的に電解研摩することにより高精度平坦面
に仕上げることができ、また、加工面をクリーンに保て
るため、半導体装置の高集積化に寄与できる。
Effects of the Invention This invention makes it possible to finish a highly precise flat surface by selectively electrolytically polishing minute ridges using a needle-like electrode on a silicon substrate that has been mirror-finished by ordinary mechanochemical polishing or electrolytic polishing. In addition, since the processed surface can be kept clean, it can contribute to higher integration of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するための電解研摩装置の基本
構成を示す説明図である。 1・・・シリコン基板 2・・・針状電極 3・・・電解液槽 4・・・電解液
FIG. 1 is an explanatory diagram showing the basic configuration of an electrolytic polishing apparatus for carrying out the present invention. 1...Silicon substrate 2...Acicular electrode 3...Electrolyte solution tank 4...Electrolyte solution

Claims (1)

【特許請求の範囲】[Claims] 1 通常のメカノケミカル研摩または電解研摩で鏡面加
工を施した半導体基板を、当該半導体基板と電気化学的
に反応する液体中に浸漬して光学的または電磁気的方法
により微小とつ部を検出し、当該微小とつ部に針状電極
を対向して電解研摩を行い、加工面に存在する微小とつ
部を選択的に溶解して部分的に高精度平坦化を行う半導
体基板の高精度平坦面加工方法。
1. A semiconductor substrate that has been mirror-finished by ordinary mechanochemical polishing or electrolytic polishing is immersed in a liquid that electrochemically reacts with the semiconductor substrate, and minute protrusions are detected by an optical or electromagnetic method. A high-precision flat surface of a semiconductor substrate in which electrolytic polishing is performed with a needle-like electrode facing the micro-protrusions, selectively dissolving the micro-protrusions present on the processed surface and partially planarizing them with high precision. Processing method.
JP3334589A 1989-02-13 1989-02-13 Method for flattening surface of semiconductor substrate with high precision Pending JPH02213500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3334589A JPH02213500A (en) 1989-02-13 1989-02-13 Method for flattening surface of semiconductor substrate with high precision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3334589A JPH02213500A (en) 1989-02-13 1989-02-13 Method for flattening surface of semiconductor substrate with high precision

Publications (1)

Publication Number Publication Date
JPH02213500A true JPH02213500A (en) 1990-08-24

Family

ID=12383979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334589A Pending JPH02213500A (en) 1989-02-13 1989-02-13 Method for flattening surface of semiconductor substrate with high precision

Country Status (1)

Country Link
JP (1) JPH02213500A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139334A (en) * 1994-11-10 1996-05-31 Nec Corp Thin film transistor and manufacturing method thereof
JPWO2008140058A1 (en) * 2007-05-09 2010-08-05 株式会社カンタム14 Silicon substrate processing method, processed product and processing apparatus thereof
JP2015515901A (en) * 2012-05-10 2015-06-04 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Laser-sintered dental restoration and manufacturing method
US10383713B2 (en) 2012-05-10 2019-08-20 Renishaw Plc Method of manufacturing an article
US10548696B2 (en) 2012-05-10 2020-02-04 Renishaw Plc Method of manufacturing an article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139334A (en) * 1994-11-10 1996-05-31 Nec Corp Thin film transistor and manufacturing method thereof
JPWO2008140058A1 (en) * 2007-05-09 2010-08-05 株式会社カンタム14 Silicon substrate processing method, processed product and processing apparatus thereof
JP4562801B2 (en) * 2007-05-09 2010-10-13 株式会社カンタム14 Silicon substrate processing method and processing apparatus
JP2015515901A (en) * 2012-05-10 2015-06-04 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Laser-sintered dental restoration and manufacturing method
US10383713B2 (en) 2012-05-10 2019-08-20 Renishaw Plc Method of manufacturing an article
US10548696B2 (en) 2012-05-10 2020-02-04 Renishaw Plc Method of manufacturing an article
US11553995B2 (en) 2012-05-10 2023-01-17 Renishaw Plc Method of manufacturing an article

Similar Documents

Publication Publication Date Title
US6171467B1 (en) Electrochemical-control of abrasive polishing and machining rates
Pei A study on surface grinding of 300 mm silicon wafers
JP6329655B2 (en) Polishing method using anodization
JP6143283B2 (en) Shape creation etching method and high precision shape creation method using anodization
US5910040A (en) Method of controlling shape and NC processing apparatus utilizing the method
US20040081805A1 (en) Method of producing a bonded wafer and the bonded wafer
Liu et al. ELID grinding of silicon wafers: a literature review
JP2013006267A (en) Workpiece processing method
JPH02213500A (en) Method for flattening surface of semiconductor substrate with high precision
US6074947A (en) Process for improving uniform thickness of semiconductor substrates using plasma assisted chemical etching
Walker et al. A quantitative comparison of three grolishing techniques for the Precessions process
JP2001085648A (en) Method for manufacturing bonding wafer and bonding wafer
Guo et al. Investigation on flatness and surface integrity of pure copper processed by electrochemical mechanical polishing
KR100358290B1 (en) Method for manufacturing a probe using electrolytic processing
JP2001118902A (en) Wafer for inspection, its forming method and inspection method using the same
JP3750268B2 (en) Manufacturing method of tool electrode for electric discharge machining
JPH0553057B2 (en)
US11486052B2 (en) Electropolishing treatment method for stainless steel workpiece
JP2000033563A (en) Control method for polishing margin and manufacture of wafer by use of the same
WO2023136040A1 (en) Surface processing method of semiconductor wafer
JP3270416B2 (en) Processing electrode manufacturing method and processing electrode manufacturing apparatus
JPH07159113A (en) Probe for scanning tunneling microscope and manufacture thereof
CN115229647A (en) Device and method for femtosecond laser-assisted diamond polishing
JPH0655347A (en) Electrochemical composite machine
JP2003086642A (en) Method for cleaning probe of probe card