JPH02213426A - Method for recovering palladium from water solution - Google Patents

Method for recovering palladium from water solution

Info

Publication number
JPH02213426A
JPH02213426A JP1035647A JP3564789A JPH02213426A JP H02213426 A JPH02213426 A JP H02213426A JP 1035647 A JP1035647 A JP 1035647A JP 3564789 A JP3564789 A JP 3564789A JP H02213426 A JPH02213426 A JP H02213426A
Authority
JP
Japan
Prior art keywords
palladium
water solution
aqueous solution
dialkyl sulfide
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1035647A
Other languages
Japanese (ja)
Other versions
JP2771218B2 (en
Inventor
Tadanori Matsumura
松村 忠典
Akihiro Fujimoto
藤本 明弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihachi Chemical Industry Co Ltd
Original Assignee
Daihachi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihachi Chemical Industry Co Ltd filed Critical Daihachi Chemical Industry Co Ltd
Priority to JP3564789A priority Critical patent/JP2771218B2/en
Publication of JPH02213426A publication Critical patent/JPH02213426A/en
Application granted granted Critical
Publication of JP2771218B2 publication Critical patent/JP2771218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To selectively and effectively extract and recover Pd without deteriorating extracting agent by adjusting Pd-containing water solution to the specific oxidation-reduction potential and bringing this into contact with organic solvent for extraction containing dialkyl sulfide. CONSTITUTION:Ore, waste catalyst, etc., is treated with aqua resia, hydrochloric acid, etc., to obtain oxidized acidic water solution containing Pd as essential component and further, Pt, Ph and non-metal, etc. To this water solution, reducing agent of hydrazine, etc., is added to adjust the oxidation-reduction potential to 725-830mV (normal hydrogen electrode standard). Successively, this water solution is brought into contact with the organic solvent for extraction containing dialkyl sulfide as the extracting agent. As the above organic solvent, kelocine, etc., is used, and if necessary, phase separating reforming agent of higher alcohol, etc., is added. Further, the above dialkyl sulfide is suitable to use the one having 4-10 number of C in the alkyl group. By this method, the deterioration caused by oxidation of the dialkyl sulfide for the extracting agent is suppressed, and Pd is selectively extracted from the water solution and recorded at high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パラジウムに加えて、白金、ロジウムおよび
卑金属のうちの1種以上を含有する水溶液から、硫化ジ
アルキルを抽出剤として使用し。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention uses dialkyl sulfide as an extractant from an aqueous solution containing, in addition to palladium, one or more of platinum, rhodium, and base metals.

溶媒抽出によりパラジウムを選択的に回収する方法であ
って、該抽出剤の劣化を抑制して効果的にパラジウムを
回収する方法に関する。
The present invention relates to a method for selectively recovering palladium by solvent extraction, and a method for effectively recovering palladium by suppressing deterioration of the extractant.

(従来の技術) パラジウム、白金などの白金族金属は、装飾品として利
用され、あるいは電気的あるいは化学的特性に優れるた
め、電子部品、触媒などの工業用に利用されている。白
金族金属の需要は、近年。
(Prior Art) Platinum group metals such as palladium and platinum are used as ornaments, and because of their excellent electrical or chemical properties, are used for industrial purposes such as electronic parts and catalysts. Demand for platinum group metals has increased in recent years.

増加する傾向にある。しかし、他の金属資源に比べ希少
、かつ高価であるため、鉱石からの生産のみならず、廃
触媒、電子部品などからの回収・再利用が行なわれてい
る。特に、自動車の排気ガス浄化用触媒には鉱石中の含
有量を上回る白金族金属が含有されるため1重要な回収
用資源であるといえる。今後このような廃触媒の回収量
が増加することが見込まれるため、白金族金属の廃触媒
などからの回収がますます量要となる。
There is a tendency to increase. However, since it is rare and expensive compared to other metal resources, it is not only produced from ore, but also recovered and reused from waste catalysts, electronic parts, etc. In particular, catalysts for purifying automobile exhaust gas contain platinum group metals that exceed the content of ores, so they can be said to be an important resource for recovery. Since the amount of recovered waste catalysts is expected to increase in the future, the recovery of platinum group metals from waste catalysts will become increasingly necessary.

