JPH02210761A - Manufacture of phosphoric acid fuel cell - Google Patents

Manufacture of phosphoric acid fuel cell

Info

Publication number
JPH02210761A
JPH02210761A JP1029233A JP2923389A JPH02210761A JP H02210761 A JPH02210761 A JP H02210761A JP 1029233 A JP1029233 A JP 1029233A JP 2923389 A JP2923389 A JP 2923389A JP H02210761 A JPH02210761 A JP H02210761A
Authority
JP
Japan
Prior art keywords
catalyst
carbon particles
platinum
phosphoric acid
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1029233A
Other languages
Japanese (ja)
Inventor
Hirobumi Enomoto
博文 榎本
Naohiko Sado
佐渡 直彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1029233A priority Critical patent/JPH02210761A/en
Publication of JPH02210761A publication Critical patent/JPH02210761A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase uniformity in performance by classifying carbon particles and by supporting platinum in each classified fraction in the same specified rate to form a catalyst. CONSTITUTION:When an electrode catalyst layer 6 is formed by bonding a catalyst formed by supporting a noble metal 3 on carbon particles with fluororesin, the carbon particles are classified, and platinum is supported in each classified fraction in the same specified rate to form a catalyst 4. Since each fraction has uniform particle size and specific surface area, the noble metal 3 is uniformly supported at the same rate on the whole carbon particles. By forming an electrode catalyst layer 6 by using the catalysts 4, the dispersion of platinum supporting amount between cells is reduced and uniformity in performance is increased.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明はリン酸型燃料電池の電極触媒層に係り、特に
燃料電池触媒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an electrode catalyst layer for a phosphoric acid fuel cell, and particularly to a method for producing a fuel cell catalyst.

C従来の技術) リン酸を電解質とする燃料電池はリン酸電解液を保持し
たマトリックスを挟持する空気電極と水素電極からなり
、その電極は多孔質で電気伝導性に優れた電極基板上に
白金等貴金属を担持した触媒とポリテトラフロロエチレ
ンを混合した電極触媒層を設けて形成される。
C) Prior art) A fuel cell using phosphoric acid as an electrolyte consists of an air electrode and a hydrogen electrode sandwiching a matrix holding a phosphoric acid electrolyte. It is formed by providing an electrode catalyst layer made of a mixture of a catalyst supporting a noble metal such as polytetrafluoroethylene.

第3図は電極の模式断面図である。この図に示すように
電極は空気または水素の流通路1を有する多孔質カーボ
ン板からなる電極基@2と白金等資金rII43を担持
した触媒4に適当なはう水性を持たせるポリテトラフロ
ロエチレン5 (以下rPTFEJと呼称する。)を混
合した電極触媒層6よりなっている。
FIG. 3 is a schematic cross-sectional view of the electrode. As shown in this figure, the electrode consists of an electrode base @ 2 made of a porous carbon plate having a flow path 1 for air or hydrogen, and a polytetrafluoroethylene catalyst 4 supporting platinum or other metal rII 43 to have appropriate water repellency. 5 (hereinafter referred to as rPTFEJ).

この電極触媒層において供給される反応ガスである空気
または水素とリン酸電解液および触媒からなる三相が形
成され、電気化学的反応がおこ9て直接電気エネルギを
取り出すことができる。
In this electrode catalyst layer, a three-phase structure consisting of air or hydrogen as a reactant gas, a phosphoric acid electrolyte, and a catalyst is formed, an electrochemical reaction takes place, and electrical energy can be directly extracted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のリン酸型燃料電池の電流電圧特性が第5図に示さ
れる。運転条件は温度190℃、圧力は常圧で行われた
ものである。この図から明らかなように同一の製作方法
1条件で作られたセルであっても、特性がばらついてい
ることがわかる。この理由を解明するために、電極触媒
層を構成する触媒につき、カーボン粒子の粒度分布と、
分級により分取された各部分(以下、フラクシヨンとい
う)の比表面積および白金担持量(重量%)を調べた。
The current-voltage characteristics of a conventional phosphoric acid fuel cell are shown in FIG. The operating conditions were a temperature of 190° C. and a normal pressure. As is clear from this figure, even cells made under the same manufacturing method and conditions have variations in characteristics. In order to elucidate the reason for this, we investigated the particle size distribution of carbon particles for the catalyst constituting the electrode catalyst layer,
The specific surface area and amount of platinum supported (weight %) of each fraction separated by classification (hereinafter referred to as fraction) were investigated.

結果が第4図および第1表に示される。第4図からカー
ボン粒子は0.1−から5−の範囲に分布することがわ
かる。
The results are shown in FIG. 4 and Table 1. It can be seen from FIG. 4 that the carbon particles are distributed in the range of 0.1- to 5-.

第1表 第1表から触媒のカーボン粒子各フラクシヨンの白金担
持量には大きな違いがあることがわかる。
Table 1 It can be seen from Table 1 that there is a large difference in the amount of platinum supported by each fraction of carbon particles in the catalyst.

この事実は電極触媒層にカーボン粒子分布の不均一性が
あると、電極触媒層の白金担持量にばらつきが生じるこ
とを意味し、その結果として電流電圧特性がセル毎に変
動するようになる。
This fact means that if there is non-uniformity in carbon particle distribution in the electrode catalyst layer, the amount of platinum supported in the electrode catalyst layer will vary, and as a result, the current-voltage characteristics will vary from cell to cell.

この発明は上述の点に鑑みてなされ、その目的はカーボ
ン粒子の大小にかかわらず白金が均一に担持されるよう
にして、特性の均一性に優れるリン酸型燃料電池を提供
することにある。
The present invention has been made in view of the above-mentioned points, and its object is to provide a phosphoric acid fuel cell that has excellent uniformity of characteristics by uniformly supporting platinum regardless of the size of carbon particles.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば、貴金属をカーボン粒子
に担持した触媒をフッ素樹脂で結着して電極触媒層を形
成するリン酸型燃料電池の製造方法において、カーボン
粒子を分級し、分級した各フラクションに所定の同一の
割合で白金を担持して触媒を形成することにより達成さ
れる。
According to the present invention, the above-mentioned object is a method for manufacturing a phosphoric acid fuel cell in which an electrode catalyst layer is formed by bonding a catalyst in which a precious metal is supported on carbon particles with a fluororesin, in which carbon particles are classified; This is achieved by loading platinum on each fraction in the same predetermined proportion to form a catalyst.

粒子径の異なる各フラクションは白金担持後単独にある
いは他のフラクシヨンと混合して用いることができる。
Each fraction having a different particle size can be used alone or in combination with other fractions after supporting platinum.

(作用〕 分級したカーボン粒子の各フラクシヨンはほぼ均一な粒
子径と比表面積を有し、貴金属の担持が均一に行われる
(Function) Each fraction of the classified carbon particles has a substantially uniform particle diameter and specific surface area, so that noble metals are uniformly supported.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

(実施例1) 触媒担体であるカーボン粉末を超音波分散法などにより
溶媒中に分散させる0粒子の沈降速度がその粒子径によ
り異なることを利用して遠心分離法によるカーボン粒子
の分線を行う0分級条件はカーボン粒径および比表面積
が前述の第1表と同一条件となるように4段階の分級を
行った。その後各フラクシヨンのカーボン粒子に塩化白
金酸をカーボンに対して10重量%の白金量になるよう
添加し、還元剤により白金微粒子としてカーボン表面に
担持する。このようにして得られた触媒を再び混合し、
PTFEを触媒に対して40〜63%になるよう添加、
混合後、電極基板上に成型し電極触媒層とする。
(Example 1) Carbon powder, which is a catalyst carrier, is dispersed in a solvent using an ultrasonic dispersion method or the like. Taking advantage of the fact that the sedimentation rate of zero particles differs depending on the particle size, separation of carbon particles is performed using a centrifugation method. Under the zero classification conditions, four stages of classification were performed so that the carbon particle size and specific surface area were the same as those in Table 1 above. Thereafter, chloroplatinic acid is added to the carbon particles of each fraction so that the amount of platinum is 10% by weight based on the carbon, and the platinum is supported on the carbon surface as fine platinum particles using a reducing agent. The catalyst thus obtained is mixed again,
Add PTFE to 40-63% of the catalyst,
After mixing, it is molded onto an electrode substrate to form an electrode catalyst layer.

(実施例2) 触媒担体であるカーボン粉末を乾式遠心分級機により行
う場合は、原料であるカーボン粉末をロータ内に供給し
て気相中に分散させる。粗粉は遠心力によりロータ外側
へ飛ばされ、微粉は気流と共に外部に排出される。この
方式により分級されるカーボン粒子径と分級機の回転数
の関係が第2図に示される。
(Example 2) When preparing carbon powder as a catalyst carrier using a dry centrifugal classifier, carbon powder as a raw material is supplied into a rotor and dispersed in a gas phase. Coarse powder is blown to the outside of the rotor by centrifugal force, and fine powder is discharged to the outside along with the airflow. The relationship between the diameter of carbon particles classified by this method and the rotation speed of the classifier is shown in FIG.

実施例1に示す湿式分級と同じ粒径サイズにすゐ場合は
、回転数11000Orpと800Orpmで分級を行
う、 0.2 px*の微粉と1.0−の粗粉および0
.5 tanの微粉と2pmの粗粉に選別できる。ここ
で曲線7は微粉の特性曲線、曲線8は粗粉の特性曲線で
ある。
When the particle size is the same as the wet classification shown in Example 1, the classification is carried out at the rotational speed of 11,000 Orpm and 800 Orpm. Fine powder of 0.2 px*, coarse powder of 1.0 px*, and coarse powder of 1.0 px* are classified.
.. It can be sorted into fine powder of 5 tan and coarse powder of 2 pm. Here, curve 7 is a characteristic curve for fine powder, and curve 8 is a characteristic curve for coarse powder.

このようにして分級したカーボン粉末を実施例1と同様
に塩化白金酸を用いてカーボン表面上に白金を担持して
カーボンに均一な白金担持を行うことができる。このよ
うにして得られた触媒を再び混合し、PTFEを触媒に
対して40〜63%になるよう添加混合後、電極基板上
に成型し電極触媒層とする。
As in Example 1, platinum can be supported on the carbon surface of the carbon powder classified in this manner using chloroplatinic acid to uniformly support platinum on the carbon. The catalyst thus obtained is mixed again, PTFE is added to the catalyst in an amount of 40 to 63%, and then molded onto an electrode substrate to form an electrode catalyst layer.

実施例1および実施例2において製作した電極触媒層を
用いて単セルを組み、このセルの電流電圧特性を測定す
る。結果が第1図に示される。運転条件は温度が190
℃、圧力は常圧である。試験セル数5台の特性のばらつ
きは、図から明らかなように第5図の従来の触媒特性と
比較して小さいことがわかる。
A single cell was assembled using the electrode catalyst layers produced in Examples 1 and 2, and the current-voltage characteristics of this cell were measured. The results are shown in FIG. Operating conditions are temperature 190
℃, the pressure is normal pressure. As is clear from the figure, the variation in the characteristics of the five test cells is smaller than that of the conventional catalyst characteristics shown in FIG.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、貴金属をカーボン粒子に担持した触
媒をフッ素樹脂で結着して電極触媒層を形成するリン酸
型燃料電池の製造方法において、カーボン粒子を分級し
、分級した各フラクシヨンに所定の同一の割合で白金を
担持して触媒を形成するので、各フラクシヨンは均一な
粒子径と比表面積を有することにより貴金属の担持が均
一に行われる。しかもこの貴金属の担持は各フラクシ璽
ン間で同一の割合で行われるので分級前のカーボン粒子
全体につき、白金担持量が均一となる。従ってこのよう
な触媒を用いて電極触媒層を形成するときは各セル間の
白金担持量のばらつきがなく、特性の均一性に優れるリ
ン酸型燃料電池が得られる。
According to the present invention, in the method for manufacturing a phosphoric acid fuel cell in which an electrode catalyst layer is formed by binding a catalyst in which a precious metal is supported on carbon particles with a fluororesin, carbon particles are classified, and each classified fraction has a predetermined amount. Since the catalyst is formed by supporting platinum in the same ratio, each fraction has a uniform particle diameter and specific surface area, so that the precious metal is uniformly supported. Moreover, since the noble metal is supported at the same rate among each flux, the amount of platinum supported on the entire carbon particle before classification becomes uniform. Therefore, when forming an electrode catalyst layer using such a catalyst, there is no variation in the amount of platinum supported between cells, and a phosphoric acid fuel cell with excellent uniformity of characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る触媒を用いたセルにつ
きその電流電圧特性のばらつきを示す線図、第2図はこ
の発明の実施例に係る分級特性を示す線図、第3図はリ
ン酸型燃料電池の電極を示す模式断面図、第4図はカー
ボン粒子の粒径分布を示す縞図、第5図は従来の触媒を
用いるセルにつきその電流電圧特性のばらつきを示す!
ll!図である。 1+流通路、2:電極基板、3:貴金属、4:触媒、5
 i PTFE、6 :電極触媒層。
FIG. 1 is a diagram showing variations in current-voltage characteristics of cells using catalysts according to embodiments of the present invention, FIG. 2 is a diagram showing classification characteristics according to embodiments of this invention, and FIG. A schematic cross-sectional view showing an electrode of a phosphoric acid fuel cell, Figure 4 is a striped diagram showing the particle size distribution of carbon particles, and Figure 5 shows variations in current-voltage characteristics of cells using conventional catalysts!
ll! It is a diagram. 1+Flow path, 2: Electrode substrate, 3: Precious metal, 4: Catalyst, 5
i PTFE, 6: Electrode catalyst layer.

Claims (1)

【特許請求の範囲】[Claims] 1)貴金属をカーボン粒子に担持した触媒をフッ素樹脂
で結着して電極触媒層を形成するリン酸型燃料電池の製
造方法において、カーボン粒子を分級し、分級した各フ
ラクシヨンに所定の同一の割合で白金を担持して触媒を
形成することを特徴とするリン酸型燃料電池の製造方法
1) In a method for manufacturing a phosphoric acid fuel cell in which an electrode catalyst layer is formed by binding a catalyst in which noble metals are supported on carbon particles with a fluororesin, carbon particles are classified and each classified fraction is mixed with a predetermined same proportion. 1. A method for producing a phosphoric acid fuel cell, comprising supporting platinum to form a catalyst.
JP1029233A 1989-02-08 1989-02-08 Manufacture of phosphoric acid fuel cell Pending JPH02210761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029233A JPH02210761A (en) 1989-02-08 1989-02-08 Manufacture of phosphoric acid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029233A JPH02210761A (en) 1989-02-08 1989-02-08 Manufacture of phosphoric acid fuel cell

Publications (1)

Publication Number Publication Date
JPH02210761A true JPH02210761A (en) 1990-08-22

Family

ID=12270513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029233A Pending JPH02210761A (en) 1989-02-08 1989-02-08 Manufacture of phosphoric acid fuel cell

Country Status (1)

Country Link
JP (1) JPH02210761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053362A1 (en) * 2013-10-09 2015-04-16 株式会社キャタラー Fuel-cell electrode catalyst, and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053362A1 (en) * 2013-10-09 2015-04-16 株式会社キャタラー Fuel-cell electrode catalyst, and production method therefor
JP2015076277A (en) * 2013-10-09 2015-04-20 株式会社キャタラー Electrode catalyst for fuel batteries, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CN100421292C (en) Method for preparing metal catalyst and electrode
JP4792160B2 (en) Screen printing method and screen printing paste for producing gas diffusion electrode
KR20040054815A (en) Supported Nanoparticle Catalyst
EP2124275A1 (en) Apparatus for manufacturing electrode for polymer electrolyte fuel cell, and method of manufacturing the same
GB2025446A (en) Dry powder comprising precatalyzed carbon and a hydrophobic fluorocarbon polymer
Du et al. Effect of dispersion method and catalyst on the crack morphology and performance of catalyst layer of PEMFC
WO2006118186A1 (en) Electrode for fuel cell and membrane electrode assembly
WO2009085358A2 (en) Fuel cells with sputter deposited pt and pt alloy electrodes
JP2003109643A (en) Fuel cell
JPH02210761A (en) Manufacture of phosphoric acid fuel cell
JPS6340356B2 (en)
JP5217131B2 (en) Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof
CN109075348A (en) The manufacturing method of membrane electrode assembly, the membrane electrode assembly being produced from it and the fuel cell including the membrane electrode assembly
JPS60262356A (en) Manufacture of gas diffusion electrode for fuel cell
JPH0218862A (en) Manufacture of electrode catalyzer layer for fuel cell
JPH0519264B2 (en)
Ney et al. Challenges of fabricating catalyst layers for PEM fuel cells using flatbed screen printing
KR20200068998A (en) The electrode of fuel cell with improved oxygen reactivity and manufacturing method of the same
CN108630955A (en) The manufacturing method and catalyst composite of catalyst ink
TWI774325B (en) Mixed catalyst for full cells, method of preparing the same, method of forming electrode using the same, and membrane-electrode assembly including the same
JP3452096B2 (en) Method for manufacturing gas diffusion electrode for fuel cell
EP1997174B1 (en) Process for obtaining aqueous suspensions for electrodes of solid oxide fuel cells and other electrocatalytic devices
Baker et al. Influence of morphology on the behaviour of electrodes in a proton-conducting Solid Oxide Fuel Cell
JP5440107B2 (en) Catalyst paste manufacturing apparatus and manufacturing method
JPS59171473A (en) Fuel cell