JPH0313463B2 - - Google Patents

Info

Publication number
JPH0313463B2
JPH0313463B2 JP2101684A JP2101684A JPH0313463B2 JP H0313463 B2 JPH0313463 B2 JP H0313463B2 JP 2101684 A JP2101684 A JP 2101684A JP 2101684 A JP2101684 A JP 2101684A JP H0313463 B2 JPH0313463 B2 JP H0313463B2
Authority
JP
Japan
Prior art keywords
valve
flow rate
plunger
valve body
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2101684A
Other languages
Japanese (ja)
Other versions
JPS60168975A (en
Inventor
Masaji Nakamura
Shigeru Shirai
Tomohide Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2101684A priority Critical patent/JPS60168975A/en
Publication of JPS60168975A publication Critical patent/JPS60168975A/en
Publication of JPH0313463B2 publication Critical patent/JPH0313463B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガス燃焼器具等に搭載され、湯温、
室温等の燃焼負荷信号に応じてガス流量を連続的
に制御し、所望の湯温、室温が得られるように動
作する比例制御弁を用いたガス流量制御装置に関
する。
[Detailed description of the invention] Industrial application field The present invention is installed in a gas combustion appliance, etc., and is used to control the temperature of hot water,
The present invention relates to a gas flow rate control device using a proportional control valve that continuously controls the gas flow rate according to a combustion load signal such as room temperature, and operates so as to obtain a desired hot water temperature and room temperature.

従来例の構成とその問題点 従来のこの種ガス流量制御装置を第1図に示
す。1は流体入口2、流体出口3の間に設けた弁
座4と、その弁座4に対向して設けた弁体5及び
弁体5と一体的に設けられ、流体圧を受けて動作
するダイヤフラム6を有するガスガバナ部であ
り、周知のガバナ機能を有するとともに、弁座4
と弁体5の当接部に弾性体7を設け、かつ弁体5
を閉弁方向に付勢する閉止ばね8を設けることに
より、ガス流路を遮断する閉弁機能を有してい
る。
Structure of a conventional example and its problems A conventional gas flow rate control device of this type is shown in FIG. 1 is integrally provided with a valve seat 4 provided between a fluid inlet 2 and a fluid outlet 3, a valve body 5 provided opposite to the valve seat 4, and operates in response to fluid pressure. It is a gas governor part having a diaphragm 6, has a well-known governor function, and has a valve seat 4.
An elastic body 7 is provided at the contact portion of the valve body 5 and the valve body 5.
By providing a closing spring 8 that biases the valve in the valve-closing direction, it has a valve-closing function that blocks the gas flow path.

9はコイル10とヨーク11及び両端を板ばね
13で支持されたプランジヤ14を有する電磁駆
動部であり、コイル10に通電することにより電
磁力が弁体5に作用し、連続的に流量を制御する
ことができる。つまり、湯温等の負荷信号SFを検
出し、設定信号SSとの偏差信号に応じた通電量を
コイル10に供給すれば、必要なガス流量が自動
的に制御され、所望の湯温が得られるものであ
る。
Reference numeral 9 denotes an electromagnetic drive unit having a coil 10, a yoke 11, and a plunger 14 supported at both ends by leaf springs 13. By energizing the coil 10, electromagnetic force acts on the valve body 5 to continuously control the flow rate. can do. In other words, if a load signal S F such as hot water temperature is detected and an amount of current is supplied to the coil 10 according to the deviation signal from the setting signal S S , the necessary gas flow rate is automatically controlled and the desired hot water temperature is achieved. is obtained.

この種のガス流量制御装置では、流量比例制御
機能、ガスガバナ機能、閉弁機能を有しており、
ガス制御ブロツクのコンパクト化、低コスト化が
実現できるが、以下の問題点を有している。すな
わち、閉弁機能を持たせるためには、閉止ばね8
の閉弁力を大きくする必要がある。第2図は、コ
イル10へ供給するコイル電流Iと電磁力Fe
すなわち弁体5を下方に変位させる力の関係を示
したものであり、閉止ばねの力をFsとし全開流量
となる力をFnとすると流量制御に要するコイル
電流の範囲はIs〜Inとなる。流量制御に必要な力
(Fn〜Fs)は弁座4の口径と流体出口3の圧力に
より決まるが、閉弁力Fsの1/3以下となる場合が
あり、またこの種の電磁駆動部9では電流Iの2
乗に比例した電磁力Feが発生するため流量制御
電流幅が狭くなる。したがつて第3図に示すよう
に流量制御特性のゲインが大となり、微少な電流
の変化ΔIが生じた場合でも大きな流量変化ΔQが
発生し、流量制御精度が悪くなり、またハンチン
グの原因となる。したがつて電気制御回路側で特
別の対策が必要となり、コストアツプ要因となつ
ていた。
This type of gas flow control device has a flow rate proportional control function, a gas governor function, and a valve closing function.
Although the gas control block can be made more compact and lower in cost, it has the following problems. That is, in order to provide the valve closing function, the closing spring 8
It is necessary to increase the valve closing force. FIG. 2 shows the coil current I supplied to the coil 10 and the electromagnetic force Fe ,
In other words, it shows the relationship between the forces that displace the valve body 5 downward.If the force of the closing spring is Fs , and the force that produces a fully open flow rate is Fn , the range of coil current required for flow rate control is Is to I. becomes n . The force (F n ~ F s ) required for flow rate control is determined by the diameter of the valve seat 4 and the pressure at the fluid outlet 3, but it may be less than 1/3 of the valve closing force F s , and this type of electromagnetic In the drive section 9, 2 of the current I
Since an electromagnetic force F e proportional to the power is generated, the flow rate control current width becomes narrower. Therefore, as shown in Figure 3, the gain of the flow rate control characteristics becomes large, and even if a small current change ΔI occurs, a large flow rate change ΔQ occurs, which deteriorates flow rate control accuracy and causes hunting. Become. Therefore, special measures are required on the electrical control circuit side, which is a factor in increasing costs.

また制御精度を確保するためには閉弁力Fsを弱
くする必要があり、閉止性能に不安があつた。
In addition, in order to ensure control accuracy, it was necessary to weaken the valve closing force Fs , which raised concerns about the closing performance.

発明の目的 本発明はかかる従来の問題点を解消するもの
で、流量制御特性のゲインを小さくすることによ
り流量制御精度を向上させるとともに、充分な閉
弁力が得られるガス流量制御装置を提供すること
を目的とする。
Purpose of the Invention The present invention solves these conventional problems, and provides a gas flow control device that improves flow control accuracy by reducing the gain of flow control characteristics and provides sufficient valve closing force. The purpose is to

発明の構成 この目的を達成するため本発明は、コイルと、
ヨークと、前記コイルの軸心方向に可動されるプ
ランジヤとを有する電磁駆動部を備え、弁座と、
前記弁座に対向して設けられ前記プランジヤと連
結された弁体と、前記弁座と前記弁体の当接する
位置に設けられた弾性体と、前記弁体を閉成する
方向に付勢する閉弁ばねと、前記弁体に固着され
たダイヤフラムとを有するガスガバナ部とを備
え、直流信号にデイザ信号を重畳させて前記電磁
駆動部を制御する制御回路を備え、前記電磁駆動
部の磁気回路を形成する前記ヨーク及び前記プラ
ンジヤの少なくとも一方に狭小部を設けたもので
ある。
Configuration of the Invention In order to achieve this object, the present invention includes a coil,
an electromagnetic drive unit having a yoke and a plunger that is movable in the axial direction of the coil, a valve seat;
a valve body provided opposite to the valve seat and connected to the plunger, an elastic body provided at a position where the valve seat and the valve body abut, and biasing the valve body in a direction to close it. a gas governor section having a valve closing spring and a diaphragm fixed to the valve body, a control circuit for controlling the electromagnetic drive section by superimposing a dither signal on a DC signal, and a magnetic circuit for the electromagnetic drive section; A narrow portion is provided in at least one of the yoke and the plunger forming the yoke and the plunger.

この構成により、電磁駆動部の磁気回路におい
て前記ヨーク及び前記プランジヤの少なくとも一
方に設けた狭小部における磁気飽和が生じるコイ
ル電流を調整する事ができるので、ガス流量が変
化しない閉止ばねの力に相当する電磁力が発生す
る電流付近までは電磁駆動部の磁気回路を磁気飽
和させずに電流の2乗に比例して電磁力を発生さ
せる事ができる。そして、ガス流量が変化する流
量制御電流域では、電磁駆動部に磁気飽和を生じ
させる事ができるので、電磁力は電流に正比例す
る。このため、比例制御弁の比例制御域における
ゲインを小さくすることができる。
With this configuration, it is possible to adjust the coil current that causes magnetic saturation in the narrow part provided in at least one of the yoke and the plunger in the magnetic circuit of the electromagnetic drive unit, which corresponds to the force of the closing spring that does not change the gas flow rate. It is possible to generate an electromagnetic force in proportion to the square of the current without magnetically saturating the magnetic circuit of the electromagnetic drive unit up to a current that generates an electromagnetic force. In the flow rate control current range where the gas flow rate changes, it is possible to cause magnetic saturation in the electromagnetic drive section, so the electromagnetic force is directly proportional to the current. Therefore, the gain in the proportional control region of the proportional control valve can be reduced.

実施例の説明 以下、本発明の一実施例を第4図を用いて説明
する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

第4図は流量制御装置を示し、ガスガバナ15
と電磁駆動部16から構成される比例制御弁17
と電磁駆動部16を制御する制御回路18、湯温
等の負荷の検出信号と設定信号SSを比較し、その
偏差信号を制御回路18に与える比較器19とか
ら構成されている。
Figure 4 shows the flow rate control device, with the gas governor 15
and a proportional control valve 17 consisting of an electromagnetic drive section 16.
and a control circuit 18 that controls the electromagnetic drive unit 16, and a comparator 19 that compares a detection signal of a load such as hot water temperature with a setting signal S S and provides a deviation signal thereof to the control circuit 18.

ガスガバナ部15は流体入口20、流体出口2
1の間に設けた弾性体の弁座22、弁座22に対
向して設けた弁体23と弁体23を閉弁方向に付
勢する閉止バネ24を有し、弁体23の上部には
流体入口20側の圧力を受けて作動するダイヤフ
ラム25が膜板26を介してピン27が止め輪2
7aによつて圧入固定されて気密に装着されてい
る。
The gas governor section 15 has a fluid inlet 20 and a fluid outlet 2.
1, a valve body 23 provided opposite to the valve seat 22, and a closing spring 24 that biases the valve body 23 in the valve closing direction. The diaphragm 25, which operates in response to pressure on the fluid inlet 20 side, connects the pin 27 to the retaining ring 2 through the membrane plate 26.
7a, and is press-fitted and airtightly mounted.

28は弾性体の弁座22のロツクリングであ
り、圧入により弁ボデイ29内に気密に固定され
ている。
Reference numeral 28 denotes a locking ring for the valve seat 22 made of an elastic body, and is airtightly fixed in the valve body 29 by press fitting.

30はベースキヤツプであり、パツキン31を
介して弁ボデイ29へ気密に装着されている。
Reference numeral 30 denotes a base cap, which is airtightly attached to the valve body 29 via a packing 31.

32はダイヤフラム25の背圧室25aを形成
するとともにダイヤフラム25の外周ビードを圧
接し気密に保持するダイヤフラムブラケツトであ
る。
A diaphragm bracket 32 forms a back pressure chamber 25a of the diaphragm 25 and presses the outer peripheral bead of the diaphragm 25 to maintain it airtight.

電磁駆動部16は、コイル33とヨーク34と
継鉄板35と、コイル33の中心部に貫通した摺
動パイプ36と、摺動パイプ36内を上下動可能
に設けたプランジヤ37及びプランジヤ37とピ
ン27の間に設けた非磁性体からなるスペーサ3
8を有する。プランジヤ37には、断面積を小さ
くし磁気飽和させるための切欠部39を設けてい
る。
The electromagnetic drive unit 16 includes a coil 33, a yoke 34, a yoke plate 35, a sliding pipe 36 penetrating through the center of the coil 33, a plunger 37 provided to be movable up and down within the sliding pipe 36, and the plunger 37 and a pin. Spacer 3 made of non-magnetic material provided between 27
It has 8. The plunger 37 is provided with a notch 39 for reducing the cross-sectional area and achieving magnetic saturation.

ダイヤフラムブラケツト32と摺動パイプ36
の間にはシール材40を設け、また摺動パイプの
上部には、弁振動を防止するためのダンパー作用
をはたすベント41を設けたキヤツプ42が圧入
固着されており、ダイヤフラム25の背圧室25
aはベント41のみにより大気と連通している。
Diaphragm bracket 32 and sliding pipe 36
A sealing material 40 is provided between them, and a cap 42 with a vent 41 that acts as a damper to prevent valve vibration is press-fitted into the upper part of the sliding pipe, and the back pressure chamber of the diaphragm 25 is 25
a communicates with the atmosphere only through a vent 41.

制御回路18は、湯温、室温等の燃焼負荷信号
SFと所望の設定信号SSを比較し、その偏差信号に
応じて直流信号を発生し駆動電流としてコイル3
3に供給する直流制御回路と、その直流信号にデ
イザ信号を重畳させる回路で構成されている。
The control circuit 18 receives combustion load signals such as hot water temperature and room temperature.
S F is compared with the desired setting signal S
3, and a circuit that superimposes a dither signal on the DC signal.

以上の構成において通電しない状態では、閉止
ばね24の作用により充分な閉止力で弁体23は
弾性体製の弁座22に押圧され、流体入口20側
にガス圧力が作用しても流体出口21へ流出せず
弁閉止がなされる。
In the above configuration, when no current is applied, the valve body 23 is pressed against the valve seat 22 made of an elastic body with sufficient closing force due to the action of the closing spring 24, and even if gas pressure acts on the fluid inlet 20 side, the valve body 23 is pressed against the valve seat 22 made of an elastic body. The valve is closed without any leakage.

通電されると設定信号SSと燃焼負荷信号が比較
器19で比較され、その偏差信号が制御回路18
でデイザ信号を重畳した直流電流となつてコイル
33に供給される。
When energized, the setting signal S S and the combustion load signal are compared in the comparator 19, and the difference signal is sent to the control circuit 18.
Then, the dither signal is superimposed on the DC current, which is then supplied to the coil 33.

デイザ信号は、電磁駆動部16の摺動パイプ3
6とプランジヤ37の摺動部分に発生する静止摩
擦や摺動摩擦を減少させ、駆動電流の変化に対し
てスムーズにプランジヤ37を動作させるための
ものである。本発明の実施例においては電源周波
数と同一の50Hzもしくは60Hzの正弦波交流をデイ
ザ信号として用いている。なお、デイザ信号の周
波数及び電流値は、プランジヤ37のデイザ信号
に対する応答性を考慮して実験を通して決められ
るものである。
The dither signal is sent to the sliding pipe 3 of the electromagnetic drive unit 16.
This is to reduce the static friction and sliding friction that occur in the sliding portion between the plunger 6 and the plunger 37, and to operate the plunger 37 smoothly in response to changes in drive current. In the embodiment of the present invention, a sine wave alternating current of 50 Hz or 60 Hz, which is the same as the power supply frequency, is used as the dither signal. Note that the frequency and current value of the dither signal are determined through experiments in consideration of the responsiveness of the plunger 37 to the dither signal.

制御回路18からコイル33に通電されると、
プランジヤ37は電磁力によつて下向きの力を発
生し閉止ばね24の力に抗して弁体23を開弁さ
せようとする。さらに通電すると閉止ばね24の
閉止力に電磁力が打ち勝つて弁体23を開弁し、
ガスは流体出口21を経てバーナー(図示せず)
へ流出する。ここでデイザ信号を重畳していない
場合の電磁駆動部16のコイル電流Iと電磁力
Feの関係を第5図に示す。図から明らかのよう
にプランジヤ37の一部分を他の部分より狭小と
なるように狭小部である切欠部39を設けて断面
積を小さくしているため、ある電流以上になると
切欠部39に磁気飽和が生じてくる。磁気材料の
磁気特性であるいわゆるB−H特性から明らかな
ように磁気飽和が起きると磁気ヒステリシスが大
きくなり、電磁駆動部16としての磁気ヒステリ
シスが大きくなる。
When the coil 33 is energized from the control circuit 18,
The plunger 37 generates a downward force by electromagnetic force and attempts to open the valve body 23 against the force of the closing spring 24. When the current is further applied, the electromagnetic force overcomes the closing force of the closing spring 24 and opens the valve body 23.
The gas passes through the fluid outlet 21 to a burner (not shown).
leaks to. Here, the coil current I and electromagnetic force of the electromagnetic drive section 16 when no dither signal is superimposed.
The relationship of Fe is shown in Figure 5. As is clear from the figure, the notch 39 is provided in a part of the plunger 37 to be narrower than the other part to reduce the cross-sectional area, so when the current exceeds a certain level, the notch 39 becomes magnetically saturated. will arise. As is clear from the so-called B-H characteristic, which is the magnetic property of the magnetic material, when magnetic saturation occurs, the magnetic hysteresis increases, and the magnetic hysteresis of the electromagnetic drive unit 16 increases.

第6図aは、デイザ信号を直流信号に重畳させ
た場合のコイル電流Iと電磁力Feの関係である。
この図から明らかなようにデイザ信号を重畳させ
ると、磁気飽和により大きくなつた磁気ヒステリ
シスを小さくすることができる。次に第6図bを
用いてデイザ信号の効果を説明する。図において
デイザ信号を重畳しない時の特性は実線で示す特
性アとなり、コイル電流Iを増加させる場合と減
小させる場合とで磁気ヒステリシスにより異なる
軌跡を描く。ここで、コイル電流Iを増加させる
途中でたとえば、A点に達した段階でコイル電流
Iを減小させてもとにもどすと、磁気材料のいわ
ゆるマイナーループと同様に、小さなループ状の
軌跡を描く。これは、コイル電流Iを最大電流ま
で印加してから減小させる場合においても図示す
るように同様なループ状の軌跡を描く。つまり、
一定の振幅で電流を上下させながらコイル電流I
を連続的に変化させていくと、その平均値は、ル
ープ状の軌跡の中点となり、破線で示す特性イと
なる。
FIG. 6a shows the relationship between the coil current I and the electromagnetic force Fe when a dither signal is superimposed on a DC signal.
As is clear from this figure, by superimposing the dither signal, it is possible to reduce the magnetic hysteresis that has become large due to magnetic saturation. Next, the effect of the dither signal will be explained using FIG. 6b. In the figure, the characteristic when the dither signal is not superimposed is characteristic A shown by the solid line, and different trajectories are drawn depending on the magnetic hysteresis when the coil current I is increased and when it is decreased. If, for example, the coil current I is decreased in the middle of increasing the coil current I when it reaches point A, and then returned to its original value, a small loop-shaped trajectory will be created, similar to the so-called minor loop of magnetic materials. draw. Even when the coil current I is applied to the maximum current and then decreased, a similar loop-like locus is drawn as shown in the figure. In other words,
Coil current I while increasing and lowering the current with a constant amplitude
When , is continuously changed, the average value becomes the midpoint of the loop-like trajectory, and becomes the characteristic A shown by the broken line.

すなわち、一定の振幅で電流を上下させる動作
が、デイザ信号に相当し、数十Hzの周波数で連続
的に重畳しているため、磁気ヒステリシスを減小
させる効果となつているものと考えられる。
In other words, the operation of increasing and lowering the current with a constant amplitude corresponds to a dither signal, and is continuously superimposed at a frequency of several tens of Hz, which is thought to have the effect of reducing magnetic hysteresis.

同じく、第6図aにおいて、閉止ばね24の開
弁力をFsとし、全開流量となる力をFnとすると
流量制御に要するコイル電流の範囲はIs〜Inとな
る。本発明の実施例では、電磁駆動部16のプラ
ンジヤ37に磁気飽和の生じる電流値を閉止ばね
24の閉弁力に相当する電磁力Fs付近となるよう
に切欠部39の断面積を設定している。このた
め、閉止ばね24の閉弁力に相当する電磁力Fs
発生する電流範囲までは、プランジヤ37の切欠
部39は未だ磁気飽和していない。したがつて、
この範囲では電磁力がコイル電流の2乗で増加
し、流量制御域においては、磁気飽和しているの
でコイル電流に比例した電磁力の特性が得られ
る。
Similarly, in FIG. 6a, if the valve opening force of the closing spring 24 is F s and the force for fully opening the flow rate is F n , the range of coil current required for flow rate control is I s to I n . In the embodiment of the present invention, the cross-sectional area of the notch 39 is set so that the current value at which magnetic saturation occurs in the plunger 37 of the electromagnetic drive unit 16 is near the electromagnetic force F s corresponding to the valve closing force of the closing spring 24. ing. Therefore, the notch 39 of the plunger 37 is not yet magnetically saturated up to the current range in which the electromagnetic force F s corresponding to the valve closing force of the closing spring 24 is generated. Therefore,
In this range, the electromagnetic force increases as the square of the coil current, and in the flow rate control area, magnetic saturation occurs, so that an electromagnetic force characteristic proportional to the coil current is obtained.

第7図に本実施例によるガス流量制御装置の流
量制御特性を示す。図はコイル電流Iとガス流量
Qgの関係を示しコイル電流の単位変化ΔIに対す
るガス流量の変化をΔQとすればゲインはΔQ/
ΔIで表現できる。そして、このゲインが小さい
程制御回路のばらつきや、温度特性の影響を受け
にくく、高精度の流量制御が行なえる。
FIG. 7 shows the flow rate control characteristics of the gas flow rate control device according to this embodiment. The figure shows coil current I and gas flow rate.
If ΔQ is the change in gas flow rate for a unit change in coil current ΔI, then the gain is ΔQ/
It can be expressed as ΔI. The smaller this gain is, the less affected by variations in the control circuit and temperature characteristics, and more accurate flow rate control can be performed.

以上のごとく本実施例によれば、弁座22を弾
性体で構成し、閉止ばね24で充分な閉弁力を与
えて弁閉止信頼性を向上させる。また、直流信号
にデイザ信号を重畳させるためプランジヤ37の
摺動摩擦及びプランジヤ37、ヨーク34、継鉄
板35からなる磁性材料の磁気ヒステリシスに起
因する流量制御特性のヒステリシスを減少させる
ことができる。なお、本実施例においてはプラン
ジヤ37の一部分に切欠部39を設けて狭小部と
しているが、電磁駆動部16を構成する他の材料
のヨーク34及び継鉄板35の一部分に狭小部を
設けても同様の効果が得られる。さらにダイヤフ
ラム25を設け、ガバナ機能を有するため、比例
制御弁、閉止弁、ガスガバナの3機能を集約で
き、流量制御装置全体のコンパクト化、低コスト
化を実現する。
As described above, according to this embodiment, the valve seat 22 is made of an elastic body, and the closing spring 24 provides sufficient valve closing force to improve valve closing reliability. Further, since the dither signal is superimposed on the DC signal, it is possible to reduce the hysteresis in the flow control characteristics caused by the sliding friction of the plunger 37 and the magnetic hysteresis of the magnetic material comprising the plunger 37, yoke 34, and yoke plate 35. In this embodiment, a notch 39 is provided in a portion of the plunger 37 to form a narrow portion, but a narrow portion may be provided in a portion of the yoke 34 and yoke plate 35 made of other materials that constitute the electromagnetic drive portion 16. A similar effect can be obtained. Furthermore, since the diaphragm 25 is provided and has a governor function, the three functions of a proportional control valve, a shutoff valve, and a gas governor can be integrated, and the entire flow control device can be made more compact and lower in cost.

発明の効果 以上のように本発明のガス流量制御装置によれ
ば次の効果が得られる。
Effects of the Invention As described above, the gas flow rate control device of the present invention provides the following effects.

弁座と弁体の当接部に弾性体を設けるとともに
閉止ばねにより充分な閉弁力を与えて弁閉止信頼
性を向上させるとともに、直流信号にデイザ信号
を重畳させて電磁駆動部を制御する制御回路を設
け、電磁駆動部は比例制御弁の流量比制御域が、
前記電磁駆動部の磁気飽和域となるように前記電
磁駆動部を構成する材料の一部に狭小部を設けて
いるので、コイル電流と電磁力の関係は、前記比
例制御域では比例関係となり、流量制御特性のゲ
インを小さくすることができる。また、充分な弁
閉止信頼性を保持しながら制御回路のばらつき、
温度特性に左右されず、高精度の流量制御が可能
となる。さらにデイザ信号を重畳させているため
電磁駆動部の摺動抵抗、及び磁気飽和による磁気
ヒステリシスによる流量制御特性のヒステリシス
を減少させることができる。
An elastic body is provided at the contact area between the valve seat and the valve body, and a closing spring provides sufficient valve closing force to improve valve closing reliability, and a dither signal is superimposed on the DC signal to control the electromagnetic drive unit. A control circuit is provided, and the electromagnetic drive section has a flow rate ratio control range of the proportional control valve.
Since a narrow portion is provided in a part of the material constituting the electromagnetic drive unit so as to be in the magnetic saturation range of the electromagnetic drive unit, the relationship between the coil current and the electromagnetic force is a proportional relationship in the proportional control range, The gain of flow rate control characteristics can be reduced. In addition, while maintaining sufficient valve closing reliability,
Highly accurate flow control is possible regardless of temperature characteristics. Furthermore, since the dither signal is superimposed, it is possible to reduce the sliding resistance of the electromagnetic drive unit and the hysteresis in the flow control characteristics due to magnetic hysteresis due to magnetic saturation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示すガス流量制御装置の断面
図、第2図は同装置の電磁力特性図、第3図は同
流量制御特性図、第4図は本発明の一実施例を示
すガス流量制御装置の構成図、第5図は同装置の
電磁力特性図、第6図aは同装置のデイザ信号を
重畳させた場合の電磁力特性図、第6図bはデイ
ザ信号によるヒステリシス減少効果を説明するた
めの電磁力特性図、第7図は本発明の実施例にお
ける流量制御特性図である。 15……ガスガバナ部、16……電磁駆動部、
17……比例制御弁、18……制御回路、22…
…弁座(弾性体)、23……弁体、24……閉止
ばね。
Fig. 1 is a sectional view of a conventional gas flow rate control device, Fig. 2 is an electromagnetic force characteristic diagram of the same device, Fig. 3 is a flow rate control characteristic diagram of the same, and Fig. 4 is an embodiment of the present invention. The configuration diagram of the gas flow rate control device, Fig. 5 is the electromagnetic force characteristic diagram of the same device, Fig. 6 a is the electromagnetic force characteristic diagram when the dither signal of the same device is superimposed, and Fig. 6 b is the hysteresis due to the dither signal. An electromagnetic force characteristic diagram for explaining the reduction effect, and FIG. 7 is a flow rate control characteristic diagram in an embodiment of the present invention. 15... Gas governor section, 16... Electromagnetic drive section,
17... Proportional control valve, 18... Control circuit, 22...
... Valve seat (elastic body), 23 ... Valve body, 24 ... Closing spring.

Claims (1)

【特許請求の範囲】[Claims] 1 コイルと、ヨークと、前記コイルの軸心方向
に可動するプランジヤとを有する電磁駆動部と、
弁座と、前記弁座に対向して設けられ前記プラン
ジヤと連結された弁体と、前記弁座と前記弁体の
当接する位置に設けられた弾性体と、前記弁体を
閉成する方向に付勢する閉弁ばねと、前記弁体に
固着されたダイヤフラムとを有するガスガバナ部
と、直流信号にデイザ信号を重畳させて前記電磁
駆動部を制御する制御回路を備え、前記電磁駆動
部の磁気回路を形成する前記ヨークまたは前記プ
ランジヤの少なくとも一方に狭小部を備えたガス
流量制御装置。
1. An electromagnetic drive unit having a coil, a yoke, and a plunger movable in the axial direction of the coil,
a valve seat, a valve body provided opposite to the valve seat and connected to the plunger, an elastic body provided at a position where the valve seat and the valve body abut, and a direction for closing the valve body. a gas governor section having a valve-closing spring that biases the valve, and a diaphragm fixed to the valve body; and a control circuit that controls the electromagnetic drive section by superimposing a dither signal on a DC signal. A gas flow control device comprising a narrow portion in at least one of the yoke and the plunger forming a magnetic circuit.
JP2101684A 1984-02-07 1984-02-07 Gas flow-rate controller Granted JPS60168975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101684A JPS60168975A (en) 1984-02-07 1984-02-07 Gas flow-rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101684A JPS60168975A (en) 1984-02-07 1984-02-07 Gas flow-rate controller

Publications (2)

Publication Number Publication Date
JPS60168975A JPS60168975A (en) 1985-09-02
JPH0313463B2 true JPH0313463B2 (en) 1991-02-22

Family

ID=12043244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101684A Granted JPS60168975A (en) 1984-02-07 1984-02-07 Gas flow-rate controller

Country Status (1)

Country Link
JP (1) JPS60168975A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186083A (en) * 1987-01-29 1988-08-01 Matsushita Electric Ind Co Ltd Gas proportional valve device with stopping function
JP2002222710A (en) * 2001-01-26 2002-08-09 Denso Corp Electromagnetic drive device and flow rate control device using the same
JP5878403B2 (en) * 2012-03-22 2016-03-08 日立オートモティブシステムズ株式会社 Variable displacement pump
JP6268012B2 (en) * 2014-03-19 2018-01-24 株式会社エー・シー・イー Control method of proportional solenoid valve

Also Published As

Publication number Publication date
JPS60168975A (en) 1985-09-02

Similar Documents

Publication Publication Date Title
US5215115A (en) Gas valve capable of modulating or on/off operation
US4522371A (en) Proportional solenoid valve
US4875499A (en) Proportional solenoid valve
US4715396A (en) Proportional solenoid valve
JPS5847338Y2 (en) Solenoid fluid pressure control valve
US4534375A (en) Proportional solenoid valve
US3621862A (en) Fluid metering device
JPH0219845Y2 (en)
JPH0313463B2 (en)
EP0077599B1 (en) Proportional solenoid valve
EP0048440A1 (en) Flow control valve
US4947887A (en) Proportional solenoid valve
US3655163A (en) Anti-hunting diaphragm valve
JP3070222B2 (en) Flow control device
JPH0138993B2 (en)
JP3074709B2 (en) Flow control valve
US11499726B2 (en) Coaxial gas valve assemblies including electronically controlled solenoids
JPS6020631B2 (en) Solenoid proportional control valve
JP2822729B2 (en) Hot water mixing equipment
JPS6018704Y2 (en) proportional control valve
JPH07113432B2 (en) Proportional control valve for gas
JP2776578B2 (en) Flow control valve with closing function
JPS6225908B2 (en)
JPH0240154B2 (en) ATSURYOKUHIREISEIGYOBEN
JPS5850378A (en) Proportional control valve