白金族金属2例えばパラジウムは従来では化学的沈澱分
離法により鉱石や上記廃触媒などから分離・精製されて
いた。しかし2回収率が低いうえ。
Platinum group metal 2, such as palladium, has conventionally been separated and purified from ores, the above-mentioned waste catalysts, etc. by a chemical precipitation separation method. However, the recovery rate is low.

労働生産性も低いという欠点があった。この問題を解決
するため、溶媒抽出法を用いた回収プロセスが開発され
、実用化されている。例えば、特公昭56−18056
号公報には、金および/またはパラジウム;白金;およ
び卑金属を含有する水溶液から。
It also had the disadvantage of low labor productivity. To solve this problem, a recovery process using solvent extraction has been developed and put into practical use. For example, Tokuko Sho 56-18056
From an aqueous solution containing gold and/or palladium; platinum; and base metals.

抽出剤として硫化ジアルキルなどのチオエーテル類を用
いて金および/またはパラジウムを選択的に抽出する方
法が開示されている。特開昭60−86220号公報に
は、白金、ロジウム、パラジウムおよび卑金属を主とし
て含有する塩酸酸性水溶液から硫化ジ−n−ヘキシルを
抽出剤としてパラジウムを選択的に抽出する方法が開示
されている。これらの方法を用いると比較的効果的にパ
ラジウムを回収することが可能となる。
A method for selectively extracting gold and/or palladium using thioethers such as dialkyl sulfide as an extractant is disclosed. JP-A-60-86220 discloses a method for selectively extracting palladium from an acidic hydrochloric acid aqueous solution containing mainly platinum, rhodium, palladium and base metals using di-n-hexyl sulfide as an extractant. Using these methods, palladium can be recovered relatively effectively.

しかし、パラジウムの抽出剤として用いられる硫化ジア
ルキルは容易に酸化しスルホキシドに変化する性質を有
する。形成されたスルホキシドはパラジウムを抽出しな
いばかりか、スズなどの金属と有機溶媒に不溶な錯体を
形成し、抽出プロセスに支障をきたす原因となる。パラ
ジウムを回収するための鉱石や廃触媒は、パラジウムの
化学的安定性を考慮し2通常、王水に溶解させた後、水
溶液とされる。このように、パラジウムを含有する水溶
液には酸化剤である王水が含有されるため。
However, dialkyl sulfide used as an extractant for palladium has the property of being easily oxidized and converted into sulfoxide. The formed sulfoxide not only does not extract palladium, but also forms a complex with metals such as tin that is insoluble in organic solvents, causing problems in the extraction process. Considering the chemical stability of palladium, ores and waste catalysts for recovering palladium are usually dissolved in aqua regia and then made into an aqueous solution. In this way, the palladium-containing aqueous solution contains aqua regia, which is an oxidizing agent.

上記のように酸化されてスルホキシドに変化することが
避けられない。抽出剤が酸化劣化すると抽出プロセスに
おいて抽出溶媒を再使用し得る回数が減少し、さらに水
相、有機相の分相性が悪化する。その結果、パラジウム
の回収コストが増加する。
As mentioned above, it is inevitable that it will be oxidized and converted to sulfoxide. When the extractant deteriorates by oxidation, the number of times the extraction solvent can be reused in the extraction process decreases, and furthermore, the phase separation between the aqueous phase and the organic phase deteriorates. As a result, the cost of recovering palladium increases.

(発明が解決しようとする課題) 本発明は上記従来の問題点を解決するものであり、その
目的とするところは、鉱石、廃触媒などからパラジウム
を選択的かつ効果的に回収し得る方法を提供することに
ある。本発明の他の目的は。
(Problems to be Solved by the Invention) The present invention solves the above conventional problems, and its purpose is to provide a method for selectively and effectively recovering palladium from ores, waste catalysts, etc. It is about providing. Another object of the invention is.

上記鉱石や廃触媒からの酸化性の酸性溶解液から抽出剤
として硫化ジアルキルを用い、該抽出剤を劣化させるこ
となくパラジウムを選択的かつ効果的に回収する方法を
提供することにある。
The object of the present invention is to provide a method for selectively and effectively recovering palladium from an oxidizing acid solution from the ore or waste catalyst, using dialkyl sulfide as an extractant without deteriorating the extractant.

(課題を解決するための手段) 発明者らはパラジウムを含有する水溶液の酸化還元電位
をコントロールすることにより抽出剤である硫化ジアル
キルを劣化させることなくパラジウムを選択的に抽出し
得ることを見出し2本発明を完成するに至った。
(Means for Solving the Problem) The inventors discovered that by controlling the redox potential of an aqueous solution containing palladium, it is possible to selectively extract palladium without degrading dialkyl sulfide, which is an extractant2. The present invention has now been completed.

本発明の水溶液からのパラジウムの回収方法は。The method of recovering palladium from an aqueous solution according to the present invention is as follows.

パラジウムを含有する水溶液と、硫化ジアルキルを抽出
剤として含有する抽出用有機溶媒とを接触させ、該抽出
用有機溶媒中にパラジウムを選択的に抽出する方法であ
って、該水溶液の酸化還元電位を725〜830 mV
 (標準水素電極基準)に調整することにより、該硫化
ジアルキルの酸化による劣化を抑制し、そのことにより
上記目的が達成される。
A method for selectively extracting palladium into the organic extraction solvent by bringing an aqueous solution containing palladium into contact with an organic extraction solvent containing dialkyl sulfide as an extractant, the method comprising: reducing the redox potential of the aqueous solution; 725-830 mV
(standard hydrogen electrode standard), the deterioration of the dialkyl sulfide due to oxidation is suppressed, thereby achieving the above object.

本発明方法に用いられる抽出剤は、下記式(I)で示さ
れる硫化ジアルキルである: R−3−R’     (1) ここでRおよびR”はそれぞれ独立して炭素数4〜10
のアルキル基である。
The extractant used in the method of the present invention is a dialkyl sulfide represented by the following formula (I): R-3-R' (1) where R and R'' each independently have 4 to 10 carbon atoms.
is an alkyl group.

上記硫化ジアルキルのなかでもアルキル基の炭素数が6
〜8である化合物が好適に用いられる。それには例えば
、硫化ジ−n−ヘキシル、硫化ジn−オクチルがある。
Among the above dialkyl sulfides, the alkyl group has 6 carbon atoms.
-8 Compounds are preferably used. These include, for example, di-n-hexyl sulfide and di-n-octyl sulfide.

本発明方法により、パラジウムは、鉱石、銅精錬におい
て得られる銀電解スライム、自動車排気ガス用触媒など
から回収される。具体的には、これらは王水、塩酸/塩
素ガスなどの酸化性の酸溶剤に溶解し、水溶液としたも
のから回収される。
According to the method of the present invention, palladium is recovered from ores, silver electrolytic slime obtained in copper smelting, automobile exhaust gas catalysts, and the like. Specifically, these are recovered from an aqueous solution obtained by dissolving them in an oxidizing acid solvent such as aqua regia or hydrochloric acid/chlorine gas.

例えば、自動車排気ガス用触媒を塩酸と少量の硝酸とで
溶解して得られる水溶液は、はぼ次のとおりである。
For example, an aqueous solution obtained by dissolving an automobile exhaust gas catalyst in hydrochloric acid and a small amount of nitric acid is as follows.

遊離酸濃度   18以上 酸化還元電位 10100O以上 Pd  O,2〜20g/L Pi  O,1〜10g
/fその他、触媒担体から溶出するAIが多量に含まれ
ており、さらに通常、少量のRh、および触媒の溶解時
に混入したPb、 Fe、 Ni、 Cu、 Znおよ
び中和等によるNaが含まれている。そのような水溶液
の具体例を後述の表1に示す。
Free acid concentration: 18 or higher Redox potential: 10100 or higher Pd O, 2 to 20 g/L Pi O, 1 to 10 g
/f In addition, it contains a large amount of AI eluted from the catalyst carrier, and also usually contains a small amount of Rh, Pb, Fe, Ni, Cu, Zn mixed in when dissolving the catalyst, and Na due to neutralization etc. ing. Specific examples of such aqueous solutions are shown in Table 1 below.

本発明方法においては2例えば、上記水溶液に適当な還
元剤が加えられて酸化還元電位が725〜830mν 
(標準水素電極基準)に調整される。還元剤としては、
ヒドラジンまたはヒドラジン塩酸塩。
In the method of the present invention, for example, an appropriate reducing agent is added to the above aqueous solution to achieve a redox potential of 725 to 830 mν.
(standard hydrogen electrode standard). As a reducing agent,
Hydrazine or hydrazine hydrochloride.

第一鉄塩、蓚酸、アルカリ金属亜硫酸塩、亜硫酸ガスな
どが利用される。抽出剤である硫化ジアルキルは、上記
水溶液中から実質的に2価のパラジウムのみを抽出し得
る。4価の白金は抽出されない。酸化還元電位が725
mVを下まわると白金が2価に変化し、この2価の白金
も同時に抽出されるためパラジウムのみを選択的に抽出
することができない。このことは、 CIM Spec
ialVolume 21 。
Ferrous salts, oxalic acid, alkali metal sulfites, sulfur dioxide gas, etc. are used. Dialkyl sulfide, which is an extractant, can extract substantially only divalent palladium from the aqueous solution. Tetravalent platinum is not extracted. Redox potential is 725
If the voltage falls below mV, platinum changes to divalent platinum, and this divalent platinum is also extracted at the same time, so palladium alone cannot be selectively extracted. This is explained in CIM Spec
ialVolume 21.

PP24〜31および特開昭60−86220号公報(
従来の技術の項参照)にも記載されている。パラジウム
と白金の分離を達成するため上記公報においては。
PP24-31 and JP-A-60-86220 (
(See the section on prior art). In the above publication, the separation of palladium and platinum is achieved.

例えば、酸化還元電位を飽和甘木電極基準で800mV
 (標準水素電極基準では1046mVに相当)に設定
して抽出を行なっている。しかし、このような高い酸化
還元電位においては、白金は4価であるためパラジウム
と白金との分離は達成されるものの。
For example, the redox potential is 800 mV based on the saturated Amagi electrode.
(equivalent to 1046 mV based on the standard hydrogen electrode) for extraction. However, at such a high redox potential, separation of palladium and platinum is achieved because platinum is tetravalent.

抽出剤である硫化ジアルキルが酸化されてスルホキシド
に変化するため、パラジウムの抽出効率が低下する。つ
まり、酸化還元電位を725〜830 mVに設定した
ときにのみ、抽出剤である硫化ジアルキルを劣化させる
ことなく選択的にパラジウムを抽出することが可能とな
る。
The extractant, dialkyl sulfide, is oxidized and turns into sulfoxide, reducing palladium extraction efficiency. That is, only when the redox potential is set to 725 to 830 mV, it becomes possible to selectively extract palladium without degrading the dialkyl sulfide, which is the extractant.

本発明により、パラジウムの抽出を行なうには。To carry out the extraction of palladium according to the invention.

上記パラジウム、白金および卑金属(アルカリ金属、ア
ルカリ土類金属、アルミニウム、亜鉛、鉛など)を含有
する水溶液と、上記抽出剤または該抽出剤を有機溶媒に
溶解して調製した抽出用有機溶媒とを接触させる。上記
有機溶媒は、抽出剤である硫化ジアルキルおよびパラジ
ウム錯体を実質的に溶解し得る有機溶媒であればよく、
特に限定されない0例えば、ケロシン、トルエンなどの
石油系溶剤が利用される。抽出用有機溶媒中には。
An aqueous solution containing the above palladium, platinum, and base metals (alkali metals, alkaline earth metals, aluminum, zinc, lead, etc.) and the above extractant or an organic solvent for extraction prepared by dissolving the extractant in an organic solvent. bring into contact. The organic solvent may be any organic solvent as long as it can substantially dissolve the extractant dialkyl sulfide and palladium complex,
For example, petroleum solvents such as kerosene and toluene are used, but are not particularly limited. In the organic solvent for extraction.

さらにイソデカノールのような高級アルコールなどの相
分離改良剤などが必要に応じて添加される。
Furthermore, a phase separation improver such as a higher alcohol such as isodecanol is added as necessary.

上記水溶液と抽出用有機溶媒との接触時の温度は特に限
定されないが、10〜70°Cが好適である。
The temperature at the time of contact between the aqueous solution and the organic solvent for extraction is not particularly limited, but is preferably 10 to 70°C.

上記抽出工程により抽出用有機溶媒中にパラジウムが選
択的に回収される。水溶液の組成によっては卑金属が少
量、共抽出される場合がある。この場合には、抽出後の
有機相を希塩酸などで洗浄することにより、卑金属が該
有機相から除去される。有機相からパラジウムを回収す
るには1例えば、アンモニア水と接触させることにより
、パラジウムはテトラアンモニウム錯体(Pd(Nll
i)4”)として水相中に回収される。上記卑金属の除
去および逆抽出は、パラジウムに対する配位子の強さが
NH3>R−S−R’ >CIであることにより達成さ
れる。
Palladium is selectively recovered in the extraction organic solvent through the above extraction step. Depending on the composition of the aqueous solution, small amounts of base metals may be co-extracted. In this case, the base metal is removed from the organic phase by washing the extracted organic phase with dilute hydrochloric acid or the like. To recover palladium from the organic phase 1 For example, palladium can be converted into a tetraammonium complex (Pd(Nll) by contacting with aqueous ammonia.
i) 4'') in the aqueous phase. The removal and back extraction of the base metals is achieved by the ligand strength for palladium being NH3 >R-S-R'> CI.

上記各種金属を含む水溶液からパラジウムの有機相への
抽出、および該有機相からのパラジウムの逆抽出という
一連の工程において、抽出時には有機相/水相の比を小
さく、そして逆抽出時には核化を大きくとることにより
、パラジウムの希薄な水溶液からもパラジウムを高純度
かつ高濃度で回収することが可能となる。
In the series of steps of extracting palladium from the aqueous solution containing various metals into an organic phase and back-extracting palladium from the organic phase, the ratio of organic phase/aqueous phase is reduced during extraction, and nucleation is prevented during back-extraction. By increasing the size, it becomes possible to recover palladium with high purity and high concentration even from a dilute aqueous solution of palladium.

(実施例) 直1」1− 硫化ジアルキルによりパラジウム、白金、卑金属を主と
して含有する水溶液からパラジウムを抽出する際の、該
水溶液の酸化還元電位とジアルキ′ルスルホキシド(硫
化ジアルキルの酸化により生ずる劣化物である)の生成
との関係;および酸化還元電位と白金の共抽出との関係
を明らかにするために以下の実験を行った。
(Example) 1- Redox potential of aqueous solution and dialkyl sulfoxide (degraded product produced by oxidation of dialkyl sulfide) when palladium is extracted from an aqueous solution mainly containing palladium, platinum, and base metals using dialkyl sulfide The following experiment was carried out to clarify the relationship between the formation of platinum and the co-extraction of platinum; and the relationship between the redox potential and the co-extraction of platinum.

パラジウムを含有する水溶液として、自動車排気ガス触
媒の廃触媒を塩酸と少量の硝酸で溶解し。
A palladium-containing aqueous solution is prepared by dissolving a waste automobile exhaust gas catalyst in hydrochloric acid and a small amount of nitric acid.

表1に示す組成を有する塩酸水溶液を得た。An aqueous hydrochloric acid solution having the composition shown in Table 1 was obtained.

(以下余白) この塩酸水溶液に塩酸ヒドラジンを0〜2g/2となる
ように添加し、1時間撹拌して溶解させ。
(Left below) Hydrazine hydrochloride was added to this aqueous hydrochloric acid solution in an amount of 0 to 2 g/2 and stirred for 1 hour to dissolve.

表2に示すような酸化還元電位が異なる8種の供試水溶
液を得た。
Eight types of test aqueous solutions having different redox potentials as shown in Table 2 were obtained.

抽出用有機溶媒としては、硫化ジ−n−ヘキシル(以下
、 DHSとする)50容量%、イソデカノール10容
量%およびシェルゾールA(シェル社製芳香族炭化水素
系有機溶剤)40容、1%でなる混合物を用いた。上記
供試水溶液と抽出用有機溶媒とを水相:有機相(以下、
相比とする)5:1の割合で混合し525°Cにて振盪
を行なった。振盪開始10時間後に、有機相中に含有さ
れるジーn−へキシルスルホキシド(以下、 DIIS
Oとする)の量、および各金属の含有量を測定した。D
HSからのD II S Oの変化率(D)IsO生成
率)および各金属の水相からの抽出率を表2に示す。塩
酸ヒドラジンを添加しなかった供試水溶液については1
5時間後に、その他の供試水溶液については20時間後
に、同様に測定を行なった。その結果を表2に示す。
The organic solvents for extraction were 50% by volume of di-n-hexyl sulfide (hereinafter referred to as DHS), 10% by volume of isodecanol, and 40% by volume of Shellzol A (aromatic hydrocarbon organic solvent manufactured by Shell Co., Ltd.) at 1%. A mixture of the following was used. The above sample aqueous solution and organic solvent for extraction are combined into aqueous phase: organic phase (hereinafter referred to as
They were mixed at a ratio of 5:1 (referred to as a phase ratio) and shaken at 525°C. 10 hours after the start of shaking, di-n-hexyl sulfoxide (hereinafter referred to as DIIS) contained in the organic phase
The amount of O) and the content of each metal were measured. D
Table 2 shows the change rate of D II SO from HS (D) IsO production rate) and the extraction rate of each metal from the aqueous phase. 1 for the test aqueous solution to which hydrazine hydrochloride was not added.
Measurements were made in the same manner after 5 hours, and after 20 hours for the other sample aqueous solutions. The results are shown in Table 2.

表2を参照すると、酸化還元電位が1103mVの供試
水溶液においては、15時間後にはDHSOが約23%
の割合で生成する。そのため、 Pdに加えてFeが6
.5%の割合で抽出されている。これに対して酸化還元
電位が830 mV以下の水溶液では、 DIISOの
生成が抑制される。他方、酸化還元電位が697 mV
以下の水溶液においては、 Pdに加えてptが有機相
中に柚。
Referring to Table 2, in the test aqueous solution with a redox potential of 1103 mV, DHSO is approximately 23% after 15 hours.
generated at a rate of Therefore, in addition to Pd, Fe is 6
.. It is extracted at a rate of 5%. On the other hand, in an aqueous solution with a redox potential of 830 mV or less, the production of DIISO is suppressed. On the other hand, the redox potential is 697 mV
In the aqueous solution below, in addition to Pd, pt is present in the organic phase.

出されてくることがわかる。酸化還元電位が679mV
の水溶液を抽出用有機溶媒とともに20時間振盪すると
、実に70%ものptが抽出される。これに対して、酸
化還元電位が725 n+V以上の水溶液についてはp
tの抽出率は極めて低い。このように水溶液の酸化還元
電位は約830〜725 mVであることが好ましい。
I know it will come out. Redox potential is 679mV
When an aqueous solution of PT is shaken with an organic solvent for extraction for 20 hours, as much as 70% of PT can be extracted. On the other hand, for aqueous solutions with redox potentials of 725 n+V or higher, p
The extraction rate of t is extremely low. Thus, the redox potential of the aqueous solution is preferably about 830 to 725 mV.

ス五l吐i 有機相中のパラジウム濃度を高めるため、水相だけを新
しいものと取り替え、繰り返し抽出を行なった場合のパ
ラジウムのf14m効果および、その際のDIISOの
生成量を以下の実験により調べた。
In order to increase the palladium concentration in the organic phase, the f14m effect of palladium and the amount of DIISO produced at that time were investigated by replacing only the aqueous phase with a new one and performing repeated extractions through the following experiment. Ta.

表1に示す組成の塩酸水溶液に塩酸ヒドラジンを0.2
5 g / lとなるように添加し、酸化還元電位を7
40 mVに調整し、これを供試水溶液とした。抽出用
有機溶媒は実施例1と同様の方法で調整した。
Add 0.2 hydrazine hydrochloride to an aqueous hydrochloric acid solution with the composition shown in Table 1.
5 g/l, and the redox potential was increased to 7.
The voltage was adjusted to 40 mV, and this was used as a test aqueous solution. The organic solvent for extraction was prepared in the same manner as in Example 1.

供試水溶液と抽出用有機溶媒とを相比5:1,25゛C
で2時間振盪接触させた。振盪後の有機相に含有される
各金属の量を測定した0次に水相を除去し、新たな供試
水溶液を加えて同様に振盪して接触を行ない、有機相に
含有される各金属の量を測定した。このように、水相を
順次取りかえて同様の操作を5回収繰り返し行った。各
回における金属の水相から有機相への抽出率および有機
相中の最終の金属濃度を表3に示す。
The phase ratio of the sample aqueous solution and the organic solvent for extraction was 5:1, 25゛C.
The samples were brought into contact with shaking for 2 hours. The amount of each metal contained in the organic phase after shaking was measured. Next, the aqueous phase was removed, and a new sample aqueous solution was added and brought into contact by shaking in the same manner. The amount of was measured. In this way, the same operation was repeated 5 times by sequentially changing the aqueous phase. Table 3 shows the extraction rate of metal from the aqueous phase to the organic phase in each round and the final metal concentration in the organic phase.

(以下余白) 表3から、繰り返し抽出を行なってもパラジウムが選択
的にかつ高抽出率で有機相中に抽出されることがわかる
。このような繰り返し抽出法により高濃度でパラジウム
を含有する抽出液が得られ・る。繰り返し抽出を5回行
なった後の有機相中のDI(Soの生成率は0.21%
であり、 DHSの劣化も充分に抑制されていることが
明らかである。
(The following is a blank space) From Table 3, it can be seen that palladium is selectively extracted into the organic phase at a high extraction rate even if repeated extractions are performed. Through this repeated extraction method, an extract containing palladium at a high concentration can be obtained. The production rate of DI (So) in the organic phase after 5 repeated extractions was 0.21%.
It is clear that the deterioration of DHS is also sufficiently suppressed.

(発明の効果) 本発明によれば、このように、パラジウム、白金および
卑金属を主として含有する水溶液から。
(Effects of the Invention) According to the present invention, from an aqueous solution mainly containing palladium, platinum and base metals.

パラジウムを選択的かつ効果的に回収することができる
。本発明によれば、抽出剤の酸化による劣化が抑制され
るため、抽出溶媒の使用回数が増加し、抽出2回収効率
が改善され、その結果パラジウムの回収コストが低減で
きる。本性により鉱石や廃触媒から効果的にパラジウム
が回収される。
Palladium can be selectively and effectively recovered. According to the present invention, since deterioration of the extractant due to oxidation is suppressed, the number of times the extraction solvent is used increases, the extraction 2 recovery efficiency is improved, and as a result, the cost of recovering palladium can be reduced. Due to its nature, palladium can be effectively recovered from ores and waste catalysts.

以上that's all

Claims (1)

【特許請求の範囲】 1、パラジウムを主として含有する水溶液と、硫化ジア
ルキルを抽出剤として含有する抽出用有機溶媒とを接触
させ、該抽出用有機溶媒中にパラジウムを選択的に抽出
する方法であって、 該水溶液の酸化還元電位を725〜830mV(標準水
素電極基準)に調整することにより、該硫化ジアルキル
の酸化による劣化を抑制する、 水溶液からのパラジウムの回収方法。 2、前記パラジウムを主として含有する水溶液が、白金
、ロジウムおよび卑金属のうちの少なくとも1種を含有
する請求項1に記載の回収方法。 3、前記硫化ジアルキルのアルキル基の炭素数が4〜1
0である請求項1に記載の回収方法。
[Claims] 1. A method for selectively extracting palladium into the organic extraction solvent by bringing an aqueous solution mainly containing palladium into contact with an organic extraction solvent containing dialkyl sulfide as an extractant. A method for recovering palladium from an aqueous solution, which suppresses deterioration due to oxidation of the dialkyl sulfide by adjusting the redox potential of the aqueous solution to 725 to 830 mV (standard hydrogen electrode reference). 2. The recovery method according to claim 1, wherein the aqueous solution mainly containing palladium contains at least one of platinum, rhodium, and a base metal. 3. The alkyl group of the dialkyl sulfide has 4 to 1 carbon atoms.
2. The recovery method according to claim 1, wherein the recovery method is 0.
JP3564789A 1989-02-15 1989-02-15 Recovery of palladium from aqueous solution Expired - Fee Related JP2771218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3564789A JP2771218B2 (en) 1989-02-15 1989-02-15 Recovery of palladium from aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3564789A JP2771218B2 (en) 1989-02-15 1989-02-15 Recovery of palladium from aqueous solution

