JPH02211397A - Oil separating mechanism for vane compressor - Google Patents

Oil separating mechanism for vane compressor

Info

Publication number
JPH02211397A
JPH02211397A JP3206889A JP3206889A JPH02211397A JP H02211397 A JPH02211397 A JP H02211397A JP 3206889 A JP3206889 A JP 3206889A JP 3206889 A JP3206889 A JP 3206889A JP H02211397 A JPH02211397 A JP H02211397A
Authority
JP
Japan
Prior art keywords
oil
refrigerant gas
swirling
deflector
coolant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3206889A
Other languages
Japanese (ja)
Other versions
JPH0778394B2 (en
Inventor
Yasushi Watanabe
靖 渡辺
Hideki Mizutani
秀樹 水谷
Tatsuya Nakai
達也 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP1032068A priority Critical patent/JPH0778394B2/en
Publication of JPH02211397A publication Critical patent/JPH02211397A/en
Publication of JPH0778394B2 publication Critical patent/JPH0778394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To improve the oil separation efficiency and suppress the swirling-up of stored oil by arranging a swirling-up preventing body in the lower part of a region between the right and left shielding bodies of a deflector and setting the guide shape for the coolant gas onto the both shielding bodies. CONSTITUTION:The coolant gas flow which is branched into the right and left parts by a deflector 20 collides with the right and left shielding plates 22 and 23 and branched into the upper and lower parts. The flow speed of the coolant gas is lowered by the blowing-collision, and the separation of mist form oil is generated. The downwardly branched flow is directed to the vicinity of the center of a swirling-up preventing plate 20 by the guiding shape of the shielding plates 22 and 23, and the downward coolant gas flows supplied from the right and left shielding plates 22 and 23 collide with the swirling-up preventing plate 24, and collide each other in the vicinity of the center in the lateral direction. Therefore, the coolant gas flow speed is reduced further, and also the separation of the mist form oil is generated, and the oil separation efficiency is improved. Further, the coolant gas whose speed is lowered by the swirling-up preventing plate 24 flows along the swirling-up preventing plate 24, and though a part collides with the stored oil surface in the lower part, the swirling-up of the stored oil surface is properly suppressed, since the sufficient speed reduction is performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フロントサイドプレートとリヤサイドプレー
トとに挟まれるシリンダ内に回転可能に収容されたロー
タの周面とシリンダ内周面との間の空間を複数枚のベー
ンにより複数の圧縮室に区画形成し、ロータの回転によ
り冷媒ガスの吸入、圧縮及び吐出を行なうと共に、シリ
ンダの周囲の吐出室からリヤサイドプレート上の吐出通
路を通ってオイル分離室へ冷媒ガスを吐出するベーン圧
縮機におけるオイル分離機構に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to a rotor that is rotatably housed in a cylinder sandwiched between a front side plate and a rear side plate. The space is divided into multiple compression chambers by multiple vanes, and refrigerant gas is sucked in, compressed, and discharged by the rotation of the rotor, and oil is separated from the discharge chamber around the cylinder through the discharge passage on the rear side plate. This invention relates to an oil separation mechanism in a vane compressor that discharges refrigerant gas into a chamber.

[従来の技術] オイル分離室下方のオイルブール部をベーン収容溝の底
部に連通し、オイルを介してオイル分離室の吐出圧力を
ベーンに対する背圧として伝達する構成では、オイルプ
ール部の貯油量の不足が圧縮効率の低下をもたらす。さ
らにはベーン収容溝の底部へのオイル供給に伴って行わ
れる摺接部位の潤滑不良が避けられない。従って、冷媒
ガス中に含まれるミスト状オイルをオイルプール部へ効
率良く還元する必要がある。そのため、実開昭61−6
2296号公報に開示されるオイル分離機構では、シリ
ンダ周囲の吐出室とオイル分離室とを接続するりヤケイ
ドプレート上の吐出通路の出口の前方には冷媒ガス流を
下方へ誘導する遮蔽板が配設されていると共に、この遮
蔽板の下方に巻上げ防止板が配設されている。これによ
り遮蔽板への冷媒ガスの吹きつけによってミスト状オイ
ルが分離され、下方へ向かう冷媒ガス流の貯油面に対す
る直接吹きつけが巻上げ防止板によって阻止されている
。冷媒ガス流が貯油面に直接吹きつけると貯留油が冷媒
ガス流によって巻上げられてゆき、貯油量が直ぐに不足
する。
[Prior Art] In a configuration in which an oil boule portion below an oil separation chamber is communicated with the bottom of a vane storage groove and the discharge pressure of the oil separation chamber is transmitted as back pressure to the vane via oil, the amount of oil stored in the oil pool portion is The lack of this results in a decrease in compression efficiency. Furthermore, poor lubrication of the sliding contact area caused by oil supply to the bottom of the vane housing groove is unavoidable. Therefore, it is necessary to efficiently return the mist-like oil contained in the refrigerant gas to the oil pool portion. Therefore, the
In the oil separation mechanism disclosed in Publication No. 2296, there is a shielding plate that connects the discharge chamber around the cylinder and the oil separation chamber and guides the refrigerant gas flow downward in front of the outlet of the discharge passage on the burnt plate. In addition, a roll-up prevention plate is provided below the shielding plate. As a result, the oil mist is separated by spraying the refrigerant gas onto the shielding plate, and the curling prevention plate prevents the downward flow of refrigerant gas from directly spraying the oil storage surface. If the refrigerant gas flow blows directly onto the oil storage surface, the stored oil will be rolled up by the refrigerant gas flow, and the amount of oil storage will quickly become insufficient.

