JP3987697B2 - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
JP3987697B2
JP3987697B2 JP2001267792A JP2001267792A JP3987697B2 JP 3987697 B2 JP3987697 B2 JP 3987697B2 JP 2001267792 A JP2001267792 A JP 2001267792A JP 2001267792 A JP2001267792 A JP 2001267792A JP 3987697 B2 JP3987697 B2 JP 3987697B2
Authority
JP
Japan
Prior art keywords
discharge
oil
cylinder
gas
gas passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001267792A
Other languages
Japanese (ja)
Other versions
JP2002250289A (en
Inventor
洋明 関口
誠 井尻
Original Assignee
カルソニックコンプレッサー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックコンプレッサー株式会社 filed Critical カルソニックコンプレッサー株式会社
Priority to JP2001267792A priority Critical patent/JP3987697B2/en
Priority to US10/033,853 priority patent/US20020094294A1/en
Priority to EP01310845A priority patent/EP1217215B1/en
Priority to MYPI20015848A priority patent/MY129076A/en
Priority to DE60109121T priority patent/DE60109121T2/en
Priority to CNB011381841A priority patent/CN1309960C/en
Publication of JP2002250289A publication Critical patent/JP2002250289A/en
Application granted granted Critical
Publication of JP3987697B2 publication Critical patent/JP3987697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3446Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カーエアコンシステムの一部として車両に搭載される、または空調システムの一部として室外機に搭載される気体圧縮機に関し、特に、油含有高圧冷媒ガスの圧力損失を低減し、コンプレッサ性能の向上を図ったものである。
【0002】
【従来の技術】
従来、この種の気体圧縮機は、たとえば図3に示したように内周略楕円状のシリンダ1を有し、そのシリンダ1の両端面にはサイドブロック2、3がそれぞれ取り付けられている。また、このようなフロントおよびリア側のサイドブロック2、3間に介挿されたシリンダ1の内側にはロータ4が配設されており、このロータ4は、その軸心に一体に設けたロータ軸5と、これを支持するサイドブロック2、3の軸受6、7とを介して回転可能に横架されている。
【0003】
図4に示したように、ロータ4にはその径方向にスリット状にベーン溝8が5つ切り込み形成され、その各ベーン溝8にはベーン9がそれぞれ1つずつ装着されており、これらのベーン9はそれぞれロータ4の外周面からシリンダ1の内壁に向かって出没自在に設けられている。
【0004】
シリンダ1の内側は、シリンダ1内壁、サイドブロック2、3内面、ロータ4外周面およびベーン9先端側両側面によって複数の小室に仕切られ、この仕切り形成された各小室が圧縮室10であり、この圧縮室10はロータ4が図中矢印イの方向に回転することにより容積の大小変化を繰り返す。
【0005】
圧縮室10の容積変化が生じると、その容積増加時に、吸入室11内の油含有低圧冷媒ガスが、シリンダ1の吸入通路12やサイドブロック2、3の吸入口13を介して圧縮室10へ吸入される。そして、圧縮室10の容積が減少し始めると、その容積減少効果により圧縮室10の冷媒ガスが圧縮され始め、その後、圧縮室10の容積が最小付近に近づくと、圧縮された油含有高圧冷媒ガスの圧力により、シリンダ1楕円短径部付近に開設されているシリンダ吐出穴14の吐出弁15が開く。これにより、シリンダ吐出穴14から圧縮室10内の油含有高圧冷媒ガスが吐出する。
【0006】
シリンダ吐出穴14から吐出した油含有高圧冷媒ガスは、シリンダ1外周の吐出チャンバ16と吐出ガス通路24を通って、該サイドブロック3後部に取り付けられている油分離器18の油分離フィルタ18−1へ導かれる。
【0007】
油分離フィルタ18−1に導かれた油含有高圧冷媒ガスは、油分離フィルタ18−1を構成している金網との衝突等により油成分とガス成分に分離され、そのガス成分は吐出室19に流入し、かつ該吐出室19からコンプレッサケースの吐出ポート(図示省略)を経てエアコンシステムのコンデンサ側に供給される。一方、分離後の油成分は、吐出室19底部のオイル溜まり20に滴下し貯留されるとともに、サイドブロック2、3やシリンダ1の油穴21を通って該油を必要とする部位に供給される。油を必要とする部位としては、たとえば軸受6、7クリアランスや、サイドブロック2、3のシリンダ対向面側に形成されたサライ溝22と、これに連通するベーン9底部のベーン背圧空間23である。
【0008】
しかしながら、上記のような従来の気体圧縮機にあっては、図5に示したように、油分離性能を高めるために油分離器18の吐出ガス通路24を2度直角に曲げ、これにより当該ガス通路24の内壁に油含有高圧冷媒ガスが2回衝突する構成を採用していたが、このような衝突構造によると、油分離性能の向上効果は殆どなく、それよりむしろ油含有高圧冷媒ガスの圧力損失が大となる効果の方が大きく現れ、この圧力損失の増大がコンプレッサ性能を悪化させる要因となっている。
【0009】
【発明が解決しようとする課題】
本発明は上記問題点を解決するためになされたもので、その目的とするところは、油含有高圧冷媒ガスの圧力損失を低減し、コンプレッサ性能の向上を図れる気体圧縮機を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、この出願の請求項1に記載の発明は、一対のサイドブロック間に介挿されたシリンダと、上記シリンダ内に回転可能に横架されたロータと、上記ロータの外周面から上記シリンダの内壁に向かって出没自在に設けられたベーンと、上記シリンダ、サイドブロック、ロータおよびベーンによって仕切り形成される圧縮室と、上記圧縮室からの冷媒ガスを吐出するシリンダ吐出穴と、上記シリンダ吐出穴から吐出された冷媒ガスを一時貯留する吐出チャンバと、上記吐出チャンバから該吐出チャンバの下流側の油分離フィルタに向かって冷媒ガスを導く直線状の吐出ガス通路と、上記油分離フィルタを装着し、該油分離フィルタにより冷媒ガスと油とを分離する油分離器と、上記油分離器により分離された冷媒ガスと油とを一時貯留する吐出室と、を備え、上記シリンダ吐出孔、吐出チャンバ、吐出ガス通路、油分離器の油分離フィルタは、それぞれ2つずつ設けられ、上記2つの吐出ガス通路は、互いに左右対称となるように内向きに傾斜していることを特徴とする。
【0011】
そして、請求項1に記載の発明によれば、吐出ガス通路の直線化により、該吐出ガス通路を通過する油含有高圧冷媒ガスの流れがスムーズになり、油含有高圧冷媒ガスの圧力損失が減少する。
【0012】
更に、この出願の請求項2に記載の発明は、上記吐出ガス通路における油分離器側の出口部開口が上記吐出ガス通路の入口部開口の高さ位置と同一高さに設定されることにより、吐出ガス通路が水平状に延びていることを特徴とする。
【0013】
そして、請求項2に記載の発明によれば、吐出チャンバと連通する吐出ガス通路は、入口部開口の高さ位置に対して、油分離器側の開口が同一高さ位置に設定されていることにより、吐出ガス通路は水平状に延びるとともに、最短経路をとることができ、油含有高圧冷媒ガスの圧力損失をより一層低減できる。
【0016】
【発明の実施の形態】
以下、本発明に係る気体圧縮機の実施形態について添付図面を基に詳細に説明する。
【0017】
なお、本実施形態の気体圧縮機の基本的な構成、たとえば、図3および図4を用いて説明すると、一対のサイドブロック2、3間にシリンダ1が介挿設置され、このシリンダ1内側にロータ4が回転可能に横架され、また、ロータ4にはその外周面からシリンダ1の内壁に向かってベーン9が出没自在に設けられていること、上記シリンダ1の内側にはベーン9等で仕切り形成された圧縮室10が設けられており、この圧縮室10はロータ4の回転により容積の大小変化を繰り返すとともに、その容積変化により吸入室内の油含有低圧冷媒ガスを吸気し圧縮すること、および、この圧縮された油含有高圧冷媒ガスはシリンダ吐出穴14から吐出されること等は従来と同様なため、それと同一部材には同一符号を付し、その詳細説明は省略する。
【0018】
本実施形態の気体圧縮機においても、上記のようにシリンダ吐出穴14から吐出した油含有高圧冷媒ガスは、吐出チャンバ16および吐出ガス通路24を通って、油分離器18に装着されている油分離フィルタ18−1側へ導かれるが、本実施形態の気体圧縮機では、図1に示したように、そのような吐出ガス通路24を直線状に形成し、吐出ガス通路24の直線化を図っている。
【0019】
すなわち、吐出ガス通路24は、その一端24a側が吐出チャンバ16側に開口し、かつ他端24b側は油分離器18の油分離フィルタ18−1側に開口するように構成されており、このような吐出ガス通路24の一端(入口部開口)24aから他端(出口部開口)24bまでの間が途中で1度も曲がることなく完全に直線で結ばれるように形成されている。
【0020】
また、吐出ガス通路24は、吐出チャンバ16からリア側のサイドブロック3を貫通して油分離器18側へ入ってくるように穿孔形成されているが、本実施形態では、そのような油分離器18側への吐出ガス通路24の入り角も変わっていない。
図1から明らかなように、吐出ガス通路24は、シリンダ1、サイドブロック2、3およびロータ4の軸線方向に対して斜めに直線状になっている。
【0021】
つまり、従来の気体圧縮機における吐出ガス通路24は、図5に示したようにリア側のサイドブロック3を貫通して油分離器18側へ入った直後に、略直角に曲がっているが、本実施形態の気体圧縮機における吐出ガス通路24は、図1に示したようにリア側のサイドブロック3を貫通して油分離器18側へ入った直後も曲がることなく、直線状に形成されている。
【0022】
本実施形態の気体圧縮機の場合、図4を用いて説明すると、シリンダ吐出穴14、吐出チャンバ16、吐出ガス通路24、油分離器18の油分離フィルタ18−1は、それぞれ2つずつ設けられているが、これは、シリンダ1の内周略楕円形状とベーン9を5枚備える構造との関係から、ロータ4が1回転するとシリンダ1内の2箇所で吸気動作と圧縮動作が行なわれ、その2箇所で圧縮された油含有高圧冷媒ガスをそれぞれ別々に油分離器18側へ導くようにしているためである。
【0023】
上記2つの吐出ガス通路24、24は双方ともに前述の通り直線状に設けられているが、これらの両吐出ガス通路24、24は、互いに平行でなく、油分離器18の中央に並設されている2つの油分離フィルタ18−1、18−1に向かってハの字状に斜めに配置されている。
【0024】
本実施形態の気体圧縮機においても、シリンダ吐出穴14から吐出した油含有高圧冷媒ガスは、吐出チャンバ16と吐出ガス通路24を通って油分離器18の油分離フィルタ18−1へ導かれるが、本実施形態のように吐出ガス通路24の直線化を図ると、シリンダ吐出穴14から油分離フィルタ18−1側へと油含有高圧冷媒ガスをスムーズに移行させることができ、これにより、油含有高圧冷媒ガスの圧力損失が低減され、コンプレッサ性能が向上する。
【0025】
ところで、油含有高圧冷媒ガスの圧力損失は吐出ガス通路24の通路断面積にも関係があり、吐出ガス通路24の通路断面積が大きいほど油含有高圧冷媒ガスの圧力損失は小さくなる。従って、吐出ガス通路24の通路断面積はなるべく大きく設けることが好ましい。
【0026】
次いで、図2は、本発明に係る気体圧縮機の別実施形態の構成を示すもので、図2(a)は油分離器をリア側からみた正面図、(b)は油分離器をリアサイドブロック当接面側からみた正面図、(c)は(b)中B−B線断面図である。
【0027】
すなわち、この実施形態においては、油含有高圧冷媒ガスの圧力損失をより低減するために、吐出ガス通路24の一端24a、すなわち、吐出ガス通路24の入口部となる吐出チャンバ16側の入口部開口の高さ位置に対して、吐出ガス通路24の他端24b、すなわち、油分離器18側の出口部開口の高さ位置を同一高さ位置に設定することにより、入口部並びに出口部の両開口24a、24bを結ぶ吐出ガス通路24は、水平状をなす最短経路をとることになる。
図2から明らかなように、吐出ガス通路24は、シリンダ1、サイドブロック2、3およびロータ4の軸線方向に対して斜めに直線状になっている。
【0028】
従って、シリンダ吐出穴14から吐出した油含有高圧冷媒ガスは、吐出チャンバ16から吐出ガス通路24を通じて油分離器18の油分離フィルタ18−1へ導かれるが、この実施形態のように、吐出ガス通路24が最短経路を構成し、通路長さが短いため、油含有高圧冷媒ガスの圧力損失を低く抑えることができる。
【0029】
更に、吐出ガス通路24が水平状に延びているため、高圧冷媒ガス通過時の抵抗を少なくでき、このことも圧力損失を低減できる一要因となり、コンプレッサ機能をより向上させることができる。
【0030】
【発明の効果】
本発明に係る気体圧縮機にあっては、上記の如く、吐出ガス通路を直線状に形成したため、この吐出ガス通路を介してシリンダ吐出穴側から油分離器の油分離フィルタ側へと油含有高圧冷媒ガスがスムーズに流れるようになるから、この種油含有高圧冷媒ガスの圧力損失が小さくなり、コンプレッサ性能の向上を図ることができるという効果を有する。
【0031】
更に、本発明に係る気体圧縮機にあっては、吐出ガス通路を直線状に形成するとともに、吐出チャンバと連通する入口部開口の高さ位置と油分離器側の出口部開口の高さ位置を同一高さ位置に設定することにより、吐出ガス通路を水平状に延びる最短経路にでき、吐出ガス通路を通過する油含有高圧冷媒ガスの圧力損失をより低減させることでコンプレッサ性能をより向上させることができるという効果を有する。
【図面の簡単な説明】
【図1】図1は本発明に係る気体圧縮機の要部の説明図であって、(a)は当該気体圧縮機に内蔵されている油分離器の正面図、(b)はその背面図、(c)は(b)のB−B線断面図である。
【図2】図2は本発明に係る気体圧縮機における別実施形態の要部の説明図であって、(a)は当該気体圧縮機に内蔵されている油分離器の正面図、(b)はその背面図、(c)は(b)のB−B線断面図である。
【図3】従来の気体圧縮機の断面図。
【図4】図3のA−A線断面図。
【図5】図5は図3に示した従来の気体圧縮機に搭載されている油分離器の説明図であって、(a)は当該油分離器の正面図、(b)はその背面図、(c)は(b)のB−B線断面図である。
【符号の説明】
1 シリンダ
2 フロント側のサイドブロック
3 リア側のサイドブロック
4 ロータ
5 ロータ軸
6、7 軸受
8 ベーン溝
9 ベーン
10 圧縮室
11 吸入室
12 吸入通路
13 吸入口
14 シリンダ吐出穴
15 吐出弁
16 吐出チャンバ
18 油分離器
18−1 油分離フィルタ
19 吐出室
20 オイル溜まり
21 油穴
22 サライ溝
23 ベーン背圧空間
24 吐出ガス通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas compressor that is mounted on a vehicle as a part of a car air-conditioning system or is mounted on an outdoor unit as a part of an air-conditioning system, and more particularly, a compressor that reduces pressure loss of oil-containing high-pressure refrigerant gas. This is intended to improve performance.
[0002]
[Prior art]
Conventionally, this type of gas compressor has, for example, a substantially elliptic cylinder 1 as shown in FIG. 3, and side blocks 2 and 3 are attached to both end faces of the cylinder 1. Further, a rotor 4 is disposed inside the cylinder 1 inserted between the front and rear side blocks 2 and 3, and the rotor 4 is a rotor provided integrally with the shaft center. The shaft 5 and the bearings 6 and 7 of the side blocks 2 and 3 that support the shaft 5 are rotatably mounted horizontally.
[0003]
As shown in FIG. 4, the rotor 4 is formed with five vane grooves 8 formed in a slit shape in the radial direction, and one vane 9 is mounted in each vane groove 8. The vanes 9 are provided so as to be able to protrude and retract from the outer peripheral surface of the rotor 4 toward the inner wall of the cylinder 1.
[0004]
The inner side of the cylinder 1 is partitioned into a plurality of small chambers by the inner wall of the cylinder 1, the side blocks 2, 3 inner surfaces, the outer peripheral surface of the rotor 4 and both side surfaces on the tip end side of the vane 9, and each of the formed compartments is a compression chamber 10, The compression chamber 10 repeats a change in volume as the rotor 4 rotates in the direction of arrow A in the figure.
[0005]
When the volume change of the compression chamber 10 occurs, when the volume increases, the oil-containing low-pressure refrigerant gas in the suction chamber 11 enters the compression chamber 10 via the suction passage 12 of the cylinder 1 and the suction ports 13 of the side blocks 2 and 3. Inhaled. When the volume of the compression chamber 10 starts to decrease, the refrigerant gas in the compression chamber 10 starts to be compressed due to the volume reduction effect. After that, when the volume of the compression chamber 10 approaches the minimum, the compressed oil-containing high-pressure refrigerant The discharge valve 15 of the cylinder discharge hole 14 opened in the vicinity of the cylinder 1 elliptical short diameter portion is opened by the pressure of the gas. Thereby, the oil-containing high-pressure refrigerant gas in the compression chamber 10 is discharged from the cylinder discharge hole 14.
[0006]
The oil-containing high-pressure refrigerant gas discharged from the cylinder discharge hole 14 passes through the discharge chamber 16 and the discharge gas passage 24 on the outer periphery of the cylinder 1 and passes through the oil separation filter 18-of the oil separator 18 attached to the rear part of the side block 3. Led to 1.
[0007]
The oil-containing high-pressure refrigerant gas guided to the oil separation filter 18-1 is separated into an oil component and a gas component by collision with a wire mesh constituting the oil separation filter 18-1, and the gas component is discharged into the discharge chamber 19. And is supplied from the discharge chamber 19 to the condenser side of the air conditioner system through the discharge port (not shown) of the compressor case. On the other hand, the separated oil component is dripped and stored in the oil reservoir 20 at the bottom of the discharge chamber 19 and is supplied to a portion requiring the oil through the oil holes 21 of the side blocks 2 and 3 and the cylinder 1. The The parts that require oil include, for example, the bearings 6 and 7, the Sarai groove 22 formed on the cylinder facing surface side of the side blocks 2 and 3, and the vane back pressure space 23 at the bottom of the vane 9 communicating therewith. is there.
[0008]
However, in the conventional gas compressor as described above, as shown in FIG. 5, in order to improve the oil separation performance, the discharge gas passage 24 of the oil separator 18 is bent at a right angle of 2 degrees, thereby The configuration in which the oil-containing high-pressure refrigerant gas collides twice with the inner wall of the gas passage 24 has been adopted. However, according to such a collision structure, there is almost no effect of improving the oil separation performance, but rather the oil-containing high-pressure refrigerant gas. The effect of increasing the pressure loss appears more greatly, and this increase in pressure loss is a factor that deteriorates the compressor performance.
[0009]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a gas compressor capable of reducing the pressure loss of oil-containing high-pressure refrigerant gas and improving the compressor performance. .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 of the present application includes a cylinder interposed between a pair of side blocks, a rotor rotatably mounted in the cylinder, A vane provided so as to freely protrude from the outer peripheral surface toward the inner wall of the cylinder, a compression chamber partitioned by the cylinder, side block, rotor and vane, and a cylinder discharge hole for discharging refrigerant gas from the compression chamber A discharge chamber that temporarily stores the refrigerant gas discharged from the cylinder discharge hole, a linear discharge gas passage that guides the refrigerant gas from the discharge chamber toward an oil separation filter on the downstream side of the discharge chamber, An oil separator that is equipped with an oil separation filter and separates refrigerant gas and oil by the oil separation filter; and a refrigerant gas separated by the oil separator; And a discharge chamber for storing temporarily bets, the cylinder discharge hole, the discharge chamber, the discharge gas passage, an oil separation filter of the oil separator is provided two each, the two discharge gas passage, right and left with each other It is inclined inward so as to be symmetric .
[0011]
According to the first aspect of the present invention, the flow of the oil-containing high-pressure refrigerant gas passing through the discharge gas passage becomes smooth due to the straightening of the discharge gas passage, and the pressure loss of the oil-containing high-pressure refrigerant gas is reduced. To do.
[0012]
Further, the invention according to claim 2 of this application is such that the outlet opening on the oil separator side in the discharge gas passage is set to the same height as the height of the inlet opening of the discharge gas passage. The discharge gas passage extends horizontally.
[0013]
According to the second aspect of the invention, the discharge gas passage communicating with the discharge chamber is set such that the opening on the oil separator side is at the same height position with respect to the height position of the inlet opening. Thus, the discharge gas passage extends horizontally and can take the shortest path, and the pressure loss of the oil-containing high-pressure refrigerant gas can be further reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a gas compressor according to the present invention will be described in detail with reference to the accompanying drawings.
[0017]
In addition, if it demonstrates using the basic composition of the gas compressor of this embodiment, for example, FIG.3 and FIG.4, the cylinder 1 will be inserted and installed between a pair of side blocks 2,3, The rotor 4 is rotatably mounted horizontally, and the rotor 4 is provided with a vane 9 that can be projected and retracted from its outer peripheral surface toward the inner wall of the cylinder 1. A compression chamber 10 formed in a partition is provided, and the compression chamber 10 repeatedly changes in volume due to the rotation of the rotor 4, and inhales and compresses the oil-containing low-pressure refrigerant gas in the suction chamber by the volume change. Further, since the compressed oil-containing high-pressure refrigerant gas is discharged from the cylinder discharge hole 14 and the like, the same members are denoted by the same reference numerals, and detailed description thereof is omitted.
[0018]
Also in the gas compressor of the present embodiment, the oil-containing high-pressure refrigerant gas discharged from the cylinder discharge hole 14 as described above passes through the discharge chamber 16 and the discharge gas passage 24 and is installed in the oil separator 18. Although guided to the separation filter 18-1 side, in the gas compressor of the present embodiment, as shown in FIG. 1, such a discharge gas passage 24 is formed linearly, and the discharge gas passage 24 is linearized. I am trying.
[0019]
That is, the discharge gas passage 24 is configured such that one end 24a side opens to the discharge chamber 16 side and the other end 24b side opens to the oil separation filter 18-1 side of the oil separator 18. The discharge gas passage 24 is formed so that the portion from one end (opening portion opening) 24a to the other end (exit opening portion) 24b is completely connected with a straight line without being bent once.
[0020]
The discharge gas passage 24 is perforated so as to pass through the rear side block 3 from the discharge chamber 16 and enter the oil separator 18 side. In this embodiment, such oil separation is performed. The angle of entry of the discharge gas passage 24 toward the container 18 has not changed.
As is apparent from FIG. 1, the discharge gas passage 24 is linearly inclined with respect to the axial direction of the cylinder 1, the side blocks 2, 3 and the rotor 4.
[0021]
That is, the discharge gas passage 24 in the conventional gas compressor is bent at a substantially right angle immediately after entering the oil separator 18 side through the rear side block 3 as shown in FIG. The discharge gas passage 24 in the gas compressor of the present embodiment is formed in a straight line without bending even immediately after passing through the rear side block 3 and entering the oil separator 18 side as shown in FIG. ing.
[0022]
In the case of the gas compressor according to the present embodiment, two cylinder discharge holes 14, two discharge chambers 16, two discharge gas passages 24, and two oil separation filters 18-1 of the oil separator 18 are provided. However, because of the relationship between the substantially elliptical shape of the inner circumference of the cylinder 1 and the structure having five vanes 9, the intake operation and the compression operation are performed at two locations in the cylinder 1 when the rotor 4 makes one rotation. This is because the oil-containing high-pressure refrigerant gas compressed at the two locations is separately led to the oil separator 18 side.
[0023]
The two discharge gas passages 24 and 24 are both provided in a straight line as described above. However, the two discharge gas passages 24 and 24 are not parallel to each other but are provided in parallel at the center of the oil separator 18. The two oil separation filters 18-1 and 18-1 are diagonally arranged in a letter C shape.
[0024]
Also in the gas compressor of this embodiment, the oil-containing high-pressure refrigerant gas discharged from the cylinder discharge hole 14 is guided to the oil separation filter 18-1 of the oil separator 18 through the discharge chamber 16 and the discharge gas passage 24. When the discharge gas passage 24 is straightened as in the present embodiment, the oil-containing high-pressure refrigerant gas can be smoothly transferred from the cylinder discharge hole 14 to the oil separation filter 18-1 side. The pressure loss of the contained high-pressure refrigerant gas is reduced, and the compressor performance is improved.
[0025]
By the way, the pressure loss of the oil-containing high-pressure refrigerant gas is also related to the passage cross-sectional area of the discharge gas passage 24, and the pressure loss of the oil-containing high-pressure refrigerant gas decreases as the passage cross-sectional area of the discharge gas passage 24 increases. Therefore, it is preferable that the passage cross-sectional area of the discharge gas passage 24 be as large as possible.
[0026]
Next, FIG. 2 shows a configuration of another embodiment of the gas compressor according to the present invention. FIG. 2 (a) is a front view of the oil separator as viewed from the rear side, and FIG. 2 (b) is a rear side view of the oil separator. The front view seen from the block contact surface side, (c) is a BB line sectional view in (b).
[0027]
That is, in this embodiment, in order to further reduce the pressure loss of the oil-containing high-pressure refrigerant gas, one end 24a of the discharge gas passage 24, that is, the inlet portion opening on the discharge chamber 16 side serving as the inlet portion of the discharge gas passage 24 is provided. The other end 24b of the discharge gas passage 24, that is, the height position of the outlet opening on the oil separator 18 side is set to the same height position, so that both the inlet portion and the outlet portion are set. The discharge gas passage 24 connecting the openings 24a and 24b takes a shortest horizontal path.
As is apparent from FIG. 2, the discharge gas passage 24 is linearly inclined with respect to the axial direction of the cylinder 1, the side blocks 2, 3 and the rotor 4.
[0028]
Accordingly, the oil-containing high-pressure refrigerant gas discharged from the cylinder discharge hole 14 is guided from the discharge chamber 16 to the oil separation filter 18-1 of the oil separator 18 through the discharge gas passage 24. As in this embodiment, the discharge gas Since the passage 24 constitutes the shortest path and the passage length is short, the pressure loss of the oil-containing high-pressure refrigerant gas can be kept low.
[0029]
Furthermore, since the discharge gas passage 24 extends horizontally, the resistance during passage of the high-pressure refrigerant gas can be reduced, which is one factor that can reduce the pressure loss, and the compressor function can be further improved.
[0030]
【The invention's effect】
In the gas compressor according to the present invention, since the discharge gas passage is formed linearly as described above, oil is contained from the cylinder discharge hole side to the oil separation filter side of the oil separator through the discharge gas passage. Since the high-pressure refrigerant gas flows smoothly, the pressure loss of the seed oil-containing high-pressure refrigerant gas is reduced, and the compressor performance can be improved.
[0031]
Further, in the gas compressor according to the present invention, the discharge gas passage is formed in a straight line, and the height position of the inlet opening that communicates with the discharge chamber and the height position of the outlet opening on the oil separator side Are set at the same height position, the discharge gas passage can be made the shortest route extending horizontally, and the compressor performance is further improved by further reducing the pressure loss of the oil-containing high-pressure refrigerant gas passing through the discharge gas passage. It has the effect of being able to.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a main part of a gas compressor according to the present invention, wherein (a) is a front view of an oil separator built in the gas compressor, and (b) is a rear surface thereof. FIG. 4C is a sectional view taken along line BB in FIG.
FIG. 2 is an explanatory view of a main part of another embodiment of the gas compressor according to the present invention, in which (a) is a front view of an oil separator built in the gas compressor; ) Is a rear view thereof, and (c) is a sectional view taken along line BB of (b).
FIG. 3 is a cross-sectional view of a conventional gas compressor.
4 is a cross-sectional view taken along line AA in FIG.
5 is an explanatory view of an oil separator mounted on the conventional gas compressor shown in FIG. 3, wherein (a) is a front view of the oil separator, and (b) is a rear surface thereof. FIG. 4C is a sectional view taken along line BB in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Front side block 3 Rear side block 4 Rotor 5 Rotor shaft 6, 7 Bearing 8 Vane groove 9 Vane 10 Compression chamber 11 Suction chamber 12 Suction passage 13 Suction port 14 Cylinder discharge hole 15 Discharge valve 16 Discharge chamber DESCRIPTION OF SYMBOLS 18 Oil separator 18-1 Oil separation filter 19 Discharge chamber 20 Oil reservoir 21 Oil hole 22 Sarai groove 23 Vane back pressure space 24 Discharge gas passage

Claims (2)

一対のサイドブロック間に介挿されたシリンダと、
上記シリンダ内に回転可能に横架されたロータと、
上記ロータの外周面から上記シリンダの内壁に向かって出没自在に設けられたベーンと、
上記シリンダ、サイドブロック、ロータおよびベーンによって仕切り形成される圧縮室と、
上記圧縮室からの冷媒ガスを吐出するシリンダ吐出穴と、
上記シリンダ吐出穴から吐出された冷媒ガスを一時貯留する吐出チャンバと、
上記吐出チャンバから該吐出チャンバの下流側の油分離フィルタに向かって冷媒ガスを導く直線状の吐出ガス通路と、
上記油分離フィルタを装着し、該油分離フィルタにより冷媒ガスと油とを分離する油分離器と、
上記油分離器により分離された冷媒ガスと油とを一時貯留する吐出室と、
を備え
上記シリンダ吐出孔、吐出チャンバ、吐出ガス通路、油分離器の油分離フィルタは、それぞれ2つずつ設けられ、
上記2つの吐出ガス通路は、互いに左右対称となるように内向きに傾斜している
ことを特徴とする気体圧縮機。
A cylinder interposed between a pair of side blocks;
A rotor horizontally mounted rotatably in the cylinder;
A vane provided so as to be movable in and out from the outer peripheral surface of the rotor toward the inner wall of the cylinder;
A compression chamber partitioned by the cylinder, side block, rotor and vane;
A cylinder discharge hole for discharging refrigerant gas from the compression chamber;
A discharge chamber for temporarily storing refrigerant gas discharged from the cylinder discharge hole;
A straight discharge gas passage for guiding the refrigerant gas from the discharge chamber toward the oil separation filter on the downstream side of the discharge chamber;
An oil separator that is equipped with the oil separation filter and separates the refrigerant gas and the oil by the oil separation filter;
A discharge chamber for temporarily storing refrigerant gas and oil separated by the oil separator;
Equipped with a,
The cylinder discharge hole, the discharge chamber, the discharge gas passage, and the oil separation filter of the oil separator are each provided in two,
The gas compressor according to claim 2, wherein the two discharge gas passages are inclined inward so as to be symmetrical with each other .
上記吐出ガス通路における油分離器側の出口部開口が上記吐出ガス通路の入口部開口の高さ位置と同一高さに設定されることにより、吐出ガス通路が水平状に延びていることを特徴とする請求項1に記載の気体圧縮機。  The outlet opening on the oil separator side in the discharge gas passage is set at the same height as the height of the inlet opening of the discharge gas passage, so that the discharge gas passage extends horizontally. The gas compressor according to claim 1.
JP2001267792A 2000-12-22 2001-09-04 Gas compressor Expired - Fee Related JP3987697B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001267792A JP3987697B2 (en) 2000-12-22 2001-09-04 Gas compressor
US10/033,853 US20020094294A1 (en) 2000-12-22 2001-12-20 Gas compressor
EP01310845A EP1217215B1 (en) 2000-12-22 2001-12-21 Gas compressor
MYPI20015848A MY129076A (en) 2000-12-22 2001-12-21 Gas compressor
DE60109121T DE60109121T2 (en) 2000-12-22 2001-12-21 gas compressor
CNB011381841A CN1309960C (en) 2000-12-22 2001-12-22 Gas compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-391184 2000-12-22
JP2000391184 2000-12-22
JP2001267792A JP3987697B2 (en) 2000-12-22 2001-09-04 Gas compressor

Publications (2)

Publication Number Publication Date
JP2002250289A JP2002250289A (en) 2002-09-06
JP3987697B2 true JP3987697B2 (en) 2007-10-10

Family

ID=26606426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267792A Expired - Fee Related JP3987697B2 (en) 2000-12-22 2001-09-04 Gas compressor

Country Status (6)

Country Link
US (1) US20020094294A1 (en)
EP (1) EP1217215B1 (en)
JP (1) JP3987697B2 (en)
CN (1) CN1309960C (en)
DE (1) DE60109121T2 (en)
MY (1) MY129076A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520210B2 (en) 2006-09-27 2009-04-21 Visteon Global Technologies, Inc. Oil separator for a fluid displacement apparatus
JP5216470B2 (en) * 2008-08-08 2013-06-19 カヤバ工業株式会社 Variable displacement vane pump
EP3051136B1 (en) * 2015-01-29 2020-04-01 Pfeiffer Vacuum Gmbh Vacuum pump
KR102141871B1 (en) * 2015-05-26 2020-08-07 한온시스템 주식회사 Compressor with an oil return means

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572704Y2 (en) * 1978-07-29 1982-01-18
JPS6016794Y2 (en) * 1978-08-19 1985-05-24 株式会社ボッシュオートモーティブ システム vane compressor
JPS57148097A (en) * 1981-03-09 1982-09-13 Mitsubishi Heavy Ind Ltd Rotary compressor
US4810177A (en) * 1982-06-18 1989-03-07 Diesel Kiki Co., Ltd. Vane compressor with vane back pressure adjustment
JP2585380Y2 (en) * 1992-11-20 1998-11-18 カルソニック株式会社 Rotary compressor
JPH0712072A (en) * 1993-06-23 1995-01-17 Toyota Autom Loom Works Ltd Vane compressor
JPH07151083A (en) * 1993-11-29 1995-06-13 Nippondenso Co Ltd Vane type compressor
JP2913155B2 (en) * 1995-09-01 1999-06-28 セイコー精機株式会社 Gas compressor
JPH0979156A (en) * 1995-09-08 1997-03-25 Seiko Seiki Co Ltd Gas compressor
JP2000297773A (en) * 1999-04-14 2000-10-24 Bosch Automotive Systems Corp Compressor

Also Published As

Publication number Publication date
EP1217215A3 (en) 2003-02-26
JP2002250289A (en) 2002-09-06
MY129076A (en) 2007-03-30
EP1217215A2 (en) 2002-06-26
CN1362583A (en) 2002-08-07
DE60109121T2 (en) 2005-07-21
US20020094294A1 (en) 2002-07-18
CN1309960C (en) 2007-04-11
EP1217215B1 (en) 2005-03-02
DE60109121D1 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP5692177B2 (en) Compressor
JPH0712072A (en) Vane compressor
EP2642128B1 (en) Compressor
EP2554849A2 (en) Compressor
JP5104644B2 (en) Compressor
JP3987697B2 (en) Gas compressor
KR20160108036A (en) Compressor
JPH11509596A (en) Oil-sealed rotary vane vacuum pump having oil supply means
WO2003081043A1 (en) Compressor
JPS58135396A (en) Movable-blade compressor
JP7280727B2 (en) scroll compressor
JP4985581B2 (en) Vane compressor
KR20180062314A (en) Compressor
JP2010031757A (en) Compressor
JP3157137B2 (en) Gas compressor
JP3819247B2 (en) Gas compressor
JP2002242835A (en) Gas compressor
JP3062815B1 (en) Gas compressor
JP2005054745A (en) Compressor
JPH11257226A (en) Gas compressor
CN217898187U (en) Compressor rotor, compressor pump body, compressor and temperature regulation system
JP2560107Y2 (en) Gas compressor oil separator
JP4008616B2 (en) Gas compressor
JP3064545B2 (en) 2-cylinder rotary compressor
JP2569906Y2 (en) Gas compressor oil separator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees