JPH0778394B2 - Oil separation mechanism in vane compressor - Google Patents

Oil separation mechanism in vane compressor

Info

Publication number
JPH0778394B2
JPH0778394B2 JP1032068A JP3206889A JPH0778394B2 JP H0778394 B2 JPH0778394 B2 JP H0778394B2 JP 1032068 A JP1032068 A JP 1032068A JP 3206889 A JP3206889 A JP 3206889A JP H0778394 B2 JPH0778394 B2 JP H0778394B2
Authority
JP
Japan
Prior art keywords
refrigerant gas
oil
plate
oil separation
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1032068A
Other languages
Japanese (ja)
Other versions
JPH02211397A (en
Inventor
靖 渡辺
秀樹 水谷
達也 中井
Original Assignee
株式会社豊田自動織機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機製作所 filed Critical 株式会社豊田自動織機製作所
Priority to JP1032068A priority Critical patent/JPH0778394B2/en
Publication of JPH02211397A publication Critical patent/JPH02211397A/en
Publication of JPH0778394B2 publication Critical patent/JPH0778394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フロントサイドプレートとリヤサイドプレー
トとに挟まれるシリンダ内に回転可能に収容されたロー
タの周面とシリンダ内周面との間の空間を複数枚のベー
ンにより複数の圧縮室に区画形成し、ロータの回転によ
り冷媒ガスの吸入、圧縮及び吐出を行なうと共に、シリ
ンダの周囲の吐出室からリヤサイドプレート上の吐出通
路を通ってオイル分離室へ冷媒ガスを吐出するベーン圧
縮機におけるオイル分離機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a space between a peripheral surface of a rotor rotatably housed in a cylinder sandwiched between a front side plate and a rear side plate and an inner peripheral surface of the cylinder. The space is divided into a plurality of compression chambers by a plurality of vanes, and the rotation of the rotor sucks, compresses, and discharges the refrigerant gas, while separating the oil from the discharge chamber around the cylinder through the discharge passage on the rear side plate. The present invention relates to an oil separation mechanism in a vane compressor that discharges refrigerant gas into a chamber.

[従来の技術] オイル分離室下方のオイルプール部をベーン収容溝の底
部に連通し、オイルを介してオイル分離室の吐出圧力を
ベーンに対する背圧として伝達する構成では、オイルプ
ール部の貯油量の不足が圧縮効率の低下をもたらす。さ
らにはベーン収容溝の底部へのオイル供給に伴って行わ
れる摺接部位の潤滑不良が避けられない。従って、冷媒
ガス中に含まれるミスト状オイルをオイルプール部へ効
率良く還元する必要がある。そのため、実開昭61−6229
6号公報に開示されるオイル分離機構では、シリンダ周
囲の吐出室とオイル分離室とを接続するリヤサイドプレ
ート上の吐出通路の出口の前方には冷媒ガス流を下方へ
誘導する遮蔽板が配設されていると共に、この遮蔽板の
下方に巻上げ防止板が配設されている。これにより遮蔽
板への冷媒ガスの吹きつけによってミスト状オイルが分
離され、下方へ向かう冷媒ガス流の貯油面に対する直接
吹きつけが巻上げ防止板によって阻止されている。冷媒
ガス流が貯油面に直接吹きつけると貯留油が冷媒ガス流
によって巻上げられてゆき、貯油量が直ぐに不足する。
[Prior Art] In a configuration in which the oil pool section below the oil separation chamber is connected to the bottom of the vane housing groove, and the discharge pressure of the oil separation chamber is transmitted as back pressure to the vane via oil, the amount of oil stored in the oil pool section Is insufficient to reduce the compression efficiency. Further, poor lubrication of the sliding contact portion, which is caused by the oil supply to the bottom of the vane housing groove, cannot be avoided. Therefore, it is necessary to efficiently reduce the mist-like oil contained in the refrigerant gas to the oil pool section. Therefore, the actual exploitation 61-6229
In the oil separation mechanism disclosed in Japanese Patent Publication No. 6, a shield plate for guiding the refrigerant gas flow downward is provided in front of the outlet of the discharge passage on the rear side plate that connects the discharge chamber around the cylinder and the oil separation chamber. In addition, the winding prevention plate is arranged below the shielding plate. As a result, the mist-like oil is separated by blowing the refrigerant gas to the shield plate, and the direct blowing of the downward refrigerant gas flow onto the oil storage surface is blocked by the hoisting prevention plate. When the refrigerant gas flow blows directly onto the oil storage surface, the stored oil is rolled up by the refrigerant gas flow, and the amount of oil storage is immediately insufficient.