Publications (2)

Publication Number Publication Date
JPH02213426A true JPH02213426A (en) 1990-08-24
JP2771218B2 JP2771218B2 (en) 1998-07-02

Family

ID=12447669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3564789A Expired - Fee Related JP2771218B2 (en) 1989-02-15 1989-02-15 Recovery of palladium from aqueous solution

Country Status (1)

Country Link
JP (1) JP2771218B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503812A (en) * 1993-01-19 1996-04-02 Doryokuro Kakunenryo Kaihatsu Jigyodan Method for separating and purifying fission noble metals
JP2013159821A (en) * 2012-02-03 2013-08-19 Sumitomo Metal Mining Co Ltd Method for recovering palladium from palladium-containing selenium powder
CN113481379A (en) * 2021-06-18 2021-10-08 金川集团股份有限公司 Method for removing impurities by using palladium extracting agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086220A (en) * 1983-05-31 1985-05-15 Sumitomo Metal Mining Co Ltd Separation of palladium from acidic aqueous solution of hydrochloric acid
JPS63211615A (en) * 1987-02-26 1988-09-02 日通工株式会社 Solid electrolytic capacitor
JPS63211614A (en) * 1988-01-29 1988-09-02 松下電器産業株式会社 Electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086220A (en) * 1983-05-31 1985-05-15 Sumitomo Metal Mining Co Ltd Separation of palladium from acidic aqueous solution of hydrochloric acid
JPS63211615A (en) * 1987-02-26 1988-09-02 日通工株式会社 Solid electrolytic capacitor
JPS63211614A (en) * 1988-01-29 1988-09-02 松下電器産業株式会社 Electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503812A (en) * 1993-01-19 1996-04-02 Doryokuro Kakunenryo Kaihatsu Jigyodan Method for separating and purifying fission noble metals
JP2013159821A (en) * 2012-02-03 2013-08-19 Sumitomo Metal Mining Co Ltd Method for recovering palladium from palladium-containing selenium powder
CN113481379A (en) * 2021-06-18 2021-10-08 金川集团股份有限公司 Method for removing impurities by using palladium extracting agent
CN113481379B (en) * 2021-06-18 2022-08-12 金川集团股份有限公司 Method for removing impurities by using palladium extracting agent

Also Published As

Publication number Publication date
JP2771218B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
Gupta et al. Extraction and separation studies on Pt (IV), Ir (III) and Rh (III) using sulphur containing extractant
KR101861885B1 (en) Improved method of ore processing
US4107261A (en) Process for the separation of platinum group metals
US5256187A (en) Separation of precious metals by an ion exchange process
JP4406688B2 (en) Method for purifying electrolyte in monovalent copper electrowinning process
US6890496B2 (en) Extraction of metals with diquaternary amines
US3936494A (en) Naphthenohydroxamic acid preparation
JP4470749B2 (en) Rhodium recovery method and metal rhodium production method
JP4321231B2 (en) Method for removing chloride ions in non-ferrous metal sulfate solutions
JPH04505639A (en) Two-phase extraction method of metal ions from solid metal oxide-containing phases, extractants and their use
US5284633A (en) Solvent extraction of precious metals with hydroxyquinoline and stripping with acidified thiourea
JPH02213426A (en) Method for recovering palladium from water solution
EP0404327B1 (en) Recovery of pure platinum and palladium
JP5777150B2 (en) Method for recovering platinum and palladium
US3718458A (en) Liquid-liquid separation of cobalt from ammoniacal solutions
JPH021895B2 (en)
JP5317273B2 (en) Metal ion extractant and extraction method
US7189380B2 (en) Extraction of metals with diquaternary amines
JPH06500822A (en) How to remove metals in solvent extraction
JP2004035968A (en) Method for separating platinum group element
JP3862705B2 (en) Palladium aggregating and precipitating agent and palladium separation and recovery method using the same
JPH0443966B2 (en)
JPH0696456B2 (en) Method for recovering palladium and / or silver
US20220136080A1 (en) Method for recovering gold and copper from electronic components
JPH10158752A (en) Method for extracting and recovering silver

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees