JPH0221080A - Drive control method for piezoelectric type flow regulating valve - Google Patents

Drive control method for piezoelectric type flow regulating valve

Info

Publication number
JPH0221080A
JPH0221080A JP16995388A JP16995388A JPH0221080A JP H0221080 A JPH0221080 A JP H0221080A JP 16995388 A JP16995388 A JP 16995388A JP 16995388 A JP16995388 A JP 16995388A JP H0221080 A JPH0221080 A JP H0221080A
Authority
JP
Japan
Prior art keywords
piezoelectric element
voltage
side passage
pressure side
regulating valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16995388A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
寛 田中
Junichi Ono
大野 順一
Yoshihiro Fujisawa
藤澤 由裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP16995388A priority Critical patent/JPH0221080A/en
Publication of JPH0221080A publication Critical patent/JPH0221080A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PURPOSE:To conduct flow regulation continuously and with a very simple method, by making the direction of impressed voltage a direction in which the deformation of a piezoelectric element is done so that its entrance facing surface and opposite side surface may become protrudent. CONSTITUTION:When a piezoelectric element 4 is in the state of not being impressed with voltage, it is so arranged that it is in the state of being closely welded to a plane surface portion 3a. When the piezoelectric element 4 is impressed with voltage, it makes deformation so that a surface facing the entrance portion of a low pressure side passage 2b and a surface on the opposite side may become protrudent. As a result, the piezoelectric element 4 falls into a state in which a base end fixed at a valve chamber 3 by means of a holder 5 and a free end on the opposite side come always into contact strikingly with the plane surface portion 3a. Accordingly, the size of a clearance delta between the piezoelectric element 4 and the entrance portion of the low pressure side passage 2b can be changed continuously by changing the size of impressed voltage against the piezoelectric element 4.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えば自動車用冷房装置に使用される圧縮機の
容量を制御するため、冷媒ガス通路の開閉用に使用され
る圧電式流量調整弁の駆動制御方法に関するものである
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a piezoelectric flow rate regulating valve used for opening and closing a refrigerant gas passage, for example, to control the capacity of a compressor used in an automobile cooling system. The present invention relates to a drive control method.

[従来の技術1 従来、圧縮機の容量をエンジンの回転数、蒸発器の出口
温度あるいはクランク室圧力等の外部検出信号に基づい
て変更するため、電気的に制御される外部容量制御弁を
設けたものがある。(例えば特開昭62−253970
号公報)そして、この外部容量制御弁にバイモル型圧電
素子(bimorph  cell)を用いたものも考
えられている。従来、バイモル型圧電素子を流量調整弁
として使用する場合には、第4図に示すようにケーシン
グ1に形成された冷媒ガス通路の高圧側通路2a及び低
圧側通路2bの一端が開口された弁室3内に圧電素子4
が配設されている。圧電素子4は印加電圧がOのとき流
体通路入口部としての低圧側通路2bの入口部が設けら
れた平面部3aに!着する状態でホルダ5を介して固定
されている。そして、印加電圧がOのときには圧電素子
4は第4図に実線で示す閉塞位置に配置され、電圧が印
加されると同図に鎖線で示すように圧電素子はその先端
側はど平面部3aから離間するように湾曲し、低圧側通
路2bが開放されて冷媒ガスが高圧側通路2aから低圧
側通路2bへと流れるようになっている。
[Prior art 1] Conventionally, an electrically controlled external capacity control valve was provided to change the capacity of the compressor based on an external detection signal such as engine speed, evaporator outlet temperature, or crank chamber pressure. There is something. (For example, JP-A-62-253970
It is also being considered that a bimorph type piezoelectric element (bimorph cell) is used in this external capacity control valve. Conventionally, when a bimol type piezoelectric element is used as a flow rate regulating valve, a valve is used in which one end of a high-pressure side passage 2a and a low-pressure side passage 2b of a refrigerant gas passage formed in a casing 1 is opened, as shown in FIG. Piezoelectric element 4 in chamber 3
is installed. When the applied voltage is O, the piezoelectric element 4 moves to the flat part 3a where the inlet of the low pressure side passage 2b as the fluid passage inlet is provided! It is fixed via the holder 5 in the state where it is attached. When the applied voltage is O, the piezoelectric element 4 is placed in the closed position shown by the solid line in FIG. The low-pressure side passage 2b is opened and refrigerant gas flows from the high-pressure side passage 2a to the low-pressure side passage 2b.

[発明が解決しようとする課題] ところが、前記従来の装置では圧電素子4は低圧側通路
2bを完全に開放する位置と完全に閉塞する位置との2
通りの位置にしか設定できず、流量を連続的に変化させ
るために印加電圧を変えて圧電素子4と平面部3aとの
隙間を微少範囲で変化させようとしても、圧電素子4が
低圧側通路2bに吸引されてしまい、微少隙間を保持す
ることにより流量を調整するのは不可能であった。その
ため、従来の装置では流量を調整するためにはデユーテ
ィ比制御を行う必要があり、制御が複雑になるとともに
圧電素子4に対する印加電圧のオン、オフの繰り返しが
多くなり、圧電素子4の寿命が短くなるという問題があ
る。従来装置において圧電素子4を低圧側通路2bとの
隙間が微少な状態に保持できない原因としては、圧電素
子4の湾曲変形時に圧電素子4がその一端のみをホルダ
5により支持された片持ち状態となるため、低圧側通路
2bの入口部における圧力と高圧側通路2aの圧力との
差圧による力に打ち勝つことができないためと考えられ
る。
[Problems to be Solved by the Invention] However, in the conventional device, the piezoelectric element 4 has two positions: one in which the low-pressure side passage 2b is completely opened and the other in which it is completely closed.
Even if you try to change the gap between the piezoelectric element 4 and the flat part 3a within a minute range by changing the applied voltage in order to continuously change the flow rate, the piezoelectric element 4 can be set only in the low-pressure side passage. 2b, and it was impossible to adjust the flow rate by maintaining a small gap. Therefore, in conventional devices, it is necessary to perform duty ratio control in order to adjust the flow rate, which complicates the control and increases the number of repetitions of turning on and off the applied voltage to the piezoelectric element 4, which shortens the life of the piezoelectric element 4. There is a problem with being short. In the conventional device, the reason why the piezoelectric element 4 cannot be maintained in a state where the gap with the low voltage side passage 2b is small is that the piezoelectric element 4 is in a cantilevered state with only one end supported by the holder 5 when the piezoelectric element 4 is curved and deformed. This is considered to be because the force due to the pressure difference between the pressure at the entrance of the low-pressure side passage 2b and the pressure of the high-pressure side passage 2a cannot be overcome.

本発明は前記の問題点に鑑みてなされたものであって、
その目的は圧電素子に対する印加電圧の大きさを変更す
ることにより流量を連続的に変化させることができる圧
電式流量調整弁の駆動制御方法を提供することにある。
The present invention has been made in view of the above problems, and includes:
The object of the present invention is to provide a method for controlling the drive of a piezoelectric flow rate regulating valve that can continuously change the flow rate by changing the magnitude of the voltage applied to the piezoelectric element.

[課題を解決するための手段] 前記の目的を達成するため本発明においては、バイモル
型圧電素子を印加電圧がOのとき、流体通路入口部が設
けられた平面部に密着する状態に固定し、前記圧電素子
に対して電圧を印加することにより流体通路の開閉を行
う圧電式流量調整弁において、印加電圧の向きを、圧電
素子を前記入口部と対向する面と反対側の面が凸となる
ように変形させる向きとし、印加電圧の大きさを変更す
ることにより前記入口部と圧電素子との間隔を変更させ
るようにした。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, when the applied voltage is O, the bimol type piezoelectric element is fixed in a state in which it is in close contact with the flat part where the fluid passage entrance part is provided. In the piezoelectric flow rate regulating valve that opens and closes a fluid passage by applying a voltage to the piezoelectric element, the direction of the applied voltage is such that the surface of the piezoelectric element opposite to the inlet portion is convex. By changing the magnitude of the applied voltage, the distance between the inlet portion and the piezoelectric element can be changed.

[作用コ 本発明の方法では流体通路の開閉を行う圧電素子に電圧
が印加されると、圧電素子は流体通路の入口部と対向す
る面と反対側の面が凸となるように変形する。すなわら
、圧電素子はその両端部が平面部に対して接触する状態
に変形するため、圧N素子4を平面部側へ押圧付勢する
力に対する抵抗力が大きくなり、流体通路入口部と圧電
素子との間隔を小さな状態に保持することができる。そ
して、印加電圧の大きさを変化させることにより圧電素
子と流体通路入口部との間隔が連続的に変化し、流量が
連続的に変更される。
[Operation] In the method of the present invention, when a voltage is applied to the piezoelectric element that opens and closes the fluid passage, the piezoelectric element deforms so that the surface opposite to the inlet of the fluid passage becomes convex. In other words, since the piezoelectric element is deformed so that its both ends are in contact with the flat surface, the resistance force against the force that presses and biases the pressure-N element 4 toward the flat surface increases, and the fluid passage inlet and The distance between the piezoelectric element and the piezoelectric element can be kept small. By changing the magnitude of the applied voltage, the distance between the piezoelectric element and the fluid passage inlet section is continuously changed, and the flow rate is continuously changed.

[実施例] 以下本発明を具体化した一実施例を第1.2図に従って
説明する。流量調整弁の閤械的構成は従来のものと同様
であるが、圧電素子4に対する印加電圧の方向が従来と
は逆方向となるように端子(図示せず)の接続位置が逆
になっている。
[Example] An example embodying the present invention will be described below with reference to Fig. 1.2. The mechanical configuration of the flow rate regulating valve is the same as that of the conventional one, but the connection position of the terminal (not shown) is reversed so that the direction of the voltage applied to the piezoelectric element 4 is opposite to that of the conventional one. There is.

さて、圧電素子4に電圧が印加されない状態においては
第1図<a >に示すように圧電素子4は平面部3aに
密着した状態に配置され、低圧側通路2bの入口部と圧
電素子4との間隔はOとなり流出調整弁の流量はOとな
る。圧電素子4に電圧を印加すると、圧電素子4は従来
と異なり低圧側通路2bの入口部と対向する面と反対側
の面が凸となるように変形する。そのため、圧電素子4
はホルダ5により弁室3に固定された基端と、反対側の
自由端とが常に平面部3aと当接する状態となる。又、
第2図に示すように圧電素子4は単に低圧側通路2bと
反対側に湾曲するのではなく、その中央部が最も高くな
るように変形する。従って、低圧側通路2bの入口部と
圧電素子4との間隔δが小さい場合、すなわち圧電素子
4と低圧側通路2bの入口部との隙間における流体圧力
と高圧側通路2aにおける流体圧力との差圧が大きな状
態においても圧電素子4はその力に打ち勝って所定の間
隔δを保持することができる。そのため、例えば第1図
(C)に示すように従来装置における印加電圧に等しい
100Vを印加した場合は、圧電素子4は低圧側通路2
bとの間隔δが低圧側通路2bを流れる流体に影響を与
えない大きさに保持される。又、その半分の大きさの電
圧50Vを印加した場合には第1図(b )に示すよう
に、間隔δはそのほぼ2分の1となり低圧側通路2hに
流れる流体の流量が小さくなる。従って、圧電素子4に
対する印加電圧の大きさを変更することにより圧電素子
4と低圧側通路2bの入口部との間隔δの大きさを連続
的に変化させることが可能となり、流量を連続的に変化
させることが可能となる。
Now, when no voltage is applied to the piezoelectric element 4, the piezoelectric element 4 is placed in close contact with the flat part 3a, as shown in FIG. The interval between is 0, and the flow rate of the outflow regulating valve is 0. When a voltage is applied to the piezoelectric element 4, the piezoelectric element 4 deforms so that the surface opposite to the surface facing the entrance of the low-voltage side passage 2b becomes convex, unlike the conventional piezoelectric element 4. Therefore, piezoelectric element 4
The base end fixed to the valve chamber 3 by the holder 5 and the opposite free end are always in contact with the flat part 3a. or,
As shown in FIG. 2, the piezoelectric element 4 does not simply curve toward the side opposite to the low-voltage side passage 2b, but deforms so that its central portion becomes the highest. Therefore, when the distance δ between the inlet of the low-pressure side passage 2b and the piezoelectric element 4 is small, that is, the difference between the fluid pressure in the gap between the piezoelectric element 4 and the inlet of the low-pressure side passage 2b and the fluid pressure in the high-pressure side passage 2a. Even when the pressure is large, the piezoelectric element 4 can overcome the force and maintain the predetermined distance δ. Therefore, for example, when 100 V, which is equal to the applied voltage in the conventional device, is applied as shown in FIG. 1(C), the piezoelectric element 4
The distance δ from the low pressure side passage 2b is maintained at a size that does not affect the fluid flowing through the low pressure side passage 2b. When a voltage of 50 V, which is half the voltage, is applied, as shown in FIG. 1(b), the interval δ becomes approximately one-half of that value, and the flow rate of the fluid flowing into the low-pressure side passage 2h becomes small. Therefore, by changing the magnitude of the voltage applied to the piezoelectric element 4, it is possible to continuously change the magnitude of the distance δ between the piezoelectric element 4 and the inlet of the low-pressure side passage 2b, and the flow rate can be continuously changed. It becomes possible to change it.

なお、本発明は前記実施例に限定されるものではなく、
例えば、第3図に示すように高圧側通路2aを低圧側通
路2bと別の壁面に形成したり、圧縮機以外の他の装置
に使用される圧電式流量調整弁に具体化してもよい。
Note that the present invention is not limited to the above embodiments,
For example, as shown in FIG. 3, the high-pressure side passage 2a may be formed on a separate wall from the low-pressure side passage 2b, or it may be embodied in a piezoelectric flow rate regulating valve used in a device other than a compressor.

[発明の効果] 以上詳述したように本発明によれば、圧電素子と流体通
路入口部との間隔を印加電圧の大きさに応じて連続的に
変更することができるので、流量調整を複雑なりj御を
必要とするデユーティ比制御で行う代わりに、印加電圧
の大きさを変えるという極めて簡単な方法で連続的に行
うことができるばかりでなく、デユーティ比制御が不要
となるため圧電素子の変形の繰り返し回数が少なくなり
、結果的に圧電素子の寿命が長くなるという優れた効果
を奏する。
[Effects of the Invention] As detailed above, according to the present invention, the distance between the piezoelectric element and the fluid passage inlet can be continuously changed according to the magnitude of the applied voltage, so that flow rate adjustment is not complicated. Instead of controlling the duty ratio, which requires constant control, it can be done continuously by changing the magnitude of the applied voltage. This has the excellent effect of reducing the number of repeated deformations, resulting in a longer lifespan of the piezoelectric element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図<a >〜(C)は作用を示す断面図、第2図は
圧電素子の変形状態を示す顆路斜視図、第3図は変更例
の断面図、第4図は従来装置の作用を示す断面図である
。 流体通路としての低圧側通路2b、弁室3、平面部3a
、圧電素子4、間隔δ。 特許出願人  株式会社豊田自動織機製作所代 理 人
  弁理士  恩1)博宵 第3J!1 第4図
Figures 1 <a> to (C) are cross-sectional views showing the action, Figure 2 is a perspective view of the condyle tract showing the deformed state of the piezoelectric element, Figure 3 is a cross-sectional view of a modified example, and Figure 4 is a view of the conventional device. It is a sectional view showing an effect. Low pressure side passage 2b as a fluid passage, valve chamber 3, flat part 3a
, piezoelectric element 4, spacing δ. Patent applicant Toyota Industries Corporation Representative Patent attorney On 1) Boyo 3rd J! 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1.バイモル型圧電素子を印加電圧が0のとき、流体通
路入口部が設けられた平面部に密着する状態に固定し、
前記圧電素子に対して電圧を印加することにより流体通
路の開閉を行う圧電式流量調整弁において、印加電圧の
向きを、前記圧電素子を前記入口部と対向する面と反対
側の面が凸となるように変形させる向きとし、印加電圧
の大きさを変更することにより前記入口部と圧電素子と
の間隔を変更させる圧電式流量調整弁の駆動制御方法。
1. fixing the bimol type piezoelectric element in close contact with a flat surface provided with a fluid passage inlet when an applied voltage is 0;
In the piezoelectric flow rate regulating valve that opens and closes a fluid passage by applying a voltage to the piezoelectric element, the direction of the applied voltage is such that the piezoelectric element has a surface facing the inlet portion and a surface opposite to the inlet portion having a convex surface. A drive control method for a piezoelectric flow rate regulating valve, in which the distance between the inlet portion and the piezoelectric element is changed by changing the magnitude of the applied voltage.
JP16995388A 1988-07-06 1988-07-06 Drive control method for piezoelectric type flow regulating valve Pending JPH0221080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16995388A JPH0221080A (en) 1988-07-06 1988-07-06 Drive control method for piezoelectric type flow regulating valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16995388A JPH0221080A (en) 1988-07-06 1988-07-06 Drive control method for piezoelectric type flow regulating valve

Publications (1)

Publication Number Publication Date
JPH0221080A true JPH0221080A (en) 1990-01-24

Family

ID=15895916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16995388A Pending JPH0221080A (en) 1988-07-06 1988-07-06 Drive control method for piezoelectric type flow regulating valve

Country Status (1)

Country Link
JP (1) JPH0221080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device

Similar Documents

Publication Publication Date Title
US5145147A (en) Normally closed-type fluid control valve
JP3276936B2 (en) Flow control valve
KR20160028474A (en) Pressure-type flow rate control device
JP2020020371A (en) Actuator and valve device using the same
JPH0221080A (en) Drive control method for piezoelectric type flow regulating valve
JPH09222268A (en) Expansion valve
JP3070222B2 (en) Flow control device
JP3481036B2 (en) Expansion valve
JP2762920B2 (en) Flow control valve
JP7259839B2 (en) Diaphragm valve and mass flow controller using the same
JPS62110087A (en) Changeover valve device
JP2000220917A (en) Supercooling degree control type expansion valve
JP4077308B2 (en) Expansion valve
JPH04302784A (en) Flow control valve
JP4053846B2 (en) Electric expansion valve
JP2699027B2 (en) Cage valve
JPH07293738A (en) Regulating valve
JPH10238903A (en) Expansion valve
GB2161584A (en) Electrically controlled fluid valves
JPH0599369A (en) Fluid control valve
JPH10124150A (en) Steam pressure reducing valve
JP4012306B2 (en) Pressure flow control device
JP2024502978A (en) bellows diaphragm assembly
JPS63312586A (en) Flow control valve
JP3485748B2 (en) Expansion valve