他の構成のオイル分離機構としては例えば吐出通路の出
口の周囲を湾曲プレートで包囲し、吐出通路の出口の前
方に衝立を配設すると共に、湾曲プレートの下部にスリ
ットを設けたものがある。冷媒ガスは湾曲プレートの内
周面に沿って誘導され、分離されたオイルは前記スリッ
トから下方へ滴下する。
As another oil separation mechanism having another structure, for example, there is one in which the periphery of the outlet of the discharge passage is surrounded by a curved plate, a partition is arranged in front of the outlet of the discharge passage, and a slit is provided in the lower portion of the curved plate. The refrigerant gas is guided along the inner peripheral surface of the curved plate, and the separated oil drops downward from the slit.

[発明が解決しようとする課題] しかしながら、前者の機構では巻上げ防止板が下方へ向
かう冷媒ガス流を阻止するにも関わらず、圧縮機の高速
回転領域では吐出冷媒ガスの流速が大きいために貯油面
に対する冷媒ガス流の吹きつけ作用が大きく、貯留油の
巻上げ量が多い。しかも冷媒ガス流速が大きくなるほど
遮蔽板による油分離作用も低下し、オイル還元効率が悪
い。従って、高速回転領域では貯油量の不足が避けられ
ない。
[Problems to be Solved by the Invention] However, in the former mechanism, although the anti-winding plate blocks the refrigerant gas flow directed downward, the flow velocity of the discharged refrigerant gas is high in the high-speed rotation region of the compressor, so that the oil storage The blowing action of the refrigerant gas flow on the surface is large, and the amount of rolled-up stored oil is large. Moreover, as the flow velocity of the refrigerant gas increases, the oil separating action of the shielding plate also decreases, resulting in poor oil reduction efficiency. Therefore, in the high-speed rotation region, a shortage of oil storage is unavoidable.

後者の機構では包囲領域内での冷媒ガスとオイルとの撹
拌が激しく、高速回転領域ではオイルが分離する前に冷
媒ガスと共に圧縮機外へ持ち運ばれてしまうという欠点
がある。
The latter mechanism has a drawback in that the refrigerant gas and the oil are vigorously stirred in the surrounding area, and in the high-speed rotation area, the oil is carried out of the compressor together with the refrigerant gas before being separated.

本発明はオイル分離効率を高めつつ貯留油の巻上げを抑
制し得るオイル分離機構を提供することを目的とするも
のである。
An object of the present invention is to provide an oil separation mechanism capable of suppressing the hoisting of stored oil while improving the oil separation efficiency.

[課題を解決するための手段] そのために本発明は、シリンダ周囲の吐出室とオイル分
離室とを接続するリヤサイドプレート中の吐出通路の出
口の前方には両側方へ吐出冷媒ガス流を誘導するディフ
レクタを配設し、ディフレクタにより左右へ振り分けら
れた冷媒ガス流を上下方向へ振り分ける遮蔽体をディフ
レクタの左右にそれぞれ配設すると共に、両遮蔽体間の
領域の下方には巻上げ防止体を配設し、左右両遮蔽体に
は下方への冷媒ガスの分流方向を巻上げ防止体の左右中
央付近へ指向させる案内形状を設定した。
[Means for Solving the Problem] Therefore, according to the present invention, the discharge refrigerant gas flow is guided to both sides in front of the outlet of the discharge passage in the rear side plate that connects the discharge chamber around the cylinder and the oil separation chamber. A shield is installed on each side of the deflector, and a wind-up prevention member is installed below the area between the shields. However, the left and right shields are each provided with a guide shape that directs the downward direction of the refrigerant gas flow to the vicinity of the center of the wind-up prevention body.

[作用] 吐出通路の出口からオイル分離室へ吐出する冷媒ガスは
ディフレクタに吹き当たり、ディフレクタによって左右
へ分流される。左右へ分流した冷媒ガス流は左右の遮蔽
板に吹き当たり、遮蔽板によって上下に分流される。こ
の吹き当たりによって冷媒ガス流速が低下し、ミスト状
オイルの分離が起きる。下方への分流は遮蔽板の案内形
状によって巻上げ防止板の左右中央付近を指向し、左右
両遮蔽板からの下方への冷媒ガス流が巻上げ防止板に衝
突すると共に、左右中央付近で互いに衝突し合う。この
衝突によって冷媒ガス流速がさらに低下すると共に、ミ
スト状オイルの分離も起き、オイル分離効率が高まる。
巻上げ防止板上で速度低下した冷媒ガスは巻上げ防止板
に沿って流れ、その一部は巻上げ防止板の下方の貯油面
に吹き当たる。しかしながら、貯油面に吹き当たる冷媒
ガスの流速は十分に減速されているため、貯留油の巻上
げは適度に抑制される。
[Operation] The refrigerant gas discharged from the outlet of the discharge passage to the oil separation chamber blows against the deflector and is split into left and right by the deflector. The refrigerant gas flow that has split into the left and right strikes the left and right shield plates, and is split up and down by the shield plates. Due to this blow, the flow velocity of the refrigerant gas is reduced, and the mist-like oil is separated. The downward flow is directed near the center of the wind-up prevention plate by the guide shape of the shield plate, and the downward refrigerant gas flows from both the left and right shield plates collide with the roll-up prevention plate and collide with each other near the center of the horizontal direction. Fit. Due to this collision, the flow velocity of the refrigerant gas is further reduced, and the mist-like oil is separated, so that the oil separation efficiency is improved.
The refrigerant gas whose speed has decreased on the anti-winding plate flows along the anti-winding plate, and a part of the refrigerant gas blows against the oil storage surface below the anti-winding plate. However, since the flow velocity of the refrigerant gas blown onto the oil storage surface is sufficiently reduced, the hoisting of the stored oil is appropriately suppressed.

[実施例] 以下、本発明を可変容量型ベーン圧縮機に具体化した一
実施例を第1〜6図に基づいて説明する。
[Embodiment] An embodiment in which the present invention is embodied in a variable capacity vane compressor will be described below with reference to FIGS.

前後一対のハウジング1,2内に収容固定されたシリンダ
3の前後両端にはサイドプレート4,5が密着接合されて
おり、第4図に示すようにシリンダ3内の略楕円柱状の
室内には円柱状のロータ6が回転可能に支持されてい
る。ロータ6の周面には複数の溝7が半径方向に形成さ
れており、各溝7にはベーン8が前後両サイドプレート
4,5に密接して略半径方向へ摺動可能に嵌入支持されて
いる。
Side plates 4 and 5 are closely adhered to both front and rear ends of a cylinder 3 housed and fixed in a pair of front and rear housings 1 and 2. As shown in FIG. A cylindrical rotor 6 is rotatably supported. A plurality of grooves 7 are formed in the radial direction on the peripheral surface of the rotor 6, and a vane 8 is formed in each groove 7 on both front and rear side plates.
It is fitted and supported in close contact with 4,5 so as to be slidable in a substantially radial direction.

リヤハウジング1とリヤサイドプレート5との間にはオ
イル分離室Rが形成されており、オイル分離室Rの下部
にはオイルプール部Rpが設けられている。オイルプール
部Rpには溝7がリヤサイドプレート5内の供給通路5aを
介して連通しており、オイルプール部Rpのオイルが溝7
の底部へ供給され得るようになっている。これにより各
ベーン8はロータ6の回転に伴う遠心力及び溝7の底部
の油圧によりシリンダ室周面に当接可能であり、シリン
ダ室が複数枚のベーン8により複数の圧縮室P1,P2に区
画形成される。
An oil separation chamber R is formed between the rear housing 1 and the rear side plate 5, and an oil pool portion Rp is provided below the oil separation chamber R. The groove 7 communicates with the oil pool portion Rp via the supply passage 5a in the rear side plate 5, and the oil in the oil pool portion Rp is connected to the groove 7
Can be supplied to the bottom of the. As a result, each vane 8 can come into contact with the circumferential surface of the cylinder chamber due to the centrifugal force associated with the rotation of the rotor 6 and the hydraulic pressure at the bottom of the groove 7, and the cylinder chamber has a plurality of vanes 8 to provide a plurality of compression chambers P 1 , It is divided into 2 sections.

第1,4図に示すようにシリンダ3には一対の吸入通路9,1
0が軸対称位置にて軸方向に貫設されており、一対の吐
出室3a,3bが軸対称位置にてリヤハウジング2とシリン
ダ3との間に形成されている。吸入通路9,10は吸入口1
1,12を介してシリンダ室に連通されており、吐出室3a,3
bは吐出口13,14を介してシリンダ室に連通されている。
吐出口13,14は吐出弁15,16により開放可能に閉塞されて
おり、両吐出室3a,3bはリヤサイドプレート5に貫設さ
れた吐出通路5b,5cを介してオイル分離室Rに接続され
ている。従って、フロントハウジング1とフロントサイ
ドプレート4との間の吸入室1aへ導入された冷媒ガスは
フロントサイドプレート4の吸入通路4a,4b及び吸入通
路9,10を介してシリンダ室へ導入され、次いで吐出口1
3,14から吐出弁15,16を押し退けて吐出室3a,3bへ吐出さ
れた冷媒ガスが吐出通路5b,5cを介してオイル分離室R
へ吐出される。
As shown in FIGS. 1 and 4, the cylinder 3 has a pair of suction passages 9,1.
0 is axially penetrated at the axisymmetric position, and a pair of discharge chambers 3a, 3b is formed between the rear housing 2 and the cylinder 3 at the axisymmetric position. Suction passages 9 and 10 are suction ports 1
It is connected to the cylinder chamber through 1,12, and discharge chambers 3a, 3
The b is communicated with the cylinder chamber through the discharge ports 13 and 14.
The discharge ports 13 and 14 are openably closed by discharge valves 15 and 16, and both discharge chambers 3a and 3b are connected to an oil separation chamber R through discharge passages 5b and 5c penetrating the rear side plate 5. ing. Therefore, the refrigerant gas introduced into the suction chamber 1a between the front housing 1 and the front side plate 4 is introduced into the cylinder chamber through the suction passages 4a and 4b of the front side plate 4 and the suction passages 9 and 10, and then, Discharge port 1
Refrigerant gas discharged to the discharge chambers 3a and 3b by pushing the discharge valves 15 and 16 away from 3,14 and the oil separation chamber R via the discharge passages 5b and 5c.
Is discharged to.

オイル分離室R内にてリヤサイドプレート5にはオイル
分離機構を構成する流路形成体19及びディフレクタ20が
ねじ21により共締め固定されている。吐出通路5b,5cの
出口に対応する流路形成体19の部位には通孔19a,19bが
貫設されており、側断面形コ字状のディフレクタ20が両
通孔19a,19bの前方に配設されている。
In the oil separation chamber R, a flow path forming member 19 and a deflector 20 which form an oil separation mechanism are fixed to the rear side plate 5 together by screws 21. Through-holes 19a, 19b are formed in the portion of the flow path forming body 19 corresponding to the outlets of the discharge passages 5b, 5c, and a deflector 20 having a U-shaped side cross section is provided in front of both through-holes 19a, 19b. It is arranged.

ディフレクタ20の左右両側方には流路形成体19の一部と
なる一対の遮蔽板22,23が垂立状態に対向配設されてお
り、両遮蔽板22,23の間の領域の下方には同じく流路形
成体19の一部となる巻上げ防止板24がオイルプール部Rp
を覆うように配設されている。巻上げ防止板24は左右へ
下降傾斜する形状に形成されており、両遮蔽板22,23の
対向面の下部側には案内面22a,23aが巻上げ防止板24の
中央側を指向するように傾き形成されている。
A pair of shield plates 22 and 23, which are a part of the flow path forming member 19, are arranged facing each other on both the left and right sides of the deflector 20 in an upright state, and below the region between the shield plates 22 and 23. Is a part of the flow path forming member 19, and the winding prevention plate 24 is the oil pool portion Rp.
Is arranged so as to cover. The hoisting prevention plate 24 is formed in a shape that descends and inclines to the left and right, and the guide surfaces 22a and 23a are inclined so as to point toward the center side of the hoisting prevention plate 24 on the lower side of the facing surface of both the shielding plates 22 and 23. Has been formed.

第1図に矢印Pで示すように吐出通路5b,5cからオイル
分離室Rへ吐出する冷媒ガスはディフレクタ20の前壁に
当たって左右へほぼ等分に分かれ、左右へ分流した冷媒
ガスは第2図に矢印Qで示すように遮蔽板22,23に当た
って上下に分流する。遮蔽板22,23に対する衝突によっ
て冷媒ガスの流速が低下し、冷媒ガス中のミスト状オイ
ルの一部が分離して滴下する。分離滴下したオイルは巻
上げ防止板24の左右両端とリヤハウジング2の内周面と
の間からオイルプール部Rpへ還元する。上方への分流ガ
スは出口2aから外部冷媒ガス回路へ出て行き、下方への
分流ガスは第2図に矢印Sで示すように案内面22a,23a
に沿って巻上げ防止板24の左右中央付近へ向けられる。
As shown by the arrow P in FIG. 1, the refrigerant gas discharged from the discharge passages 5b, 5c to the oil separation chamber R hits the front wall of the deflector 20 and is divided into substantially equal parts left and right, and the refrigerant gas split left and right is shown in FIG. As shown by arrow Q in FIG. Due to the collision with the shield plates 22 and 23, the flow velocity of the refrigerant gas is reduced, and a part of the mist-like oil in the refrigerant gas is separated and dropped. The separated and dropped oil is returned to the oil pool portion Rp from between the left and right ends of the roll-up prevention plate 24 and the inner peripheral surface of the rear housing 2. The diverted gas in the upward direction exits from the outlet 2a to the external refrigerant gas circuit, and the diverted gas in the downward direction is guided by the guide surfaces 22a, 23a as indicated by an arrow S in FIG.
Is directed toward the vicinity of the center in the left and right of the hoisting prevention plate 24.

左右の遮蔽板22,23によって巻上げ防止板24の左右中央
付近へ誘導偏向された冷媒ガス流は巻上げ防止板24へ衝
突し、かつ互いに衝突し、流速がさらに低下する。この
流速低下によって冷媒ガス中のミスト状オイルがさらに
分離滴下し、遮蔽板22,23への冷媒ガス衝突によるオイ
ル分離とあいまって分離効率が非常に高くなる。案内面
22a,23aによって下方へ誘導された冷媒ガス流は巻上げ
防止板24の中央側へ向かい、オイルプール部Rpの貯油面
へ直接衝突することはない。オイルプール部Rpへ向かう
冷媒ガス流は巻上げ防止板24上で減速された冷媒ガス流
の一部であり、それ故にオイルプール部Rpの貯留油が冷
媒ガス流によって巻上げられる割合は従来よりも低減
し、オイル分離効率の良さとあいまってオイルプール部
Rpの貯留油の減少は適度に抑制される。
The refrigerant gas flows that are guided and deflected by the left and right shielding plates 22 and 23 to the vicinity of the center of the hoisting prevention plate 24 collide with the hoisting prevention plate 24 and collide with each other, and the flow velocity further decreases. Due to this decrease in the flow velocity, the mist-like oil in the refrigerant gas is further separated and dropped, and together with the oil separation due to the collision of the refrigerant gas with the shield plates 22 and 23, the separation efficiency becomes extremely high. Guide
The refrigerant gas flow guided downward by 22a, 23a goes to the center side of the hoisting prevention plate 24 and does not directly collide with the oil storage surface of the oil pool portion Rp. The refrigerant gas flow toward the oil pool portion Rp is a part of the refrigerant gas flow that has been decelerated on the hoisting prevention plate 24, and therefore the proportion of the stored oil in the oil pool portion Rp being hoisted by the refrigerant gas flow is lower than before. However, combined with the good oil separation efficiency, the oil pool section
The reduction of the stored oil of Rp is moderately suppressed.

又、巻上げ防止板24を左右へ下降傾斜させたことによっ
て巻上げ防止板24上での冷媒ガスの撹拌も抑制され、巻
上げ防止板24上におけるオイル分離は一層効果的に行わ
れる。
Further, by tilting the anti-winding plate 24 downwardly to the left and right, stirring of the refrigerant gas on the anti-winding plate 24 is suppressed, and oil separation on the anti-winding plate 24 is more effectively performed.

第6図に曲線C1は本実施例のオイルプール部Rpにおける
オイルレベルを示し、圧縮機の高速回転領域でも貯油量
がほぼ一定に保たれる。鎖線で示す曲線C2は従来のオイ
ル分離機構によるオイルレベル変化を表し、本実施例と
の差異は明白である。本実施例のような良好な貯油量維
持作用はベーン8を収容する溝7の底部とオイルプール
部Rpとの間のオイル切れをなくし、ベーン8の底部に対
する良好な圧力伝達の維持をもたらす。これにより圧縮
効率の低下が生じることはなく、溝7の底部へのオイル
供給に伴う摺接部位における潤滑不良が生じることもな
い。
A curve C 1 in FIG. 6 shows the oil level in the oil pool portion Rp of the present embodiment, and the oil storage amount is kept substantially constant even in the high speed rotation region of the compressor. A curve C 2 indicated by a chain line represents an oil level change by the conventional oil separation mechanism, and the difference from this example is obvious. The good oil storage amount maintaining action as in the present embodiment eliminates oil shortage between the bottom of the groove 7 that accommodates the vane 8 and the oil pool portion Rp, and maintains good pressure transmission to the bottom of the vane 8. As a result, the compression efficiency does not decrease, and the lubrication failure does not occur in the sliding contact portion due to the oil supply to the bottom of the groove 7.

本実施例ではロータ6とフロントサイドプレート4との
間に円環状の容量制御板25が回動可能に介在されてお
り、第5図に示すスプール26を介した一対の圧力室S1,S
2間の圧力対抗によって容量制御板25が回動制御される
ようになっており、容量制御板25上の一対の補助通路25
a(一方のみ図示)が吸入通路4aとシリンダ室とを接続
するように設けられている。従って、容量制御板25を回
動することにより圧縮室P1,P2と補助通路25aとの連通期
間が変更され、これによりシリンダ室への吸入容量、即
ち吐出室3a,3bへ吐出される容量が抑制される。この制
御は圧力室S2への吐出冷媒ガス供給と圧力室S1へのオイ
ルプール部Rpのオイル供給によって行われるが、オイル
プール部Rpの貯油量が適量に維持される本実施例では容
量制御板25の回動制御が適切に行われ、良好な容量可変
制御が行われる。
In this embodiment, an annular capacity control plate 25 is rotatably interposed between the rotor 6 and the front side plate 4, and a pair of pressure chambers S 1 and S via a spool 26 shown in FIG.
The capacity control plate 25 is controlled to rotate by the pressure resistance between the two, and a pair of auxiliary passages 25 on the capacity control plate 25
A (only one is shown) is provided so as to connect the suction passage 4a and the cylinder chamber. Therefore, by rotating the capacity control plate 25, the communication period between the compression chambers P 1 and P 2 and the auxiliary passage 25a is changed, whereby the suction capacity into the cylinder chamber, that is, the discharge chamber 3a, 3b is discharged. Capacity is suppressed. This control is performed by supplying the discharge refrigerant gas to the pressure chamber S 2 and the oil supply to the pressure chamber S 1 from the oil pool portion Rp, but in this embodiment, the amount of oil stored in the oil pool portion Rp is maintained at an appropriate level. The rotation control of the control plate 25 is appropriately performed, and good capacity variable control is performed.

本発明は勿論前記実施例にのみ限定されるものではな
く、例えば第7〜9図に示す実施例も可能である。
The present invention is of course not limited to the above-mentioned embodiment, but the embodiments shown in FIGS. 7 to 9 are also possible.

第7図の実施例では平板状の遮蔽板27,28が上側ほど拡
開するように傾き形成されており、遮蔽板27,28に衝突
した冷媒ガスは上方へ幾分多く分流する。遮蔽板27,28
に当たって下方へ分流した冷媒ガス流は前記実施例と同
様に巻上げ防止板24の中央付近を指向し、オイルプール
部Rpへの直接衝突防止及び冷媒ガス流の減速が得られ
る。
In the embodiment shown in FIG. 7, the flat shield plates 27, 28 are formed so as to be inclined so that they open up toward the upper side, and the refrigerant gas colliding with the shield plates 27, 28 flows slightly upward. Shield 27,28
The refrigerant gas flow diverted downward due to this is directed toward the vicinity of the center of the hoisting prevention plate 24 as in the above-mentioned embodiment, and direct collision with the oil pool portion Rp is prevented and the refrigerant gas flow is decelerated.

第8図の実施例では遮蔽板29,30の下部側が巻上げ防止
板24の左右中央付近を指向するように傾斜していると共
に、上部側が内側へ傾斜しており、上下の傾斜の境界が
ディフレクタ20の左右延長線上に設定されている。従っ
て、遮蔽板29,30による減速作用は前記各実施例よりも
一層大きく、オイル分離効果も一層高くなる。
In the embodiment shown in FIG. 8, the lower sides of the shielding plates 29 and 30 are inclined so as to be directed toward the vicinity of the center in the left-right direction of the anti-winding plate 24, and the upper side is inclined inward, and the upper and lower boundaries are deflected. It is set on the left and right extension lines of 20. Therefore, the deceleration action of the shield plates 29, 30 is greater than that in each of the above-described embodiments, and the oil separation effect is further enhanced.

第9図の実施例では遮蔽板31,32が円弧状に形成されて
おり、遮蔽板31,32に衝突した冷媒ガスの下方への分流
は巻上げ防止板33の中央側へ向かう。巻上げ防止板33の
左右両側端部には複数の透孔33aが設けられており、巻
上げ防止板33に沿った冷媒ガス流が透孔33aによって減
速作用を受け、オイル分離の効率が向上する。
In the embodiment shown in FIG. 9, the shield plates 31, 32 are formed in an arc shape, and the downward branch of the refrigerant gas colliding with the shield plates 31, 32 is directed toward the center of the wind-up prevention plate 33. A plurality of through holes 33a are provided at both left and right ends of the anti-winding plate 33, and the refrigerant gas flow along the anti-winding plate 33 is decelerated by the through holes 33a, and the efficiency of oil separation is improved.

又、本発明では平板な巻上げ防止板を水平方向に配設し
たり、第10図に示すように巻上げ防止板24のみを備えた
流路形成体19に対してディフレクタ35と左右の遮蔽板3
6,37との一体部材を組み付ける実施例も可能である。な
お、34は流路形成用の補助板であり、その下部側の突片
34aとディフレクタ35の下部の突片35aとがスポット溶接
されている。
Further, in the present invention, a flat wind-up prevention plate is arranged in the horizontal direction, and as shown in FIG. 10, the deflector 35 and the left and right shield plates 3 are provided with respect to the flow path forming body 19 having only the wind-up prevention plate 24.
An embodiment in which an integral member with 6,37 is assembled is also possible. In addition, 34 is an auxiliary plate for forming a flow path, and a protruding piece on the lower side thereof.
34a and the projection 35a at the bottom of the deflector 35 are spot-welded.

さらに本発明ではディフレクタを遮蔽板及び巻上げ防止
板と共に一体に形成したり、あるいは遮蔽板と巻上げ防
止板とを別体に形成したりする等の実施例も可能であ
る。
Further, according to the present invention, an embodiment in which the deflector is integrally formed with the shielding plate and the roll-up prevention plate, or the shield plate and the roll-up prevention plate are separately formed is also possible.

又、本発明は容量可変機構のないベーン圧縮機にも適用
可能である。
The present invention can also be applied to a vane compressor that does not have a variable capacity mechanism.

[発明の効果] 以上詳述たように本発明は、リヤサイドプレート中の吐
出通路の出口の前方のディフレクタによって吐出冷媒ガ
ス流を左右に振り分け、この振り分けられた冷媒ガス流
を左右の遮蔽体によって上下に分流すると共に、下方へ
の分流を巻上げ防止板の中央側へ指向させたので、遮蔽
板によって冷媒ガス流が減速されると共に、下方への分
流ガスが貯油面に直接衝突することがなく、これにより
ガス流減速によるオイル分離及びオイルプール部からの
オイル巻上げが適宜抑制されるという優れた効果を奏す
る。
[Advantages of the Invention] As described in detail above, according to the present invention, the discharged refrigerant gas flow is distributed right and left by the deflector in front of the outlet of the discharge passage in the rear side plate, and the distributed refrigerant gas flow is separated by the left and right shields. In addition to splitting vertically, the splitting downward is directed toward the center of the wind-up prevention plate, so the refrigerant gas flow is slowed down by the shielding plate, and the splitting gas downward does not directly collide with the oil storage surface. Thus, an excellent effect is obtained in which oil separation due to gas flow deceleration and oil winding from the oil pool portion are appropriately suppressed.

【図面の簡単な説明】[Brief description of drawings]

第1〜6図は本発明を具体化した一実施例を示し、第1
図は圧縮機全体の側断面図、第2図は第1図のA−A線
断面図、第3図は要部分解斜視図、第4図は第1図のB
−B線断面図、第5図は第1図のC−C線断面図、第6
図はオイルレベルの変化を示すグラフ、第7〜10図はい
ずれも本発明の別例を示す要部分解斜視図である。 リヤサイドプレート5、吐出通路5b,5c、流路形成体1
9、ディフレクタ20、遮蔽板22,23,27,28,29,30,31,32、
巻上げ防止板24,33、オイル分離室R。
1 to 6 show an embodiment embodying the present invention.
The figure is a side sectional view of the entire compressor, FIG. 2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is an exploded perspective view of essential parts, and FIG. 4 is B of FIG.
-B line sectional view, FIG. 5 is a CC line sectional view of FIG. 1, FIG.
FIG. 7 is a graph showing changes in oil level, and FIGS. 7 to 10 are exploded perspective views of essential parts showing other examples of the present invention. Rear side plate 5, discharge passages 5b, 5c, flow passage forming body 1
9, deflector 20, shielding plate 22,23,27,28,29,30,31,32,
Winding prevention plates 24 and 33, oil separation chamber R.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フロントサイドプレートとリヤサイドプレ
ートとに挟まれるシリンダ内に回転可能に収容されたロ
ータの周面とシリンダ内周面との間の空間を複数枚のベ
ーンにより複数の圧縮室に区画形成し、ロータの回転に
より冷媒ガスの吸入、圧縮及び吐出を行なうと共に、シ
リンダの周囲の吐出室からリヤサイドプレート中の吐出
通路を通ってオイル分離室へ冷媒ガスを吐出するベーン
圧縮機において、前記吐出通路の出口の前方には両側方
へ吐出冷媒ガス流を誘導するディフレクタを配設し、デ
ィフレクタにより左右へ振り分けられた冷媒ガス流を上
下方向へ振り分ける遮蔽体をディフレクタの左右にそれ
ぞれ配設すると共に、両遮蔽体間の領域の下方には巻上
げ防止体を配設し、左右両遮蔽体には下方への冷媒ガス
の分流方向を巻上げ防止体の左右中央付近へ指向させる
案内形状を設定したベーン圧縮機におけるオイル分離機
構。
1. A space between a peripheral surface of a rotor rotatably housed in a cylinder sandwiched between a front side plate and a rear side plate and an inner peripheral surface of the cylinder is divided into a plurality of compression chambers by a plurality of vanes. In the vane compressor for forming, sucking, compressing and discharging the refrigerant gas by rotating the rotor, and discharging the refrigerant gas from the discharge chamber around the cylinder to the oil separation chamber through the discharge passage in the rear side plate, In front of the outlet of the discharge passage, a deflector that guides the discharged refrigerant gas flow to both sides is arranged, and shields that distribute the refrigerant gas flow divided by the deflector vertically are arranged on the left and right sides of the deflector, respectively. At the same time, a wind-up prevention body is placed below the area between the shields, and the left and right shields are wound up in the downward direction of the refrigerant gas shunt. Oil separation mechanism in the vane compressor set the guide shape to direct to the left and right around the center of the anti-bodies.
JP1032068A 1989-02-10 1989-02-10 Oil separation mechanism in vane compressor Expired - Lifetime JPH0778394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032068A JPH0778394B2 (en) 1989-02-10 1989-02-10 Oil separation mechanism in vane compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032068A JPH0778394B2 (en) 1989-02-10 1989-02-10 Oil separation mechanism in vane compressor

Publications (2)

Publication Number Publication Date
JPH02211397A JPH02211397A (en) 1990-08-22
JPH0778394B2 true JPH0778394B2 (en) 1995-08-23

Family

ID=12348560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032068A Expired - Lifetime JPH0778394B2 (en) 1989-02-10 1989-02-10 Oil separation mechanism in vane compressor

Country Status (1)

Country Link
JP (1) JPH0778394B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161854A (en) * 2000-11-29 2002-06-07 Zexel Valeo Climate Control Corp Compressor
CN100404871C (en) * 2004-09-14 2008-07-23 松下电器产业株式会社 Compressor
JP6525185B2 (en) * 2014-10-07 2019-06-05 三輪精機株式会社 Vane type vacuum pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350310Y2 (en) * 1984-09-28 1991-10-28

Also Published As

Publication number Publication date
JPH02211397A (en) 1990-08-22

Similar Documents

Publication Publication Date Title
JP4499689B2 (en) Continuously variable transmission
US4057370A (en) Electric blower assembly
CA2668912C (en) Baffle member for scroll compressors
JPH0712072A (en) Vane compressor
JP2014020306A (en) Compressor
JPH0778394B2 (en) Oil separation mechanism in vane compressor
US4710105A (en) Liquid-ring compressor unit
JPH0350310Y2 (en)
WO2003006828A1 (en) Compressor
JPH04171279A (en) Enclosed type compressor
JPS58183887A (en) Motor compressor
JP3747999B2 (en) Scroll compressor
JP2010031757A (en) Compressor
JP2019143524A (en) Oil separation structure, and compressor
JP2867735B2 (en) Hermetic scroll compressor
JP2010031758A (en) Compressor
JPS63113188A (en) Compressor
JPH07229497A (en) Horizontal compressor
JPH0315693A (en) Screw compressor
KR102619416B1 (en) Air clean fan
CN214826966U (en) Nitro-compound fertilizer raw material feeding device
KR102399916B1 (en) Blower
US3893287A (en) High-speed stranding machine with air cooling
JP2789630B2 (en) Vane compressor
KR20000028797A (en) Vane pump