他の構成のオイル分離機構としては例えば吐出通路の出
口の周囲を湾曲プレートで包囲し、吐出通路の出口の前
方に衝立を配設すると共に、湾曲プレートの下部にスリ
ットを設けたものがある。
Other oil separation mechanisms include, for example, one in which a curved plate surrounds the outlet of the discharge passage, a screen is provided in front of the outlet of the discharge passage, and a slit is provided at the bottom of the curved plate.

冷媒ガスは湾曲プレートの内周面に沿って誘導され、分
離されたオイルは前記スリットから下方へ滴下する。
The refrigerant gas is guided along the inner peripheral surface of the curved plate, and the separated oil drips downward from the slit.

[発明が解決しようとする課題] しかしながら、前者の機構では巻上げ防止板が下方へ向
かう冷媒ガス流を阻止するにも関わらず、圧縮機の高速
回転領域では吐出冷媒ガスの流速が大きいために貯油面
に対する冷媒ガス流の吹きつけ作用が大きく、貯留油の
巻上げ量が多い。しかも冷媒ガス流速が太き(なるほど
遮蔽板による油分離作用も低下し、オイル還元効率が悪
い。従って、高速回転領域では貯油量の不足が避けられ
ない。
[Problems to be Solved by the Invention] However, in the former mechanism, although the anti-rolling plate prevents the downward flow of refrigerant gas, the flow rate of the discharged refrigerant gas is high in the high rotational region of the compressor, resulting in oil storage. The blowing action of the refrigerant gas flow against the surface is large, and a large amount of stored oil is stirred up. Moreover, the flow rate of the refrigerant gas is high (indeed, the oil separation effect by the shielding plate is also reduced, and the oil reduction efficiency is poor. Therefore, a shortage of oil storage is inevitable in the high-speed rotation region.

後者の機構では包囲領域内での冷媒ガスとオイルとの攪
拌が激しく、高速回転領域ではオイルが分離する前に冷
媒ガスと共に圧縮機外へ持ち運ばれてしまうという欠点
がある。
The latter mechanism has the drawback that the refrigerant gas and oil are vigorously agitated within the enclosed region, and in the high-speed rotation region, the oil is carried out of the compressor together with the refrigerant gas before it is separated.

本発明はオイル分離効率を高めつつ貯留油の巻上げを抑
制し得るオイル分離機構を提供することを目的とするも
のである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oil separation mechanism that can suppress the swirling up of stored oil while increasing oil separation efficiency.

[課題を解決するための手段] そのために本発明では、シリンダ周囲の吐出室とオイル
分離室とを接続するリヤサイドプレート中の吐出通路の
出口の前方には両側方へ吐出冷媒ガス流を誘導するディ
フレクタを配設し、ディフレクタにより左右へ振り分け
られた冷媒ガス流を上下方向へ振り分ける遮蔽体をディ
フレクタの左右にそれぞれ配設すると共に、両遮蔽体間
の領域の下方には巻上げ防止体を配設し、左右両遮蔽体
には下方への冷媒ガスの分流方向を巻上げ防止体の左右
中央付近へ指向させる案内形状を設定した。
[Means for Solving the Problems] To this end, in the present invention, a discharge refrigerant gas flow is guided to both sides in front of the outlet of the discharge passage in the rear side plate that connects the discharge chamber around the cylinder and the oil separation chamber. A deflector is installed, and shields are installed on the left and right sides of the deflector to vertically distribute the refrigerant gas flow distributed left and right by the deflector, and a wind-up prevention body is installed below the area between both shields. However, both the left and right shields are designed with guide shapes that direct the downward branching direction of the refrigerant gas toward the center of the left and right sides of the anti-roll-up body.

