JPS63312586A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPS63312586A
JPS63312586A JP14806487A JP14806487A JPS63312586A JP S63312586 A JPS63312586 A JP S63312586A JP 14806487 A JP14806487 A JP 14806487A JP 14806487 A JP14806487 A JP 14806487A JP S63312586 A JPS63312586 A JP S63312586A
Authority
JP
Japan
Prior art keywords
core
moving
fixed
resistance plate
moving core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14806487A
Other languages
Japanese (ja)
Other versions
JPH0726702B2 (en
Inventor
Yasuhiko Watanabe
渡辺 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62148064A priority Critical patent/JPH0726702B2/en
Publication of JPS63312586A publication Critical patent/JPS63312586A/en
Publication of JPH0726702B2 publication Critical patent/JPH0726702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To continuously make voltage and opening of a valve proportional to each other by providing a fixed resistance plate between a moving core and a fixed core and mounting a moving resistance plate for regulating the motion of the moving core at the end portion of the moving core. CONSTITUTION:A fixed resistance plate 19 for preventing sudden adsorption of a moving core 20 to a fixed core 17 is disposed between the moving core 20 and the fixed core 17. A moving resistance plate 21 for regulating the motion of the moving core 20 in the vicinity of the terminal end of a stroke for approaching the moving core 20 to the fixed core 17 is provided at the end portion of the moving core 20 on the opposite side to the fixed core 17. When voltage is increased, the moving core 20 approaches the fixed resistance plate 19 and force acting on the moving core 20 is rapidly increased, the moving resistance plate 21 is hard to be flexed to regulate a sudden displacement of the moving core 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はソレノイドを利用した液体の流量制御弁に関す
るものであり、例えばボイラ等における燃料の流量制御
に用いることができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid flow rate control valve using a solenoid, and can be used, for example, to control the fuel flow rate in a boiler or the like.

〔従来の技術〕[Conventional technology]

ボイラ等における温度調節を目的とした液体燃料の流量
制御では、例えば作業員がボイラの温度を見ながらマニ
ュアルでニードルバルブを操作するといった方法がとら
れていた。また、第5図に示すように、パルス信号によ
って開閉制御できる複数のバルブVを燃料管の途中に並
列に接続し、電気的な操作で各バルブVの開・閉を組合
せることによって燃料の流量を調節する多段階切換弁方
式も用いられていた。
BACKGROUND ART In controlling the flow rate of liquid fuel for the purpose of temperature adjustment in boilers and the like, a method has been used in which, for example, a worker manually operates a needle valve while monitoring the temperature of the boiler. In addition, as shown in Fig. 5, multiple valves V that can be opened and closed by pulse signals are connected in parallel in the middle of the fuel pipe, and the opening and closing of each valve V is combined with electrical operation. A multi-stage switching valve system was also used to adjust the flow rate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来の方法のよれば、一般に流量の調整範囲が
狭く、流量の変化に伴って流体の圧力が変化してしまう
という問題点があった。特に多段階切換弁方式は、電気
的な切換操作ができることから、ボイラの温度に応じて
燃料の流量を自動制御する構成とされていたが、各バル
ブVはオンオフル制御されるものであって、流量の調節
は段階的なものとならざるを得す、きめの細い一制御を
することができなかった。また各バルブVの開閉部にト
ラブルが発生しやすいという問題もあった。
According to the conventional method described above, there was a problem in that the adjustment range of the flow rate was generally narrow, and the pressure of the fluid changed as the flow rate changed. In particular, the multi-stage switching valve system was configured to automatically control the fuel flow rate according to the boiler temperature because it could be electrically switched, but each valve V was fully controlled on and off. Adjustment of the flow rate had to be done in stages, and fine-grained control was not possible. Another problem was that troubles were likely to occur in the opening and closing portions of each valve V.

〔発明の目的〕[Purpose of the invention]

ソレノイドを用いた流量制御弁であって、ソレノイドに
与える電圧と弁の開度を連続的に比例させることができ
、広い調整範囲にわたって圧力がほぼ一定の状態で液体
の流量を制御することができる流量制御弁を提供するこ
とを目的としている。
A flow control valve that uses a solenoid, which can continuously make the voltage applied to the solenoid proportional to the opening of the valve, and can control the flow rate of liquid while keeping the pressure almost constant over a wide adjustment range. The purpose is to provide a flow control valve.

〔問題点を解決するためのf段〕[F-stage to solve problems]

本発明のmuルIN弁は、コイルと、コイルの一端に設
けられた固定コアと、コイルが発生する磁場によってコ
イル内を移動する移動コアとを具備し、コイルに与える
電圧を変化させることにより、移動コアに設けたシート
部材で液体の流路を開閉して液体の流量を制御する流量
制御弁において、移動コアと固定コアの間に移動コアの
固定コアに対する急激な吸着を防止する固定抵抗板を設
け、固定コアとは反対側の移動コアの端部には、移動コ
アが固定コアに近接するストロークの終端近傍において
該移動コアの動きを規ル1する移動抵抗板を設けたこと
を特徴としている。
The mul IN valve of the present invention includes a coil, a fixed core provided at one end of the coil, and a moving core that moves within the coil by a magnetic field generated by the coil, and by changing the voltage applied to the coil. In a flow control valve that controls the flow rate of liquid by opening and closing a liquid flow path using a sheet member provided on the moving core, a fixed resistor is installed between the moving core and the fixed core to prevent the moving core from suddenly adhering to the fixed core. A plate is provided, and a moving resistance plate is provided at the end of the moving core opposite to the fixed core to regulate the movement of the moving core near the end of the stroke where the moving core approaches the fixed core. It is a feature.

(作用) 一般にコイルに4える電圧を上昇させて移動コアを固定
コアに向けて移動させる場合、移動コアが固定コアに接
近すると電圧の上昇に対して移動コアに動く力が急激に
大きくなる。ところが本発明では、移動コアと固定コア
の間に設けられた固定抵抗板によって、移動コアに働く
力が急増する領域の大半は移動コアの可動ストロークか
ら除外され、移動コアが固定コアに急激に強く磁着して
しまうことがなくなる。また、移動抵抗板は固定コアに
向けた移動コアの移動によってたわみを生じるが、たわ
み量が大きくなるほど移動抵抗板はたわみにくくなって
いる。即ち電圧が小さい段階では移動抵抗板は簡単にた
わむが、電圧が上昇し移動コアが固定抵抗板に近づき、
移動コアに働く力が急速に増大しはじめるところでは移
動抵抗板はたわみにくくなって移動コアの急激な変位を
規制する。従って、コイルに与える電圧と移動コアの変
位、即ちバルブの開閉状態はほぼ比例する。
(Function) Generally, when the voltage applied to the coil is increased to move the movable core toward the fixed core, when the movable core approaches the fixed core, the force moving the movable core increases rapidly in response to the increase in voltage. However, in the present invention, most of the area where the force acting on the moving core rapidly increases is excluded from the movable stroke of the moving core by the fixed resistance plate provided between the moving core and the fixed core. Strong magnetism will no longer occur. Further, the moving resistance plate is deflected by the movement of the moving core toward the fixed core, but the larger the amount of deflection, the more difficult the moving resistance plate is to deflect. In other words, when the voltage is low, the movable resistor plate easily bends, but as the voltage increases, the movable core approaches the fixed resistor plate.
At a point where the force acting on the moving core begins to increase rapidly, the moving resistance plate becomes difficult to bend and restricts rapid displacement of the moving core. Therefore, the voltage applied to the coil and the displacement of the moving core, ie, the open/closed state of the valve, are approximately proportional.

〔実施例〕〔Example〕

本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described with reference to FIG.

図において1は略円柱形状とされた弁の本体である。本
体1の下面中央にはニードルねじ込み孔laが形成され
ており、この孔1aは本体1のF面中央に形成された2
段の四段als2.3に連通している。ニードルねじ込
み孔1aにはこの孔1aと略同形のニードル4が挿通さ
れ、ねじ部4aにおいて弁の本体重と−・体に結合され
ている。孔laの内周面と接するニードル4の側周面に
は3本の周溝5.6.7が形成されている。上下の周溝
5.7には0リングが介装されており、弁本体1とニー
ドル4との間を封止している。そして中央の周溝6には
水平な貫通孔8が形成・開口しており、この4通孔8の
中央部には、ニードル4の上端部に開口して本体1の四
段部3内に通ずる眞直な通油孔9が連通している。そし
て弁本体1の側周面には径方向に沿って液体の人[11
0及び出口11が形成されている。人口lOは、孔!2
を介してニードルねじ込み孔1aの内側周面に開[′1
し、前記ニードル4の中央の周溝6に連通している。ま
た出口11は、下側の凹段部3の底面側方に垂直に形成
された孔13を介して本体1の四段部3内に連通してい
る。
In the figure, 1 is the main body of the valve which is approximately cylindrical in shape. A needle screw hole la is formed in the center of the lower surface of the main body 1, and this hole 1a is connected to a hole 2 formed in the center of the F surface of the main body 1.
It communicates with the fourth stage als2.3 of the stage. A needle 4 having substantially the same shape as the hole 1a is inserted into the needle threaded hole 1a, and is connected to the main body weight of the valve at the threaded portion 4a. Three circumferential grooves 5.6.7 are formed on the side circumferential surface of the needle 4 that is in contact with the inner circumferential surface of the hole la. O-rings are interposed in the upper and lower circumferential grooves 5.7 to seal between the valve body 1 and the needle 4. A horizontal through hole 8 is formed and opened in the central circumferential groove 6, and in the center of the four through holes 8, the upper end of the needle 4 is opened and inserted into the four steps 3 of the main body 1. A straight oil passage hole 9 is in communication. Then, on the side peripheral surface of the valve body 1, a liquid body [11
0 and an outlet 11 are formed. The population lO is hole! 2
is opened on the inner peripheral surface of the needle screw hole 1a through ['1
and communicates with the central circumferential groove 6 of the needle 4. Further, the outlet 11 communicates with the four-step portion 3 of the main body 1 via a hole 13 formed perpendicularly to the side of the bottom surface of the lower recessed step portion 3.

次に、前記本体lの上側の凹段部2内には埋伏のグラン
ドナツト14がねじ込まれている。グランドナツト14
は1両凹段部2.3の間の角部に形成された係W段部に
後述する移動抵抗板21の押えリング15番押圧固定し
ている。そして押えリング15の外側、上側の四段部2
の底面とグランドナツト14の間には0リングが介装さ
れており、本体lの凹段部2,3内を外部に対して密封
している。グランドナツト14の中央にはパイプ16の
開口下端部が固着されている。バイブ16のh Qには
固定コア17が固着されており、バイブ16外の上方に
突出した固定コア17の上端部にはねじ部18が形成さ
れている。またバイブ16外にある固定コア17の下端
面には非磁性材料よりなる薄板状の固定抵抗板19が設
けられており、パイプ16内に設けられる後述する移動
コア20が前記固定コア17に対して急激かつ強力に磁
着してしまうことを防止できるようになっている。なお
、前記固定抵抗板19の厚さは、移動コア20に加わる
磁場の影響等を勘案して定めればよく1例えば本実施例
では移動コア20の実際の可動長さとほぼ同じ長さ、例
えば約0.5mm程度としである。また固定抵抗板!9
は後述する移動コア20上喘に設けてもよい。そして、
前記パイプ16の内部には、円柱形の移動コア20が上
FIJ動自在に設けられている。前記固定コア17の反
対側(下側)になる移動コア20の下端には、移動抵抗
板21及びシート部材としての弁シート部22が取付け
られている。第2図に示すように、移動抵抗板は、大径
の環状枠部23と小径の環状取付部24とを有し、湾曲
した形状の3木のアーム25によってこれら両PIS2
3,24を連結した構造とされている。そして環状枠部
23の外径は、前記押えリング15の下面に形成した段
部の内径と略同−に設定されている。また弁シート部2
2は、基部26の一ヒ端に取付ねじ部27が形成され、
基部26の下端には1前記ニー ドル4の通油孔9を開
閉する突M28が形成された構造になっている。そして
、ブトシート部22の取付ねじ部27は、前記移動抵抗
板21の環状取付部24に挿通させた状態で移動コア2
oのF端にねじ込まれており、移動コア20、移動抵抗
板21、及び弁シート部22は一体に組立てられている
。そして、移動コア20がaF方位置にあって突起28
が通油孔9を閉止している時、移動抵抗板21は環状枠
部23を押えリング15に下から当接させた状態になっ
ている。従って後述するコイル31の働きによって移動
コア20を上昇させて通油孔9を開いた時、移動抵抗板
21はF方に向は凸形状にたわむように構成されている
Next, an impaction gland nut 14 is screwed into the recessed step 2 on the upper side of the main body l. grand nut 14
The retainer ring No. 15 of the moving resistance plate 21, which will be described later, is pressed and fixed to the engaging W step portion formed at the corner between the two concave step portions 2.3. And the outer and upper four steps 2 of the presser ring 15
An O-ring is interposed between the bottom surface of the main body 1 and the gland nut 14, and seals the inside of the recessed portions 2 and 3 of the main body 1 from the outside. The open lower end of a pipe 16 is fixed to the center of the gland nut 14. A fixed core 17 is fixed to hQ of the vibrator 16, and a threaded portion 18 is formed at the upper end of the fixed core 17, which projects upwardly outside the vibrator 16. In addition, a thin fixed resistance plate 19 made of a non-magnetic material is provided on the lower end surface of the fixed core 17 outside the vibrator 16, and a moving core 20 (described later) provided inside the pipe 16 is connected to the fixed core 17. This prevents sudden and strong magnetic attachment. The thickness of the fixed resistance plate 19 may be determined by taking into account the influence of the magnetic field applied to the moving core 20. For example, in this embodiment, the thickness is approximately the same as the actual movable length of the moving core 20, for example. It is approximately 0.5 mm. Another fixed resistance plate! 9
may be provided on the upper part of the moving core 20, which will be described later. and,
A cylindrical moving core 20 is provided inside the pipe 16 so as to be movable upward FIJ. A moving resistance plate 21 and a valve seat portion 22 as a seat member are attached to the lower end of the moving core 20 on the opposite side (lower side) of the fixed core 17. As shown in FIG. 2, the movement resistance plate has a large-diameter annular frame portion 23 and a small-diameter annular attachment portion 24, and a curved three-piece arm 25 connects both PIS 2.
It has a structure in which 3 and 24 are connected. The outer diameter of the annular frame portion 23 is set to be approximately the same as the inner diameter of the stepped portion formed on the lower surface of the presser ring 15. Also, the valve seat part 2
2, a mounting screw portion 27 is formed at one end of the base portion 26;
The base portion 26 has a structure in which a projection M28 for opening and closing the oil passage hole 9 of the needle 4 is formed at the lower end. The mounting screw part 27 of the butto seat part 22 is inserted into the annular mounting part 24 of the moving resistance plate 21 when the moving core 27 is inserted into the moving core 27.
The movable core 20, the movable resistance plate 21, and the valve seat portion 22 are integrally assembled. Then, when the moving core 20 is in the aF direction position, the protrusion 28
When the oil passage hole 9 is closed, the moving resistance plate 21 is in a state in which the annular frame portion 23 is brought into contact with the presser ring 15 from below. Therefore, when the movable core 20 is raised to open the oil passage hole 9 by the action of the coil 31, which will be described later, the movable resistance plate 21 is configured to bend in a convex shape in the F direction.

次に、前記本体l及びグランドナツト14の上面には、
パイプ16を外挿してリングコア29が設けられている
。またリングコア29の上には、パイプ16を外挿して
ボビン30が設けられている。ボビン30にはコイル3
1が設けられており、該コイル31が発生する磁場によ
ってパイプ16内の移動コア2oを移動させることがで
きるようになっている。またボビン30の上には、固定
コア17のねじ部18に挿通されたリングコア32が設
けられている。そして該リングコア32のFからは、前
記ボビン30及びコイル31等を覆うコイルケース33
が設けられている。コイルケース33は下方が開放され
た円筒形で、円形の上壁の中央部に設けられた取付穴に
固定コア17のねじ部18を挿通させ、上壁の下面をリ
ングコア32の1面に密着させた状態でねじals18
にナツト34をねじ込むことによってパイプ16及び本
体l側に取付けられている。なお、前記コイルケース3
3の上壁とナツト34との間には銘板35が設けられて
いる。
Next, on the upper surface of the main body l and the gland nut 14,
A ring core 29 is provided by extrapolating the pipe 16. Further, a bobbin 30 is provided on the ring core 29 by extrapolating the pipe 16. Coil 3 on bobbin 30
1 is provided, and the moving core 2o within the pipe 16 can be moved by the magnetic field generated by the coil 31. Further, a ring core 32 is provided on the bobbin 30 and is inserted through the threaded portion 18 of the fixed core 17. From F of the ring core 32, a coil case 33 that covers the bobbin 30, coil 31, etc.
is provided. The coil case 33 has a cylindrical shape with an open bottom, and the screw portion 18 of the fixed core 17 is inserted into a mounting hole provided in the center of the circular upper wall, so that the lower surface of the upper wall is tightly attached to one surface of the ring core 32. Screws als18 in the state
It is attached to the pipe 16 and the main body l side by screwing a nut 34 into the pipe 16 and the main body l side. Note that the coil case 3
A name plate 35 is provided between the upper wall of 3 and the nut 34.

次に、以トのように構成された流量制御弁の作用を説明
する。
Next, the operation of the flow control valve configured as described below will be explained.

まず、コイル31に電圧を加えない状態で流■が最底(
例えばO)となるような弁シート部22の原点位置を検
出する。この時、弁シート部22の突起28は、弁シニ
ト部22及び移動コア2゜のffl埴及び移動抵抗板2
1の弾性方をもって通油孔9を閉止しており、また移動
抵抗板21は押えリング15よりも下方にあるとする。
First, when no voltage is applied to the coil 31, the current ■ is at its lowest point (
For example, the origin position of the valve seat portion 22 such as O) is detected. At this time, the protrusion 28 of the valve seat part 22 is connected to the valve seat part 22 and the moving core 2° and the moving resistance plate 2.
It is assumed that the oil passage hole 9 is closed with an elasticity of 1, and that the moving resistance plate 21 is located below the presser ring 15.

ここで流量制御弁SVの人口10から所定圧力の検査用
空気を供給すると、空気は、人口10・中央の周溝6・
ri通孔8・通油孔9を経て突起28との隙間から本体
1の凹段部3内に入り、さらに孔13及び出口11を通
って外に出てくる。ここで、ニードル4を徐々にしめて
いくと、ニードル4は本体1内に向けて上昇していき、
弁シート部22及び移動コア20を徐々に持ち上げる。
Here, when testing air at a predetermined pressure is supplied from the flow rate control valve SV's population 10, the air is supplied from the population 10, the central circumferential groove 6,
It enters the recessed step 3 of the main body 1 through the gap with the protrusion 28 through the ri passage hole 8 and the oil passage hole 9, and then comes out through the hole 13 and the outlet 11. Here, when the needle 4 is gradually tightened, the needle 4 rises toward the inside of the main body 1,
Gradually lift the valve seat section 22 and moving core 20.

そして構成の説明で述べたように、移動抵抗板21の環
状枠部23が押えリング15に下から当接すると、弁シ
ート部22の持ちFげには抵抗が生じるようになり、突
起28は所定の力をもって確実に通油孔9を閉1卜する
ので、所定圧力の空気は出[111から出てこなくなる
As described in the explanation of the configuration, when the annular frame portion 23 of the moving resistance plate 21 abuts the retaining ring 15 from below, resistance is generated in the grip of the valve seat portion 22, and the protrusion 28 is moved to a predetermined position. Since the oil passage hole 9 is reliably closed with a force of 1, air at a predetermined pressure will not come out from the outlet 111.

次に調整済みの葭記流に制御弁SVは、所定圧力の液体
が流れる配管系の途中に設け、コイル31に学える電圧
を加減することにより流量制御を行なわせる。−・般に
コイルに与える電圧を上昇させて移動コアを固定コアに
向けて上昇させる場合、リフト量が大きくなって移動コ
アが固定コアに接近すると、電圧の上昇に対して移動コ
アに動く力が急激に大きくなると考えられる。ところが
本実施例では、移動コア20と固定コア17の間に非磁
性材料よりなる固定抵抗板19が設けられているので、
移動コア20に働く力が急増する領域の大半は移動コア
20の可動ストロークから除外され、移動コア20が固
定コア17に急激に強く磁着して磁化されてしまうこと
がなくなる。また、固定コア17に向けた移動コア20
の移動によって移動抵抗板21にはたわみを生じるが、
たわみ量が大きくなるほど移動抵抗板21はたわみにく
くなっている。即ち電圧が小さく、移動コア20のリフ
トが少い段階では移動抵抗板21は比較的w1@にたわ
むが、電圧が上昇し移動コア20が固定抵抗板19に近
づき、移動コア20に働く力が急速に増大しはじめると
ころでは移動抵抗板21はたわみにくくなって移動コア
20の急激な変位を規制する。
Next, a control valve SV for the adjusted flow is provided in the middle of the piping system through which the liquid at a predetermined pressure flows, and the flow rate is controlled by adjusting the voltage applied to the coil 31. - Generally, when increasing the voltage applied to the coil to raise the moving core toward the fixed core, when the lift amount increases and the moving core approaches the fixed core, the force that moves the moving core against the increase in voltage increases. is expected to increase rapidly. However, in this embodiment, since the fixed resistance plate 19 made of a non-magnetic material is provided between the moving core 20 and the fixed core 17,
Most of the region where the force acting on the movable core 20 rapidly increases is excluded from the movable stroke of the movable core 20, thereby preventing the movable core 20 from suddenly becoming strongly magnetized to the fixed core 17 and becoming magnetized. In addition, the moving core 20 toward the fixed core 17
The movement of the moving resistance plate 21 causes deflection, but
The larger the amount of deflection, the more difficult the moving resistance plate 21 is to deflect. In other words, when the voltage is low and the lift of the moving core 20 is small, the moving resistance plate 21 is relatively deflected to w1@, but as the voltage increases and the moving core 20 approaches the fixed resistance plate 19, the force acting on the moving core 20 increases. When the displacement begins to increase rapidly, the movable resistance plate 21 becomes difficult to bend, thereby regulating the rapid displacement of the movable core 20.

従って第3図に示すように、コイル31に与える電圧と
移動コア20のリフトの関係がほぼ直線的になり、弁の
開度をコイル31の負荷から検出して自動制御すること
により、流量を連続的にきめ細かく制御することができ
る。従って滝川の急変によって系内の流体圧力が変化し
てしまうことがなくなり、圧力をほぼ一定とした状態で
調整範囲の広い流量i$lJ Iを実現することができ
る。また本実施例は、コイル31に与える電圧を変化さ
せて移動コア20を微妙に昇降動させ、流qの比例制御
を行なわせるものであるから、電圧が0の時に流星が確
実に0とされていなければならないし、また原点位置に
おいて移動抵抗板21を不必要にたわませることも避け
ねばならない。このようなJPシート部22における原
点位置の調整はきわめて微妙なものとなるが、本実施例
の原点調整機構は航述したようなねじ式のニードル4を
用いているので、簡単かつ正確に最底流量の原点位置を
割出すことができる。
Therefore, as shown in FIG. 3, the relationship between the voltage applied to the coil 31 and the lift of the moving core 20 is almost linear, and the flow rate can be controlled by automatically controlling the valve opening degree by detecting the load on the coil 31. It can be continuously and finely controlled. Therefore, the fluid pressure within the system will not change due to sudden changes in Takigawa, and the flow rate i$lJ I can be realized over a wide adjustment range while keeping the pressure substantially constant. Furthermore, in this embodiment, the moving core 20 is moved up and down slightly by changing the voltage applied to the coil 31 to perform proportional control of the flow q, so that when the voltage is 0, the meteor is reliably set to 0. It is also necessary to avoid unnecessary deflection of the movable resistance plate 21 at the original position. Adjustment of the origin position in the JP seat portion 22 is extremely delicate, but since the origin adjustment mechanism of this embodiment uses the screw-type needle 4 as described above, it can be easily and accurately adjusted to the optimum position. The origin position of the bottom flow rate can be determined.

次に、面記流量制御井Svを、ボイラにおける燃料噴射
装置の流量制御に用いた例を説明する。
Next, an example in which the surface flow rate control well Sv is used to control the flow rate of a fuel injection device in a boiler will be described.

第4図に示すように、灯油NI40内の灯油は、電磁ポ
ンプPによって所定圧力でバイパスノズル41に送られ
るようになっている。灯油は所定圧力でノズル孔41a
から燃焼室内に向けて噴霧され、燃焼される。バイパス
ノズル41で噴霧されなかった一部の灯油は、前記所定
圧力で流量制御弁SVを通過して前記灯油MI40に環
流していく。ここでボイラの炉内の温度等をセンサによ
って常時監視し、この値と目標温度との偏差をフィード
バックして前記流量制御弁Svのコイル電圧を自動調整
すれば、系内に流通する灯油の滝川を、圧力をほぼ一定
としたままできめ細かく増減させることができる。即ち
、圧力がほぼ一定の状態で調整範囲の広い比例流!;【
制御を自動制御で実現でき、ボイラの炉内温度を設定し
た目標値に富に一致させることができる。
As shown in FIG. 4, the kerosene in the kerosene NI 40 is sent to the bypass nozzle 41 at a predetermined pressure by an electromagnetic pump P. Kerosene is supplied to the nozzle hole 41a at a predetermined pressure.
It is sprayed into the combustion chamber and burned. A part of the kerosene that was not sprayed by the bypass nozzle 41 passes through the flow rate control valve SV at the predetermined pressure and flows back into the kerosene MI40. Here, if the temperature inside the boiler furnace is constantly monitored by a sensor, and the deviation between this value and the target temperature is fed back and the coil voltage of the flow control valve Sv is automatically adjusted, the Takigawa flow of kerosene flowing in the system can be done. can be finely increased or decreased while keeping the pressure almost constant. In other words, proportional flow with a wide adjustment range while the pressure is almost constant! ;[
Control can be achieved automatically, and the temperature inside the boiler can be made to closely match the set target value.

本発明は以[説明した実施例に限定されるものではなく
、燃焼装置を有する乾燥機や温調設備等の他、液体の流
量制御一般に広く使用することができる。
The present invention is not limited to the embodiments described below, and can be widely used in dryers with combustion devices, temperature control equipment, etc., as well as liquid flow rate control in general.

(発明の効果) 本発明の流量制御弁は、固定抵抗板と移動抵抗板を設け
ることによって移動コアのリフトをコイルの負荷電圧に
直線的に比例させるようにしているので、圧カ一定で調
整範囲の広い比例流11制御を実現できるという効果が
ある。
(Effects of the Invention) The flow control valve of the present invention has a fixed resistance plate and a moving resistance plate so that the lift of the moving core is made linearly proportional to the load voltage of the coil, so the pressure can be adjusted at a constant level. This has the effect of realizing proportional flow 11 control over a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例の流量制御弁を示す断面図、第2図は
同実施例における移動抵抗板のt面図、第3図はO「記
流昨制御弁にあける移動コアのリフトとコイルの電圧と
の関係を示すグラフ、第4図は11「記流量制御弁を用
いた燃料噴射装置の構成図、第5図は多段階切換方式に
よる従来の燃料噴射装置の構成図である。 17−・・固定コア、19−・・固定抵抗板、20 ’
−・・移動コア、21−・移動抵抗板、22−・・シー
ト部材としての弁シート部、31−・コイル、SV・・
・流星制御弁。
Fig. 1 is a sectional view showing a flow rate control valve of one embodiment, Fig. 2 is a t-plane view of a moving resistance plate in the same embodiment, and Fig. 3 is a diagram showing the lift of the moving core in the flow control valve. A graph showing the relationship with the voltage of the coil, FIG. 4 is a block diagram of a fuel injection system using a 11" flow rate control valve, and FIG. 5 is a block diagram of a conventional fuel injection system using a multi-stage switching system. 17--Fixed core, 19--Fixed resistance plate, 20'
---Moving core, 21--Moving resistance plate, 22--Valve seat portion as a seat member, 31--Coil, SV...
・Meteor control valve.

Claims (1)

【特許請求の範囲】[Claims] コイルと、コイルの一端に設けられた固定コアと、コイ
ルが発生する磁場によってコイル内を移動する移動コア
とを具備し、コイルに与える電圧を変化させることによ
り、移動コアに設けたシート部材で液体の流路を開閉し
て液体の流量を制御する流量制御弁において、移動コア
と固定コアの間に移動コアの固定コアに対する急激な吸
着を防止する固定抵抗板を設け、固定コアとは反対側の
移動コアの端部には、移動コアが固定コアに近接するス
トロークの終端近傍において該移動コアの動きを規制す
る移動抵抗板を設けたことを特徴とする流量制御弁。
It comprises a coil, a fixed core provided at one end of the coil, and a moving core that moves within the coil due to the magnetic field generated by the coil, and by changing the voltage applied to the coil, the sheet member provided on the moving core In a flow control valve that controls the flow rate of liquid by opening and closing the liquid flow path, a fixed resistance plate is provided between the moving core and the fixed core to prevent the moving core from suddenly adhering to the fixed core, and is opposite to the fixed core. A flow control valve characterized in that a moving resistance plate is provided at an end of the moving core on the side to restrict movement of the moving core near the end of a stroke where the moving core approaches the fixed core.
JP62148064A 1987-06-16 1987-06-16 Flow control method Expired - Lifetime JPH0726702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62148064A JPH0726702B2 (en) 1987-06-16 1987-06-16 Flow control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62148064A JPH0726702B2 (en) 1987-06-16 1987-06-16 Flow control method

Publications (2)

Publication Number Publication Date
JPS63312586A true JPS63312586A (en) 1988-12-21
JPH0726702B2 JPH0726702B2 (en) 1995-03-29

Family

ID=15444387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62148064A Expired - Lifetime JPH0726702B2 (en) 1987-06-16 1987-06-16 Flow control method

Country Status (1)

Country Link
JP (1) JPH0726702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112772101A (en) * 2021-03-03 2021-05-11 石河子大学 Electromagnetic drive control device for liquid manure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120779A (en) * 1980-12-06 1982-07-27 Wabco Fahrzeugbremsen Gmbh Solenoid valve
JPS58214084A (en) * 1982-06-08 1983-12-13 Nippon Denso Co Ltd Solenoid valve
JPS61131576U (en) * 1985-02-04 1986-08-16
JPS629772U (en) * 1985-07-03 1987-01-21

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120779A (en) * 1980-12-06 1982-07-27 Wabco Fahrzeugbremsen Gmbh Solenoid valve
JPS58214084A (en) * 1982-06-08 1983-12-13 Nippon Denso Co Ltd Solenoid valve
JPS61131576U (en) * 1985-02-04 1986-08-16
JPS629772U (en) * 1985-07-03 1987-01-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112772101A (en) * 2021-03-03 2021-05-11 石河子大学 Electromagnetic drive control device for liquid manure
CN112772101B (en) * 2021-03-03 2024-04-05 石河子大学 Electromagnetic driving control device for liquid fertilizer

Also Published As

Publication number Publication date
JPH0726702B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US5145147A (en) Normally closed-type fluid control valve
US4921208A (en) Proportional flow valve
JP3875959B2 (en) Flow control valve
JP3276936B2 (en) Flow control valve
US5020771A (en) Proportional control valve
US20020053652A1 (en) Extended range proportional valve
KR20070092971A (en) Valve assembly having rigid seating surfaces
US4453700A (en) Fluid control valve assembly
US6367766B1 (en) Proportional flow valve
JPH05172268A (en) Valve for gas rate-of-flow control device
EP0379759B1 (en) Proportional control valve
JPS63312586A (en) Flow control valve
KR100736772B1 (en) Proportional control valve with pzt actuator
JP2674732B2 (en) Flow controller for gas
JPS63312587A (en) Flow control valve
JPS63315813A (en) Jet apparatus for fuels
GB2060139A (en) Control Valve
KR102323804B1 (en) mass flow controller
JPH0313463B2 (en)
JPH0615285Y2 (en) Flow control valve
JP4053846B2 (en) Electric expansion valve
JPH0361828A (en) Pressure sensor and fluid feeder
JP2655967B2 (en) solenoid valve
JPH07113432B2 (en) Proportional control valve for gas
JP3411599B2 (en) Pressure reducing valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 13