JPH0240154B2 - ATSURYOKUHIREISEIGYOBEN - Google Patents

ATSURYOKUHIREISEIGYOBEN

Info

Publication number
JPH0240154B2
JPH0240154B2 JP24495984A JP24495984A JPH0240154B2 JP H0240154 B2 JPH0240154 B2 JP H0240154B2 JP 24495984 A JP24495984 A JP 24495984A JP 24495984 A JP24495984 A JP 24495984A JP H0240154 B2 JPH0240154 B2 JP H0240154B2
Authority
JP
Japan
Prior art keywords
valve body
valve
force
governor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24495984A
Other languages
Japanese (ja)
Other versions
JPS61124786A (en
Inventor
Tomohide Matsumoto
Shigeru Shirai
Masaji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24495984A priority Critical patent/JPH0240154B2/en
Publication of JPS61124786A publication Critical patent/JPS61124786A/en
Publication of JPH0240154B2 publication Critical patent/JPH0240154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガス燃焼器具等に用いられ、燃焼負
荷信号、すなわち湯温、室温等に応じて連続的に
出口側ガス圧力(流量)を制御し、所望の温度を
得るための圧力比例制御弁に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is used in gas combustion appliances, etc., and continuously controls the outlet side gas pressure (flow rate) according to the combustion load signal, that is, the hot water temperature, room temperature, etc. , relates to a pressure proportional control valve for obtaining a desired temperature.

従来の技術 燃料ガスの供給圧は変動するため、この変動を
吸収するガスガバナが必要である。このため、ガ
スガバナの設定力を電磁力によつて可変し、比例
制御とガバナ機能を併有したものがある。(例え
ば実開昭55−126072号公報、実公昭59−134175号
公報) 従来のこの種圧力比例制御を第4図及び第5図
に示す。第4図において1は弁体2、弁座3、弁
体2に設けられたダイヤフラム4、弁体2の自重
をキヤンセルするために設けたスプリング5を有
するガバナ部、6は永久磁石7、センターポール
8、ヨーク9及びコイル10が巻回され、センタ
ーポール8に上下動可能に設けられたコイルボビ
ン11を有する駆動部であり、コイル10への通
電によりフレミングの左手の法則にしたがつてコ
イルボビン11を下方に変位させる電磁力が発生
し、ガバナ設定力が可変される。この駆動部6に
よれば、通電量に比例した電磁力が得られるとと
もに、通電量一定時においてコイルボビン11が
変位しても電磁力が変化しないという特徴があ
る。
BACKGROUND OF THE INVENTION Since the supply pressure of fuel gas fluctuates, a gas governor is required to absorb this fluctuation. For this reason, some gas governors have a proportional control function and a governor function by varying the set force of the gas governor using electromagnetic force. (For example, Japanese Utility Model Publication No. 55-126072, Japanese Utility Model Publication No. 59-134175) Conventional pressure proportional control of this type is shown in FIGS. 4 and 5. In FIG. 4, reference numeral 1 denotes a governor section including a valve body 2, a valve seat 3, a diaphragm 4 provided on the valve body 2, and a spring 5 provided to cancel the self-weight of the valve body 2, 6 a permanent magnet 7, a center It is a drive unit having a coil bobbin 11 on which a pole 8, a yoke 9, and a coil 10 are wound, and which is provided on the center pole 8 so as to be able to move up and down.By energizing the coil 10, the coil bobbin 11 is moved according to Fleming's left hand rule. An electromagnetic force is generated that displaces the governor downward, and the governor setting force is varied. This drive unit 6 is characterized in that an electromagnetic force proportional to the amount of energization can be obtained, and that the electromagnetic force does not change even if the coil bobbin 11 is displaced when the amount of energization is constant.

第5図は、他の従来例を示し、磁性体としての
永久磁石12を備えた弁体13と、永久磁石12
と近接する位置に配設された固定鉄心14を有
し、永久磁石12とは反発する方向の磁力を発生
するコイル15と、流体入口16の圧力を受けて
弁体13を閉弁付勢するダイヤフラム17とを備
え、コイル15に印加する電流を制御することに
より電磁反発力を制御しガバナ設定力を可変する
ごとく構成されている。18は弁体13を閉弁付
勢する巻ばねである。
FIG. 5 shows another conventional example, in which a valve body 13 equipped with a permanent magnet 12 as a magnetic body, and a valve body 13 equipped with a permanent magnet 12 as a magnetic body.
It has a fixed iron core 14 disposed close to the permanent magnet 12, a coil 15 that generates a magnetic force in a direction repelling the permanent magnet 12, and a coil 15 that biases the valve body 13 to close in response to pressure from the fluid inlet 16. A diaphragm 17 is provided, and by controlling the current applied to the coil 15, the electromagnetic repulsion force is controlled and the governor setting force is varied. Reference numeral 18 denotes a coiled spring that biases the valve body 13 to close.

この駆動部6′では、コイル15への通電量一
定時において弁体13、すなわち永久磁石12が
変位すると、永久磁石12と固定鉄心14間のエ
アーギヤツプの2乗に比例して電磁力が変化す
る。
In this drive unit 6', when the valve body 13, that is, the permanent magnet 12, is displaced while the amount of current flowing through the coil 15 is constant, the electromagnetic force changes in proportion to the square of the air gap between the permanent magnet 12 and the fixed iron core 14. .

これらの従来例では、ダイヤフラム4,17及
びスプリング5、巻ばね18の影響が圧力比例制
御弁の基本性能の一つであるガバナ特性に出てし
まう不具合があつた。この点について第6図〜第
8図により説明する。
These conventional examples have a problem in that the influence of the diaphragms 4, 17, spring 5, and coil spring 18 appears on the governor characteristic, which is one of the basic performances of the pressure proportional control valve. This point will be explained with reference to FIGS. 6 to 8.

第6図はコイル10及び15に所定の通電量を
印加した場合における弁体2及び13の変位量
XV、つり弁開度とを電磁力下nの関係及び弁体変
位量XVとダイヤフラム4及び17とスプリング
5、巻ばね18の合計たわみ力Fkの関係を示し
た特性図である。前記したように第4図従来例で
はAの特性に示したように弁体2が変位しても電
磁力Fnは変化せず一定であり、第5図従来例で
はBに示したごとく、弁体13が変位すると永久
磁石12と固定鉄心14間のエアーギヤツプが大
きくなるため、弁体13の変位にともない電磁力
Fnが減少する。
Figure 6 shows the amount of displacement of the valve bodies 2 and 13 when a predetermined amount of current is applied to the coils 10 and 15.
FIG. 12 is a characteristic diagram showing the relationship between X V and the suspension valve opening under electromagnetic force n , and the relationship between the valve body displacement amount X V and the total deflection force F k of the diaphragms 4 and 17, the spring 5, and the coil spring 18. As mentioned above, in the conventional example in FIG. 4, the electromagnetic force F n does not change and remains constant even if the valve body 2 is displaced, as shown in the characteristic A, and in the conventional example in FIG. 5, as shown in B, When the valve body 13 displaces, the air gap between the permanent magnet 12 and the fixed iron core 14 increases, so as the valve body 13 displaces, the electromagnetic force increases.
F n decreases.

第7図は、弁体変位量Xvとガバナ設定力Fg
すなわち実質的に弁体2,13に作用する力の関
係を示した特性図であり、ここでは電磁力Fn
たわみ力Fkの差を示している。第7図からわか
るように第4図従来例ではA′に示すようにダイ
ヤフラム4とスプリング5のたわみ力Fkがガバ
ナ設定力Fgの変化に直接影響し、第5図従来例
ではB′のようにたわみ力Fkと電磁力Fnの変化の
両方がガバナ設定力Fgに影響する。
Figure 7 shows the amount of displacement of the valve body X v and the governor setting force F g ,
That is, it is a characteristic diagram showing the relationship between the forces that substantially act on the valve bodies 2 and 13, and here shows the difference between the electromagnetic force F n and the deflection force F k . As can be seen from Fig. 7, in the conventional example in Fig. 4, the deflection force F k of the diaphragm 4 and spring 5 directly influences the change in the governor setting force F g , as shown at A', and in the conventional example in Fig. 5, B' Both the deflection force F k and the change in electromagnetic force F n affect the governor setting force F g as shown in FIG.

第8図は流体入口側の一次圧P1と流体出口側
の二次圧P2の関係を示すガバナ特性である。一
次圧P1の変化にともない自動的に弁開度が調節
されるわけであるが、一次圧P1が増加すると二
次圧P2が増加し、弁体2,13を上方向に変位
させ弁体変位量Xvが小さくなり、したがつてガ
バナ設定力Fgが大きくなり、逆に一次圧P1が減
少すると弁体変位量Xvが大きくなり、ガバナ設
定力Fgが小さくなる。したがつてA″及びB″に示
したように理想的な特性Cに対して増加方向の特
性となる。この傾向は、大きな弁開度が必要とな
る低発熱量のガス燃料用として使用する場合特に
影響が大である。
FIG. 8 shows governor characteristics showing the relationship between the primary pressure P 1 on the fluid inlet side and the secondary pressure P 2 on the fluid outlet side. The valve opening degree is automatically adjusted as the primary pressure P 1 changes, but when the primary pressure P 1 increases, the secondary pressure P 2 increases, displacing the valve bodies 2 and 13 upward. As the valve body displacement amount Xv decreases, the governor setting force Fg increases, and conversely, when the primary pressure P1 decreases, the valve body displacement amount Xv increases and the governor setting force Fg decreases. Therefore, as shown in A'' and B'', the characteristic increases with respect to the ideal characteristic C. This tendency has a particularly large effect when used as a low calorific value gas fuel that requires a large valve opening.

第4図従来例においてガバナ特性を良好にする
ためにはダイヤフラム4及びスプリング5のバネ
定数を限りなく小さくすればよいが、実用には限
度があり、またスプリング5での閉弁力を大きく
とりたい場合、小さなバネ定数で大きな設定力を
得るためスプリング5の大型化につながる。
Fig. 4 In order to improve the governor characteristics in the conventional example, the spring constants of the diaphragm 4 and the spring 5 can be made as small as possible, but there is a limit to practical use, and the valve closing force of the spring 5 must be made large. In this case, a large setting force can be obtained with a small spring constant, which leads to an increase in the size of the spring 5.

また第5図従来例では永久磁石12と固定鉄心
14間のエアーギヤツプを大きくし、電磁力Fn
の変化を小さくすれば改善できるが、エアーギヤ
ツプ間の磁束密度が低下するため、コイル15の
大型化につながる。
In addition, in the conventional example shown in FIG. 5, the air gap between the permanent magnet 12 and the fixed iron core 14 is increased, and the electromagnetic force F n
Although this can be improved by reducing the change in , the magnetic flux density between the air gaps decreases, leading to an increase in the size of the coil 15.

発明が解決しようとする問題点 以上述べたように従来例ではダイヤフラム、ス
プリング、及び巻ばねが圧力比例制御弁のガバナ
特性に悪影響を与えてしまう問題点を有してい
た。
Problems to be Solved by the Invention As described above, the conventional example has a problem in that the diaphragm, spring, and coil spring adversely affect the governor characteristics of the pressure proportional control valve.

問題点を解決するための手段 本発明は上記従来の問題点に鑑みてなされたも
のであり、比例制御が行えるとともに良好なガバ
ナ特性が得られ、かつ駆動部の小型化を図ること
を目的とする。
Means for Solving the Problems The present invention has been made in view of the above-mentioned conventional problems, and aims to perform proportional control, obtain good governor characteristics, and downsize the drive section. do.

この目的を達成するための本発明による圧力比
例制御弁は、流体入口、流体出口の間に設けた弁
座と、弁体と、その弁体と一体に設けられた流体
圧を受けて動作するダイヤフラムと、前記弁体を
閉弁付勢する付勢要素とから構成されるガバナ部
と、コイルと、固定磁性体と、前記コイルへの通
電により発生する電磁力により前記弁体を動作さ
せるプランジヤとから構成されるプランジヤ方式
の駆動部とからなり、前記プランジヤの変位に対
する電磁力の変化率kfnと、前記ダイヤフラムと
付勢要素の弁体変位に対するたわみ力の変化率
kεをガバナ設定力が一定となるよう略一致させ
て構成したものである。
The pressure proportional control valve according to the present invention for achieving this purpose operates in response to a valve seat provided between a fluid inlet and a fluid outlet, a valve body, and a fluid pressure provided integrally with the valve body. A governor portion comprising a diaphragm, a biasing element that biases the valve body to close, a coil, a fixed magnetic body, and a plunger that operates the valve body by an electromagnetic force generated by energizing the coil. a plunger-type drive unit consisting of: a rate of change of electromagnetic force k fn with respect to the displacement of the plunger; and a rate of change of the deflection force of the diaphragm and biasing element with respect to the displacement of the valve body.
The configuration is such that kε is approximately matched so that the governor setting force is constant.

作 用 この構成により、一次圧(流体供給圧)が変化
してプランジヤのコイル及び固定磁性体との相対
位置が変化し電磁力が変化した場合、その時の電
磁力の変化率kfnと、ダイヤフラム及び付勢要素
の弁体(プランジヤ)の変位に対するたわみ力の
変化率kεが略等しくしてあるため電磁力の変化
が吸収されガバナ設定力を一定なものにできる。
また、電磁力の変化がガバナ特性に影響しないた
め、駆動部の磁気効率が高められ、小さな起磁力
で制御が行える。したがつて駆動部の小型化が図
れる。
Effect With this configuration, when the primary pressure (fluid supply pressure) changes and the relative position of the plunger with the coil and the fixed magnetic body changes and the electromagnetic force changes, the rate of change of the electromagnetic force at that time k fn and the diaphragm Since the rate of change kε of the deflection force of the biasing element relative to the displacement of the valve body (plunger) is approximately equal, changes in electromagnetic force are absorbed and the governor setting force can be kept constant.
Furthermore, since changes in electromagnetic force do not affect the governor characteristics, the magnetic efficiency of the drive section is increased and control can be performed with a small magnetomotive force. Therefore, the drive unit can be made smaller.

実施例 以下本発明の実施例を図面を用いて詳細に説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明による圧力比例制御弁の断面
構造図を示す。19はガバナ部であり流体入口2
0と流体出口21の間に設けた弁座22を設けた
弁ボデイ23、流体入口20側の圧力を受けて動
作するダイヤフラム24が上下に設けた膜板25
a,25bとともにピン26及びプツシユナツト
27により固定装着された弁体28、弁体28に
嵌挿されるとともにリングホルダ29により狭持
され弁座22に当接して弁を開止する弾性体製の
シールリング30及び弁体28を閉弁方向に付勢
する付勢要素31とベースキヤツプ32を有す
る。
FIG. 1 shows a cross-sectional structural diagram of a pressure proportional control valve according to the present invention. 19 is a governor section and fluid inlet 2
A valve body 23 with a valve seat 22 provided between the valve seat 22 and the fluid outlet 21, and a membrane plate 25 with a diaphragm 24 provided above and below that operates in response to pressure on the fluid inlet 20 side.
a and 25b, a valve body 28 fixedly attached by a pin 26 and a push nut 27, and a seal made of an elastic material that is fitted into the valve body 28 and held by a ring holder 29 and contacts the valve seat 22 to open the valve. It has a biasing element 31 and a base cap 32 that bias the ring 30 and the valve body 28 in the valve closing direction.

33は駆動部であり、コイル34とコイル34
を包囲するごとく設けたヨーク35及び継鉄板3
6からなる固定磁性体37、及びコイル34の中
央部に貫通して設けた摺動パイプ38内を上下動
自在に設けたプランジヤ39を有し、コイル34
に通電することにより電磁力が発生し、プランジ
ヤ39は下方に変位して弁体28を変位させ、流
体出口21の圧力(流量)を制御する。
33 is a drive unit, which includes a coil 34 and a coil 34
The yoke 35 and the yoke plate 3 are provided to surround the
6, and a plunger 39 that is movable up and down in a sliding pipe 38 that penetrates through the center of the coil 34.
When energized, an electromagnetic force is generated, and the plunger 39 is displaced downward to displace the valve body 28 and control the pressure (flow rate) of the fluid outlet 21.