[作用] 吐出通路の出口からオイル分離室へ吐出する冷媒ガスは
ディフレクタに吹き当たり、ディフレクタによって左右
へ分流される。左右へ分流した冷媒ガス流は左右の遮蔽
板に吹き当たり、遮蔽板によって上下に分流される。こ
の吹き当たりによって冷媒ガス流速が低下し、ミスト状
オイルの分離が起きる。下方への分流は遮蔽板の案内形
状によって巻上げ防止板の左右中央付近を指向し、左右
両遮蔽板からの下方への冷媒ガス流が巻上げ防止板に衝
突すると共に、左右中央付近で互いに衝突し合う。この
衝突によって冷媒ガス流速がさらに低下すると共に、ミ
スト状オイルの分離も起き、オイル分離効率が高まる。
[Operation] The refrigerant gas discharged from the outlet of the discharge passage to the oil separation chamber is blown against the deflector and is divided into left and right directions by the deflector. The refrigerant gas flow divided to the left and right hits the left and right shielding plates, and is divided vertically by the shielding plates. This blowing reduces the flow rate of the refrigerant gas and causes separation of the oil mist. The downward branch flow is directed near the left and right centers of the hoisting prevention plate due to the guide shape of the shielding plate, and the downward refrigerant gas flows from both the left and right shielding plates collide with the hoisting prevention plate and collide with each other near the left and right centers. Fit. This collision further reduces the refrigerant gas flow velocity and also causes mist-like oil separation, increasing oil separation efficiency.

巻上げ防止板上で速度低下した冷媒ガスは巻上げ防止板
に沿って流れ、その一部は巻上げ防止板の下方の貯油面
に吹き当たる。しかしながら、貯油面に吹き当たる冷媒
ガスの流速は十分に減速されているため、貯留油の巻上
げは適度に抑制される。
The refrigerant gas whose speed has decreased on the winding prevention plate flows along the winding prevention plate, and a portion of the refrigerant gas blows against the oil storage surface below the winding prevention plate. However, since the flow velocity of the refrigerant gas that blows onto the oil storage surface is sufficiently slowed down, the swirling up of the stored oil is appropriately suppressed.

[実施例] 以下、本発明を可変容量型ベーン圧縮機に具体化した一
実施例を第1〜6図に基づいて説明する。
[Example] Hereinafter, an example in which the present invention is embodied in a variable displacement vane compressor will be described based on FIGS. 1 to 6.

前後一対のハウジング1,2内に収容固定されたシリン
ダ3の前後両端にはサイドプレート4゜5が密着接合さ
れており、第4図に示すようにシリンダ3内の略楕円柱
状の室内には円柱状のロータ6が回転可能に支持されて
いる。ロータ6の周面には複数の溝7が半径方向に形成
されており、各港7にはベーン8が前後両サイドプレー
ト4゜5に密接して略半径方向へ摺動可能に嵌入支持さ
れている。
A cylinder 3 is housed and fixed in a pair of front and rear housings 1 and 2, and side plates 4.5 are tightly joined to both front and rear ends of the cylinder 3, and as shown in FIG. A cylindrical rotor 6 is rotatably supported. A plurality of grooves 7 are formed in the radial direction on the circumferential surface of the rotor 6, and a vane 8 is fitted and supported in each port 7 so as to be slidable approximately in the radial direction in close contact with both the front and rear side plates 4°5. ing.

リヤハウジング1とリヤサイドプレート5との間にはオ
イル分離室Rが形成されており、オイル分離室Rの下部
にはオイルプール部Rpが設けられている。オイルプー
ル部Rpにはm7がリヤサイドプレート5内の供給通路
5aを介して連通しており、オイルプール部Rpのオイ
ルが溝7の底部へ供給され得るようになっている。これ
により各ベーン8はロータ6の回転に伴う遠心力及び溝
7の底部の油圧によりシリンダ室周面に当接可能であり
、シリンダ室が複数枚のベーン8により複数の圧縮室p
l、p2に区画形成される。
An oil separation chamber R is formed between the rear housing 1 and the rear side plate 5, and an oil pool portion Rp is provided at the bottom of the oil separation chamber R. M7 communicates with the oil pool portion Rp via a supply passage 5a in the rear side plate 5, so that oil in the oil pool portion Rp can be supplied to the bottom of the groove 7. As a result, each vane 8 can come into contact with the circumferential surface of the cylinder chamber by the centrifugal force accompanying the rotation of the rotor 6 and the hydraulic pressure at the bottom of the groove 7, and the cylinder chamber is formed into a plurality of compression chambers p by the plurality of vanes 8.
A compartment is formed in l and p2.

第1.4図に示すようにシリンダ3には一対の吸入通路
9,10が軸対称位置にて軸方向に貫設されており、一
対の吐出室3a、3bが軸対称位置にてリヤハウジング
2とシリンダ3との間に形成されている。吸入通路9.
10は吸入口11゜12を介してシリンダ室に連通され
ており、吐出室3a、3bは吐出口13.14を介して
シリンダ室に連通されている。吐出口13.14は吐出
弁15.16により開放可能に閉塞されており、両畦出
室3a、3bはリヤサイドプレート5に貫設された吐出
通路5b、5cを介してオイル分離室Rに接続されてい
る。従って、フロントハウジング1とフロントサイドプ
レート4との間の吸入室1aへ導入された冷媒ガスはフ
ロントサイドプレート4の吸入通路4a、4b及び吸入
通路9゜10を介してシリンダ室へ導入され、次いで吐
出口13.14から吐出弁15.16を押し退けて吐出
室3a、3bへ吐出された冷媒ガスが吐出通路5b、5
cを介してオイル分離室Rへ吐出される。
As shown in Fig. 1.4, a pair of suction passages 9 and 10 are axially penetrated through the cylinder 3 at axially symmetrical positions, and a pair of discharge chambers 3a and 3b are axially symmetrically connected to the rear housing. 2 and cylinder 3. Suction passage 9.
10 communicates with the cylinder chamber via suction ports 11 and 12, and discharge chambers 3a, 3b communicate with the cylinder chamber via discharge ports 13, 14. The discharge port 13.14 is releasably closed by a discharge valve 15.16, and both ridge chambers 3a, 3b are connected to the oil separation chamber R via discharge passages 5b, 5c penetrating through the rear side plate 5. has been done. Therefore, the refrigerant gas introduced into the suction chamber 1a between the front housing 1 and the front side plate 4 is introduced into the cylinder chamber via the suction passages 4a and 4b of the front side plate 4 and the suction passage 9. The refrigerant gas discharged from the discharge ports 13.14 to the discharge chambers 3a, 3b by displacing the discharge valves 15.16 flows into the discharge passages 5b, 5.
The oil is discharged to the oil separation chamber R via c.

オイル分離室R内にてリヤサイドプレート5にはオイル
分離機構を構成する流路形成体19及びディフレクタ2
0がねじ21により共締め固定されている。吐出通路5
b、5cの出口に対応する流路形成体19の部位には通
孔19a、19bが貫設されており、側断面形コ字状の
ディフレクタ20が両道孔19a、19bの前方に配設
されている。
Inside the oil separation chamber R, the rear side plate 5 includes a flow path forming body 19 and a deflector 2 that constitute an oil separation mechanism.
0 are fastened together with screws 21. Discharge passage 5
Through holes 19a and 19b are penetrated through the portions of the flow path forming body 19 corresponding to the outlets b and 5c, and a deflector 20 having a U-shaped side cross section is disposed in front of the both passage holes 19a and 19b. ing.

ディフレクタ20の左右両側方には流路形成体19の一
部となる一対の遮蔽板22.23が垂立状態に対向配設
されており、両遮蔽板22.23の間の領域の下方には
同じく流路形成体19の一部となる巻上げ防止板24が
オイルプール部Rpを覆うように配設されている。巻上
げ防止板24は左右へ下降傾斜する形状に形成されてお
り、両遮蔽板22.23の対向面の下部側には案内面2
2a、23aが巻上げ防止板24の中央側を指向するよ
うに傾き形成されている。
A pair of shielding plates 22.23, which are part of the flow path forming body 19, are vertically arranged opposite to each other on both left and right sides of the deflector 20, and below the area between the two shielding plates 22.23. Similarly, a winding prevention plate 24, which is a part of the flow path forming body 19, is arranged to cover the oil pool portion Rp. The winding prevention plate 24 is formed in a shape that slopes downward to the left and right, and a guide surface 2 is provided on the lower side of the opposing surfaces of both shielding plates 22 and 23.
2a and 23a are formed to be inclined toward the center of the winding prevention plate 24.

第1図に矢印Pで示すように吐出通路5b、5cからオ
イル分離室Rへ吐出する冷媒ガスはディフレクタ20の
前壁に当たって左右へほぼ等分に分かれ、左右へ分流し
た冷媒ガスは第2図に矢印Qで示すように遮蔽板22.
23に当たって上下に分流する。遮蔽板22.23に対
する衝突によって冷媒ガスの流速が低下し、冷媒ガス中
のミスト状オイルの一部が分離して滴下する。分離滴下
したオイルは巻上げ防止板24の左右両端とリヤハウジ
ング2の内周面との間からオイルプール部Rpへ還元す
る。上方への分流ガスは出口2aがら外部冷媒ガス回路
へ出て行き、下方への分流ガスは第2図に矢印Sで示す
ように案内面22a、23aに沿って巻上げ防止板24
の左右中央付近へ向けられる。
As shown by the arrow P in FIG. 1, the refrigerant gas discharged from the discharge passages 5b and 5c to the oil separation chamber R hits the front wall of the deflector 20 and is divided into almost equal parts to the left and right, and the refrigerant gas that is divided to the left and right is shown in FIG. As shown by arrow Q, the shielding plate 22.
23 and the flow is split up and down. The collision with the shielding plates 22, 23 reduces the flow velocity of the refrigerant gas, and a portion of the mist-like oil in the refrigerant gas separates and drips. The separated and dripped oil is returned to the oil pool portion Rp between the left and right ends of the anti-rolling plate 24 and the inner peripheral surface of the rear housing 2. The upwardly diverted gas exits to the external refrigerant gas circuit through the outlet 2a, and the downwardly diverted gas flows along the guide surfaces 22a and 23a as shown by the arrow S in FIG.
It is directed towards the center of the left and right.

左右の遮蔽板22.23によって巻上げ防止板24の左
右中央付近へ誘導偏向された冷媒ガス流は巻上げ防止板
24へ衝突し、かつ互いに衝突し、流速がさらに低下す
る。この流速低下によって冷媒ガス中のミスト状オイル
がさらに分離滴下し、遮蔽板22.23への冷媒ガス衝
突によるオイル分離とあいまって分離効率が非常に高く
なる。案内面22a、23aによって下方へ誘導された
冷媒ガス流は巻上げ防止板24の中央側へ向かい、オイ
ルプール部Rpの貯油面へ直接衝突することはない。オ
イルプール部Rpへ向かう冷媒ガス流は巻上げ防止板2
4上で減速された冷媒ガス流の一部であり、それ故にオ
イルプール部Rpの貯留池が冷媒ガス流によって巻上げ
られる割合は従来よりも低減し、オイル分離効率の良さ
とあいまってオイルプール部Rpの貯留池の減少は適度
に抑制される。
The refrigerant gas flow guided and deflected by the left and right shielding plates 22 and 23 toward the vicinity of the left and right center of the anti-rolling plate 24 collides with the anti-folding plate 24 and with each other, and the flow velocity is further reduced. Due to this flow rate reduction, the mist-like oil in the refrigerant gas is further separated and dripped, and together with the oil separation due to the collision of the refrigerant gas with the shielding plates 22 and 23, the separation efficiency becomes extremely high. The refrigerant gas flow guided downward by the guide surfaces 22a and 23a heads toward the center of the anti-rolling plate 24, and does not directly collide with the oil storage surface of the oil pool portion Rp. The refrigerant gas flow toward the oil pool part Rp is prevented from rolling up by the prevention plate 2.
Therefore, the proportion of the reservoir in the oil pool portion Rp that is rolled up by the refrigerant gas flow is lower than before, and combined with the good oil separation efficiency, the oil pool portion The decrease in Rp reservoir is moderately suppressed.

又、巻上げ防止板24を左右へ下降傾斜させたことによ
って巻上げ防止板24上での冷媒ガスの攪拌も抑制され
、巻上げ防止板24上におけるオイル分離は一層効果的
に行われる。
Furthermore, by tilting the anti-rolling plate 24 downward to the left and right, agitation of the refrigerant gas on the anti-rolling plate 24 is also suppressed, and oil separation on the anti-rolling plate 24 is performed more effectively.

第6図に曲線C1は本実施例のオイルプール部Rpにお
けるオイルレベルを示し、圧縮機の高速回転領域でも貯
油量がほぼ一定に保たれる。鎖線で示す曲線C2は従来
のオイル分離機構によるオイルレベル変化を表し、本実
施例との差異は明白である。本実施例のような良好な貯
油量維持作用はベーン8を収容する溝7の底部とオイル
プール部Rpとの間のオイル切れをな(し、ベーン8の
底部に対する良好な圧力伝達の維持をもたらす。
In FIG. 6, a curve C1 shows the oil level in the oil pool portion Rp of this embodiment, and the amount of oil stored is kept almost constant even in the high speed rotation region of the compressor. A curve C2 shown by a chain line represents the oil level change due to the conventional oil separation mechanism, and the difference from this example is obvious. The good oil storage amount maintenance effect as in this embodiment prevents oil from running out between the bottom of the groove 7 that accommodates the vane 8 and the oil pool portion Rp (and maintains good pressure transmission to the bottom of the vane 8). bring.

これにより圧縮効率の低下が生じることはなく、溝7の
底部へのオイル供給に伴う摺接部位における潤滑不良が
生じることもない。
This does not cause a decrease in compression efficiency, and does not cause poor lubrication at the sliding contact portion due to oil supply to the bottom of the groove 7.

本実施例ではロータ6とフロントサイドプレート4との
間に円環状の容量制御板25が回動可能に介在されてお
り、第5図に示すスプール26を介した一対の圧力室s
1.s2間の圧力対抗によって容量制御板25が回動制
御されるようになっており、容量制御板25上の一対の
補助通路25a(一方のみ図示)が吸入通路4a とシ
リンダ室とを接続するように設けられている。従って、
容量制御板25を回動することにより圧縮室P1゜P2
と補助通路25aとの連通期間が変更され、これにより
シリンダ室への吸入容量、即ち吐出室3a、3bへ吐出
される容量が制御される。この制御は圧力室S2への吐
出冷媒ガス供給と圧力室S1へのオイルプール部Rpの
オイル供給によって行われるが、オイルプール部Rpの
貯油量が適量に維持される本実施例では容量制御板25
の回動制御が適切に行われ、良好な容量可変制御が行わ
れる。
In this embodiment, an annular capacity control plate 25 is rotatably interposed between the rotor 6 and the front side plate 4, and a pair of pressure chambers s are connected via a spool 26 as shown in FIG.
1. The rotation of the capacity control plate 25 is controlled by the pressure resistance between s2, and a pair of auxiliary passages 25a (only one shown) on the capacity control plate 25 connects the suction passage 4a and the cylinder chamber. It is set in. Therefore,
By rotating the capacity control plate 25, the compression chambers P1 and P2 are
The period of communication between the cylinder and the auxiliary passage 25a is changed, thereby controlling the suction volume into the cylinder chamber, that is, the volume discharged into the discharge chambers 3a and 3b. This control is performed by supplying discharged refrigerant gas to the pressure chamber S2 and supplying oil from the oil pool portion Rp to the pressure chamber S1. 25
Rotation control is performed appropriately, and good capacity variable control is performed.

本発明は勿論前記実施例にのみ限定されるものではなく
、例えば第7〜9図に示す実施例も可能である。
The present invention is of course not limited to the embodiments described above, and embodiments shown in FIGS. 7 to 9, for example, are also possible.

第7図の実施例では平板状の遮蔽板27.28が上側は
ど拡開するように傾き形成されており、遮蔽板27.2
8に衝突した冷媒ガスは上方へ幾分多く分流する。遮蔽
板27.28に当たって下方へ分流した冷媒ガス流は前
記実施例と同様に巻上げ防止板24の中央付近を指向し
、オイルプール部Rpへの直接衝突防止及び冷媒ガス流
の減速が得られる。
In the embodiment shown in FIG. 7, the flat shielding plates 27.28 are formed at an angle so as to widen at the upper side.
The refrigerant gas that collided with 8 flows upward to some extent. The refrigerant gas flow branched downward upon hitting the shielding plates 27, 28 is directed near the center of the anti-rolling plate 24, as in the previous embodiment, thereby preventing direct collision with the oil pool portion Rp and decelerating the refrigerant gas flow.

第8図の実施例では遮蔽板29.30の下部側が巻上げ
防止板24の左右中央付近を指向するように傾斜してい
ると共に、上部側が内側へ傾斜しており、上下の傾斜の
境界がディフレクタ20の左右延長線上に設定されてい
る。従って、遮蔽板29.30による減速作用は前記各
実施例よりも一層大きく、オイル分離効果も一層高くな
る。
In the embodiment shown in FIG. 8, the lower sides of the shielding plates 29 and 30 are inclined so as to point near the left and right center of the winding prevention plate 24, and the upper sides are inclined inward, and the boundary between the upper and lower slopes is the deflector. It is set on the left and right extension line of 20. Therefore, the deceleration effect by the shielding plates 29 and 30 is greater than in the previous embodiments, and the oil separation effect is also enhanced.

第9図の実施例では遮蔽板31.32が円弧状に形成さ
れており、遮蔽板31.32に衝突した冷媒ガスの下方
への分流は巻上げ防止板33の中央側へ向かう。巻上げ
防止板33の左右両側端部には複数の透孔33aが設け
られており、巻上げ防止板33に沿った冷媒ガス流が透
孔33aによって減速作用を受け、オイル分離の効率が
向上する。
In the embodiment shown in FIG. 9, the shielding plates 31.32 are formed in an arc shape, and the downward branch of the refrigerant gas that collides with the shielding plates 31.32 is directed toward the center of the anti-rolling plate 33. A plurality of through holes 33a are provided at both left and right end portions of the winding prevention plate 33, and the refrigerant gas flow along the winding prevention plate 33 is slowed down by the through holes 33a, thereby improving oil separation efficiency.

又、本発明では平板な巻上げ防止板を水平方向に配設し
たり、第10図に示すように巻上げ防止板24のみを備
えた流路形成体19に対してディフレクタ35と左右の
遮蔽板36.37との一体部材を組み付ける実施例も可
能である。なお、34は流路形成用の補助板であり、そ
の下部側の突片34aとディフレクタ35の下部の突片
35aとがスポット溶接されている。
Further, in the present invention, a flat roll-up prevention plate is disposed horizontally, and as shown in FIG. An embodiment in which an integral part with .37 is assembled is also possible. Note that 34 is an auxiliary plate for forming a flow path, and a protruding piece 34a on the lower side thereof and a protruding piece 35a on the lower part of the deflector 35 are spot welded.

さらに本発明ではディフレクタを遮蔽板及び巻上げ防止
板と共に一体に形成したり、あるいは遮蔽板と巻上げ防
止板とを別体に形成したりする等の実施例も可能である
Furthermore, in the present invention, embodiments such as forming the deflector integrally with the shielding plate and the winding prevention plate, or forming the shielding plate and the winding prevention plate separately, are also possible.

又、本発明は容量可変機構のないベーン圧縮機にも適用
可能である。
Further, the present invention is also applicable to a vane compressor without a variable capacity mechanism.

[発明の効果コ 以上詳述だように本発明は、リヤサイドプレート中の吐
出通路の出口の前方のディフレクタによって吐出冷媒ガ
ス流を左右に振り分け、この振り分けられた冷媒ガス流
を左右の遮蔽体によって上下に分流すると共に、下方へ
の分流を巻上げ防止板の中央側へ指向させたので、遮蔽
板によって冷媒ガス流が減速されると共に、下方への分
流ガスが貯油面に直接衝突することがなく、これにより
ガス流減速によるオイル分離及びオイルプール部からの
オイル巻上げが適宜抑制されるという優れた効果を奏す
る。
[Effects of the Invention] As detailed above, the present invention distributes the discharged refrigerant gas flow to the left and right by the deflector in front of the outlet of the discharge passage in the rear side plate, and distributes the distributed refrigerant gas flow to the left and right shields. In addition to dividing the flow upward and downward, the downward flow is directed toward the center of the anti-rolling plate, so the refrigerant gas flow is decelerated by the shielding plate, and the downward flow of flow is prevented from colliding directly with the oil storage surface. This provides an excellent effect in that oil separation due to gas flow deceleration and oil rolling up from the oil pool portion are appropriately suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は本発明を具体化した一゛実施例を示し、第
1図は圧縮機全体の側断面図、第2図は第1図のA−A
線断面図、第3図は要部分解斜視図、第4図は第1図の
B−B線断面図、第5図は第1図のC−C線断面図、第
6図はオイルレベルの変化を示すグラフ、第7〜IO図
はいずれも本発明の別個を示す要部分解斜視図である。
1 to 6 show one embodiment embodying the present invention, FIG. 1 is a side sectional view of the entire compressor, and FIG. 2 is a line AA in FIG.
3 is an exploded perspective view of essential parts, 4 is a sectional view taken along line B-B in 1, 5 is a sectional view taken along line C-C in 1, and 6 is an oil level. Graphs showing changes in , and Figures 7 to 10 are all exploded perspective views of essential parts of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 フロントサイドプレートとリヤサイドプレートとに
挟まれるシリンダ内に回転可能に収容されたロータの周
面とシリンダ内周面との間の空間を複数枚のベーンによ
り複数の圧縮室に区画形成し、ロータの回転により冷媒
ガスの吸入、圧縮及び吐出を行なうと共に、シリンダの
周囲の吐出室からリヤサイドプレート中の吐出通路を通
ってオイル分離室へ冷媒ガスを吐出するベーン圧縮機に
おいて、前記吐出通路の出口の前方には両側方へ吐出冷
媒ガス流を誘導するディフレクタを配設し、ディフレク
タにより左右へ振り分けられた冷媒ガス流を上下方向へ
振り分ける遮蔽体をディフレクタの左右にそれぞれ配設
すると共に、両遮蔽体間の領域の下方には巻上げ防止体
を配設し、左右両遮蔽体には下方への冷媒ガスの分流方
向を巻上げ防止体の左右中央付近へ指向させる案内形状
を設定したベーン圧縮機におけるオイル分離機構。
1 The space between the circumferential surface of a rotor rotatably housed in a cylinder sandwiched between a front side plate and a rear side plate and the inner circumferential surface of the cylinder is divided into a plurality of compression chambers by a plurality of vanes, and the rotor In a vane compressor that suctions, compresses, and discharges refrigerant gas by the rotation of the cylinder, and also discharges refrigerant gas from a discharge chamber around the cylinder to an oil separation chamber through a discharge passage in a rear side plate, an outlet of the discharge passage A deflector is disposed in front of the deflector to guide the discharged refrigerant gas flow to both sides, and shields are disposed on the left and right sides of the deflector to distribute the refrigerant gas flow distributed left and right by the deflector in the vertical direction. In a vane compressor, a winding prevention body is arranged below the area between the bodies, and a guide shape is set on both the left and right shields to direct the downward branching direction of the refrigerant gas to the vicinity of the left and right center of the winding prevention body. Oil separation mechanism.
JP1032068A 1989-02-10 1989-02-10 Oil separation mechanism in vane compressor Expired - Lifetime JPH0778394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032068A JPH0778394B2 (en) 1989-02-10 1989-02-10 Oil separation mechanism in vane compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032068A JPH0778394B2 (en) 1989-02-10 1989-02-10 Oil separation mechanism in vane compressor

Publications (2)

Publication Number Publication Date
JPH02211397A true JPH02211397A (en) 1990-08-22
JPH0778394B2 JPH0778394B2 (en) 1995-08-23

Family

ID=12348560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032068A Expired - Lifetime JPH0778394B2 (en) 1989-02-10 1989-02-10 Oil separation mechanism in vane compressor

Country Status (1)

Country Link
JP (1) JPH0778394B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161854A (en) * 2000-11-29 2002-06-07 Zexel Valeo Climate Control Corp Compressor
CN100404871C (en) * 2004-09-14 2008-07-23 松下电器产业株式会社 Compressor
JP2016075229A (en) * 2014-10-07 2016-05-12 三輪精機株式会社 Vane type vacuum pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162296U (en) * 1984-09-28 1986-04-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162296U (en) * 1984-09-28 1986-04-26

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161854A (en) * 2000-11-29 2002-06-07 Zexel Valeo Climate Control Corp Compressor
CN100404871C (en) * 2004-09-14 2008-07-23 松下电器产业株式会社 Compressor
JP2016075229A (en) * 2014-10-07 2016-05-12 三輪精機株式会社 Vane type vacuum pump

Also Published As

Publication number Publication date
JPH0778394B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
US7311501B2 (en) Scroll compressor with bifurcated flow pattern
CA2747867C (en) Baffle member for scroll compressors
JPH0712072A (en) Vane compressor
US8500424B2 (en) Screw compressor with a sound dampening device that separates lubricant
JP4992822B2 (en) Scroll compressor
EP0889243B1 (en) Mixed flow liquid ring pumps
KR910006267B1 (en) Discharge arrangement of a compressor
JPH02211397A (en) Oil separating mechanism for vane compressor
JP3565706B2 (en) Screw compressor
JP3709103B2 (en) Hermetic vertical compressor
US4710105A (en) Liquid-ring compressor unit
JPH11509596A (en) Oil-sealed rotary vane vacuum pump having oil supply means
US4886427A (en) Hermetic scroll compressor with passage group for discharged fluid
US4415315A (en) Swash-plate type compressor having an improved lubricant oil feeding arrangement
JPH07332265A (en) Hermetic scroll compressor
JPH0350310Y2 (en)
JP3747999B2 (en) Scroll compressor
JP3987697B2 (en) Gas compressor
JP3582878B2 (en) Moore
JP2019143524A (en) Oil separation structure, and compressor
JP2867735B2 (en) Hermetic scroll compressor
JPS63113188A (en) Compressor
CN114635843B (en) Fluid operation assembly and fluid pump
EP0467342B1 (en) Scroll type compressor
JP2020148159A (en) Compressor