以上の構成において非通電時には付勢要素31
によつて弁体28は閉弁力を受け、シールリング
30が弁座22に押し付けられて流体の流通を遮
断する。次にコイル34を通電すると電磁力がプ
ランジヤ39に作用して弁体28を下方に変位さ
せ、コイル34への通電量に応じて流体出口21
側の圧力が制御され、また周知のガバナ機能を有
する。つまり、この種圧力制御弁に必要な比例制
御、流体遮断、ガバナの3機能を有する多機能型
圧力制御弁となる。
In the above configuration, when the current is not energized, the biasing element 31
As a result, the valve body 28 receives a valve closing force, and the seal ring 30 is pressed against the valve seat 22 to cut off fluid flow. Next, when the coil 34 is energized, electromagnetic force acts on the plunger 39 to displace the valve body 28 downward, and the fluid outlet 21
side pressure is controlled and also has a well-known governor function. In other words, it is a multifunctional pressure control valve that has the three functions necessary for this type of pressure control valve: proportional control, fluid cutoff, and governor.

第2図は、弁体28の変位量Xvとコイル34
に所定の通電量を印加した時の電磁力Fnの関係
及びダイヤフラム24と付勢要素31の弁体28
の変位Xvに対するトータル的なたわみ力Fkの関
係を示したものである。ここでこの種プランジヤ
タイプの駆動部33では、コイル34によりプラ
ンジヤ39を引込むソレノイド吸引力とプランジ
ヤ39の上面39aとヨーク上面35b及びプラ
ンジヤ39の下面39bと継鉄板36間に作用す
る吸引力の合力がプランジヤ39を下方に変位さ
せる電磁力Fnとして作用する。ソレノイド吸引
力はプランジヤ39の中心がコイル34の高さ方
向の中央部に位置する時に最も力が大きく、また
後者の吸引力はエアーギヤツプの2乗に比例して
エアーギヤツプが小さくなるほど大きくなる。そ
の結果、起磁力すなわちコイル34への通電量を
一定にした状態でプランジヤ39が変位すると第
2図に示したごとく電磁力Fnは右上りの特性と
なる。本実施例では弁体28が閉止点から全開
maxまで変位する変位量Xに対する電磁力Fn
変化量△Fnの比率kfn=△Fn/Xと、たわみ力Fk
の変化量△Fkの比率kε=△Fk/Xを略等しく設
定している。したがつて第3図に示すように流体
出口21側の圧力を一定に保つためのガバナ設定
力Fg、つまり電磁力Fmとたわみ力Fkの差は弁
体変位量Xvが変化してもほぼ一定なものにでき
る。その結果、第8図Cの特性に示したように二
次圧P2の変動のない理想的なガバナ特性が得ら
れる。
Figure 2 shows the amount of displacement X v of the valve body 28 and the coil 34.
Relationship between electromagnetic force F n when a predetermined amount of current is applied to diaphragm 24 and valve body 28 of biasing element 31
This figure shows the relationship between the total deflection force F k and the displacement X v of . Here, in this type of plunger type drive unit 33, the resultant force of the solenoid suction force that pulls in the plunger 39 by the coil 34 and the suction force that acts between the upper surface 39a of the plunger 39 and the yoke upper surface 35b, and between the lower surface 39b of the plunger 39 and the yoke plate 36. acts as an electromagnetic force F n that displaces the plunger 39 downward. The solenoid suction force is greatest when the center of the plunger 39 is located at the center in the height direction of the coil 34, and the latter suction force increases as the air gap becomes smaller in proportion to the square of the air gap. As a result, when the plunger 39 is displaced while the magnetomotive force, that is, the amount of current applied to the coil 34 is kept constant, the electromagnetic force F n has an upward-sloping characteristic as shown in FIG. In this embodiment, the valve body 28 is fully opened from the closing point.
The ratio of the amount of change △F n in electromagnetic force F n to the amount of displacement
The ratio kε=ΔF k /X of the amount of change ΔF k is set approximately equal. Therefore, as shown in Fig. 3, the governor setting force Fg for keeping the pressure on the fluid outlet 21 side constant, that is, the difference between the electromagnetic force Fm and the deflection force Fk, remains approximately the same even if the valve body displacement Xv changes. It can be made constant. As a result, ideal governor characteristics without fluctuations in the secondary pressure P2 can be obtained, as shown in the characteristics of FIG. 8C.

以上のごとく本実施例によれば、弁体変位Xv
の変位に対する電磁力Fnの変化率kfnとたわみ力
Fkの変化率k〓を略一致させる(具体的には付勢要
素31のバネ定数を調整する)のみの簡単な操作
でガバナ特性を良好なものにできる。また、一般
的にこの種プランジヤ式の電磁駆動部では磁気回
路における磁気効率を高めるほどプランジヤ39
の変位に対する電磁力Fmの変化は大きくなるが
本実施例では電磁力Fnの変化を付勢要素31の
バネ定数を利用してキヤンセルするため大きな電
磁力変化を有する駆動部33を使用できる。この
ことはプランジヤ39の上面39aとヨーク35
の上面35a間、及びプランジヤ39の下面39
bと継鉄板36間のエアーギヤツプを小さくでき
ることにつながり、ヨーク35、継鉄板36、プ
ランジヤ39で形成される磁気回路の磁気抵抗が
低減できる。したがつて駆動部33の小型化、低
コスト化が図れる。さらに弁座22と弁体28間
に弾性体製のシールリング30を設けて閉止を行
うため、比例制御、流体遮断、ガバナ機能を有す
る多機能な圧力比例制御弁を提供できる。特に流
体遮断機能を付加する場合、付勢要素31の設定
力を大きくする必要があるが、本実施例によれ
ば、この種流体遮断機能を有する場合においても
付勢要素31のばね定数を大きくできるため、良
好なガバナ特性が得られるとともに、付勢要素3
1をコンパクトなものにできる。
As described above, according to this embodiment, the valve body displacement X v
The rate of change of the electromagnetic force F n with respect to the displacement k fn and the deflection force
Good governor characteristics can be obtained by simply making the rate of change k of Fk approximately the same (specifically, adjusting the spring constant of the biasing element 31). In general, in this type of plunger type electromagnetic drive unit, the higher the magnetic efficiency in the magnetic circuit, the more the plunger 39
Although the change in the electromagnetic force Fm with respect to the displacement becomes large, in this embodiment, the change in the electromagnetic force Fn is canceled by using the spring constant of the biasing element 31, so that the drive section 33 having a large change in electromagnetic force can be used. This means that the upper surface 39a of the plunger 39 and the yoke 35
Between the upper surfaces 35a and the lower surface 39 of the plunger 39
The air gap between the yoke 35 and the yoke plate 36 can be reduced, and the magnetic resistance of the magnetic circuit formed by the yoke 35, the yoke plate 36, and the plunger 39 can be reduced. Therefore, the drive unit 33 can be made smaller and lower in cost. Further, since a seal ring 30 made of an elastic body is provided between the valve seat 22 and the valve body 28 for closing, it is possible to provide a multifunctional pressure proportional control valve having proportional control, fluid cutoff, and governor functions. In particular, when adding a fluid cutoff function, it is necessary to increase the setting force of the biasing element 31. However, according to this embodiment, even when this type of fluid cutoff function is provided, the spring constant of the biasing element 31 can be increased. As a result, good governor characteristics can be obtained, and the biasing element 3
1 can be made compact.

なお燃料ガスの制御を行う場合、ガス種によつ
て発熱量が異なり、制御二次圧P2及び弁開度Xv
が異なるため、必然的にコイル34への制御電流
及びFnの変化率kfnが異なつてくるが、各ガス種
に応じて付勢要素31のバネ定数を変更すればよ
い。また、若干のガバナ特性の変化幅が許容され
る場合は、制御二次圧P2が中間的な値であるガ
ス種、たとえば13A等の天然ガスグループを制
御する場合の変化率kfnとたわみ力の変化率k〓を
略一致させておけば、燃料ガス共通で使用でき
る。
When controlling fuel gas, the calorific value differs depending on the gas type, and the control secondary pressure P 2 and valve opening X v
Since the values are different, the control current to the coil 34 and the rate of change k fn of F n will inevitably be different, but the spring constant of the biasing element 31 may be changed depending on each gas type. In addition, if a slight range of change in governor characteristics is allowed, the rate of change k fn and deflection when controlling a gas type where the control secondary pressure P 2 is an intermediate value, for example, a natural gas group such as 13A, If the rate of change of force k〓 is approximately the same, fuel gas can be used in common.

発明の効果 以上詳述したように本発明によれば以下の効果
が得られる。
Effects of the Invention As detailed above, according to the present invention, the following effects can be obtained.

(1) プランジヤタイプの駆動部を用いるととも
に、弁体変位量Xvに対する電磁力の変化率kfn
と、ダイヤフラムと付勢要素のたわみ力の変化
率k〓を略一致させる(具体的には付勢要素のバ
ネ定数を調整する)のみの簡単な操作でガバナ
特性を良好にできる。このことは特に空燃比制
御等高精度な流量制御を行う場合に好適であ
る。
(1) Using a plunger type drive unit and the rate of change of electromagnetic force k fn with respect to the amount of displacement of the valve body X v
The governor characteristics can be improved by simply making the rate of change k of the deflection force of the diaphragm and the biasing element approximately equal (specifically, adjusting the spring constant of the biasing element). This is particularly suitable when performing highly accurate flow rate control such as air-fuel ratio control.

(2) 電磁力Fnの変化を付勢要素によつて吸収す
るため、電磁力変化の大きい駆動部が使用でき
る。したがつて電磁駆動部の磁気効率を高める
ことができ、駆動部の小型化、低コスト化が実
現できる。
(2) Since changes in electromagnetic force F n are absorbed by the biasing element, a drive unit with large changes in electromagnetic force can be used. Therefore, the magnetic efficiency of the electromagnetic drive section can be increased, and the drive section can be made smaller and lower in cost.

(3) 閉止機能を付加する場合等、閉弁力を大きく
する場合においてもガバナ特性を悪化させるこ
とがない。
(3) Even when the valve closing force is increased, such as when a closing function is added, the governor characteristics are not deteriorated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す圧力比例制御
弁の断面図、第2図は同弁体変位量と電磁力の変
化を示す特性図、第3図は同弁体変位量とガバナ
設定力の関係を示す特性図、第4図は従来例を示
す圧力比例制御弁の断面図、第5図は他の従来例
を示す圧力比例制御弁の断面図、第6図は従来例
における弁体変位量と電磁力の関係図、第7図は
同弁体変位量とガバナ設定力の関係図、第8図は
ガバナ特性図である。 19……ガバナ部、20……流体入口、21…
…流体出口、22……弁座、24……ダイヤフラ
ム、28……弁体、31……付勢要素、33……
駆動部、34……コイル、37……固定磁性体、
39……プランジヤ。
Fig. 1 is a sectional view of a pressure proportional control valve showing an embodiment of the present invention, Fig. 2 is a characteristic diagram showing changes in the valve body displacement amount and electromagnetic force, and Fig. 3 is a characteristic diagram showing the valve body displacement amount and governor. A characteristic diagram showing the relationship between setting forces. Fig. 4 is a cross-sectional view of a pressure proportional control valve showing a conventional example. Fig. 5 is a cross-sectional view of a pressure proportional control valve showing another conventional example. Fig. 6 is a cross-sectional view of a pressure proportional control valve showing another conventional example. FIG. 7 is a diagram showing the relationship between the displacement amount of the valve body and the electromagnetic force, FIG. 7 is a diagram showing the relationship between the displacement amount of the valve body and the governor setting force, and FIG. 8 is a diagram showing the governor characteristics. 19...Governor part, 20...Fluid inlet, 21...
...fluid outlet, 22 ... valve seat, 24 ... diaphragm, 28 ... valve body, 31 ... biasing element, 33 ...
Drive unit, 34... Coil, 37... Fixed magnetic body,
39... Plungiya.

Claims (1)

【特許請求の範囲】[Claims] 1 流体入口と流体出口の間に設けた弁座と、弁
座に対向して設けた弁体と、前記弁体に一体に設
けられ流体圧を受けて動作するダイヤフラムと、
前記弁体を閉弁方向に付勢する付勢要素とから構
成されるガバナ部と、コイルと、固定磁性体と、
前記コイルへの通電により発生する電磁力により
前記弁体を動作させるプランジヤとから構成され
る駆動部とからなり、前記プランジヤの変位に対
する電磁力の変化率kfnと前記ダイヤフラムと付
勢要素の弁体変位に対するたわみ力の変化率k〓を
ガバナ設定力が一定となるよう略一致させた圧力
比例制御弁。
1. A valve seat provided between a fluid inlet and a fluid outlet, a valve body provided opposite to the valve seat, and a diaphragm that is integrally provided with the valve body and operates in response to fluid pressure.
a governor section including a biasing element that biases the valve body in a valve closing direction; a coil; and a fixed magnetic body;
and a plunger that operates the valve body by the electromagnetic force generated by energizing the coil, and the valve body has a change rate k fn of the electromagnetic force with respect to the displacement of the plunger, the diaphragm, and the valve biasing element. A pressure proportional control valve that approximately matches the rate of change k of deflection force with respect to body displacement so that the governor setting force remains constant.
JP24495984A 1984-11-20 1984-11-20 ATSURYOKUHIREISEIGYOBEN Expired - Lifetime JPH0240154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24495984A JPH0240154B2 (en) 1984-11-20 1984-11-20 ATSURYOKUHIREISEIGYOBEN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24495984A JPH0240154B2 (en) 1984-11-20 1984-11-20 ATSURYOKUHIREISEIGYOBEN

Publications (2)

Publication Number Publication Date
JPS61124786A JPS61124786A (en) 1986-06-12
JPH0240154B2 true JPH0240154B2 (en) 1990-09-10

Family

ID=17126494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24495984A Expired - Lifetime JPH0240154B2 (en) 1984-11-20 1984-11-20 ATSURYOKUHIREISEIGYOBEN

Country Status (1)

Country Link
JP (1) JPH0240154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522931U (en) * 1991-09-09 1993-03-26 デルタ工業株式会社 Key interlock device for automobile automatic lever

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4209281B2 (en) * 2003-07-11 2009-01-14 日信工業株式会社 Normally closed solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522931U (en) * 1991-09-09 1993-03-26 デルタ工業株式会社 Key interlock device for automobile automatic lever

Also Published As

Publication number Publication date
JPS61124786A (en) 1986-06-12

Similar Documents

Publication Publication Date Title
US5215115A (en) Gas valve capable of modulating or on/off operation
US3989063A (en) Electromagnetic 3-way valve
US4725039A (en) Self-pressure regulating proportional valve
US5020771A (en) Proportional control valve
JPH0549871B2 (en)
US4875499A (en) Proportional solenoid valve
US4793372A (en) Electronic vacuum regulator (EVR) with bi-metallic armature disk temperature compensator
JPH0219845Y2 (en)
JPH0221668Y2 (en)
JPH0240154B2 (en) ATSURYOKUHIREISEIGYOBEN
EP0077599B1 (en) Proportional solenoid valve
JPH02163425A (en) Electric and pneumatic regulator
JP2674732B2 (en) Flow controller for gas
JPH0313463B2 (en)
US4850384A (en) Electric vacuum regulator
JPH07113432B2 (en) Proportional control valve for gas
JP2765733B2 (en) Flow control valve with closing function
JPH0330755B2 (en)
JPS62162315A (en) Solenoid control device
GB2170929A (en) Gas pressure regulator
JPS599283Y2 (en) control valve
JPS6116453Y2 (en)
JPS6126690Y2 (en)
JPH0743567Y2 (en) Gas proportional control valve
JPH0435650Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees