JP5217131B2 - Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof - Google Patents

Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof Download PDF

Info

Publication number
JP5217131B2
JP5217131B2 JP2006216526A JP2006216526A JP5217131B2 JP 5217131 B2 JP5217131 B2 JP 5217131B2 JP 2006216526 A JP2006216526 A JP 2006216526A JP 2006216526 A JP2006216526 A JP 2006216526A JP 5217131 B2 JP5217131 B2 JP 5217131B2
Authority
JP
Japan
Prior art keywords
catalyst
polymer electrolyte
particles
catalyst ink
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006216526A
Other languages
Japanese (ja)
Other versions
JP2008041514A (en
Inventor
知哉 鈴木
聡三郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006216526A priority Critical patent/JP5217131B2/en
Publication of JP2008041514A publication Critical patent/JP2008041514A/en
Application granted granted Critical
Publication of JP5217131B2 publication Critical patent/JP5217131B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、燃料電池に使用される触媒インクおよび膜電極接合体およびそれらの製造方法に関するものであり、特に固体高分子型燃料電池に使用される触媒インクおよび膜電極接合体およびそれらの製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a catalyst ink and membrane electrode assembly used in a fuel cell and a method for producing the same, and more particularly to a catalyst ink and membrane electrode assembly used in a polymer electrolyte fuel cell and a method for producing the same. It is about.

燃料電池は、燃料ガスを、空気など酸素を含む酸化ガスと電気化学的に反応させて電力を発生させるものであり、燃料電池の触媒は、燃料電池の性能を左右する。燃料電池の触媒は、高分子電解質膜に触媒インクを塗布することにより形成され、従来の燃料電池の触媒インクとして、高分子電解質のコロイドを生成させ、高分子電解質のコロイドを、貴金属を担持させた炭素粉末に吸着させ、フッ素樹脂を質量比で総量の25〜70%有する触媒インクが知られている(特許文献1)。 In a fuel cell, electric power is generated by electrochemically reacting a fuel gas with an oxidizing gas containing oxygen such as air, and the catalyst of the fuel cell determines the performance of the fuel cell. A fuel cell catalyst is formed by applying a catalyst ink to a polymer electrolyte membrane. As a conventional fuel cell catalyst ink, a polymer electrolyte colloid is generated, and the polymer electrolyte colloid is supported on a noble metal. A catalyst ink having a fluororesin adsorbed on carbon powder and having a fluororesin in a mass ratio of 25 to 70% of the total amount is known (Patent Document 1).

特開平8−264190号公報JP-A-8-264190

従来の触媒インクでは、貴金属を担持させた炭素粉末に、高分子電解質が均一に吸着しにくく、固液分離が起きやすいという問題がある。その結果、触媒インクの分散の経時安定性が低下し、触媒インクを高分子電解質膜に塗布して膜電極接合体を形成しても、電圧のバラツキが大きくなり、燃料電池の性能を向上させることができない。   The conventional catalyst ink has a problem that the polymer electrolyte is difficult to uniformly adsorb on the carbon powder supporting the noble metal, and solid-liquid separation is likely to occur. As a result, the stability of the dispersion of the catalyst ink over time decreases, and even when the catalyst ink is applied to the polymer electrolyte membrane to form a membrane electrode assembly, the voltage variation increases and the performance of the fuel cell is improved. I can't.

本発明の目的は、上記課題を解決し、触媒インクの分散の経時安定性を向上させて、燃料電池の性能向上を実現することを目的とする。   An object of the present invention is to solve the above-mentioned problems and improve the performance of the fuel cell by improving the temporal stability of the dispersion of the catalyst ink.

上記課題を解決するために、本発明に係る燃料電池用触媒インクは、貴金属を担持体上に担持させてなる疎水性触媒粒子と、疎水基と親水基とを有する高分子電解質であって、前記疎水基が前記触媒粒子に向け配向され、前記触媒粒子の外周をほぼ覆う高分子電解質と、を備える触媒インク粒子を備える。本発明に係る触媒インクによれば、触媒インク粒子は、疎水基が触媒粒子に向かって配向される高分子電解質により外周をほぼ覆われている。したがって、高分子電解質の親水基は外側に向かって配向されるため、触媒インクの分散の経時安定性を向上させ、燃料電池の電圧のバラツキを少なくし、燃料電池の性能を向上させることができる。   In order to solve the above problems, a fuel cell catalyst ink according to the present invention is a polymer electrolyte having hydrophobic catalyst particles obtained by supporting a noble metal on a support, a hydrophobic group and a hydrophilic group, A catalyst ink particle comprising: a polymer electrolyte having the hydrophobic group oriented toward the catalyst particle and substantially covering an outer periphery of the catalyst particle. According to the catalyst ink of the present invention, the outer periphery of the catalyst ink particles is substantially covered with the polymer electrolyte in which the hydrophobic groups are oriented toward the catalyst particles. Therefore, since the hydrophilic group of the polymer electrolyte is oriented outward, the dispersion with time of the dispersion of the catalyst ink can be improved, the variation in the voltage of the fuel cell can be reduced, and the performance of the fuel cell can be improved. .

本発明に係る燃料電池用触媒インクにおいて、前記触媒粒子は、前記触媒粒子の質量に対して、30質量パーセント以上の高分子電解質によって被覆されていることが好ましい。本発明に係る触媒インクによれば、触媒粒子は前記触媒粒子の質量に対して、30質量パーセント以上の高分子電解質で被覆されているので、触媒粒子の外周のほぼ全体が高分子電解質により被覆されている。その結果、触媒インクの分散の経時安定性を向上させ、燃料電池の電圧のバラツキを少なくし、燃料電池の性能を向上させることができる。 In the fuel cell catalyst ink according to the present invention, the catalyst particles, relative to the weight of the catalyst particles, it is preferably covered by a 30% by mass or more polyelectrolytes. According to the catalyst ink according to the present invention, catalyst particles relative to the weight of the catalyst particles, because they are coated with a polymeric electrolyte above 30% by mass, almost the entire outer periphery of the catalyst particles coated with a polyelectrolyte Has been. As a result, it is possible to improve the temporal stability of the dispersion of the catalyst ink, reduce the variation in the voltage of the fuel cell, and improve the performance of the fuel cell.

本発明に係る燃料電池用膜電極接合体は、燃料電池用触媒インクが高分子電解質膜に塗布されている膜電極接合体であって、高分子電解質膜と、前記高分子電解質膜の両面に形成されている触媒層であって、触媒粒子の外周が高分子電解質によってほぼ覆われている触媒粒子を有する触媒層と、を備える。本発明に係る膜電極接合体によれば、触媒粒子は、ほぼ高分子電解質に被覆されているため、燃料電池の電圧のバラツキを少なくし、燃料電池の性能を向上させることができる。   A fuel cell membrane electrode assembly according to the present invention is a membrane electrode assembly in which a fuel cell catalyst ink is applied to a polymer electrolyte membrane, on both sides of the polymer electrolyte membrane and the polymer electrolyte membrane. And a catalyst layer having catalyst particles in which the outer periphery of the catalyst particles is substantially covered with a polymer electrolyte. According to the membrane electrode assembly according to the present invention, since the catalyst particles are almost covered with the polymer electrolyte, the variation in the voltage of the fuel cell can be reduced and the performance of the fuel cell can be improved.

本発明に係る燃料電池は、高分子電解質膜と、前記高分子電解質膜上の両面に形成されている触媒層であって、触媒粒子の外周が高分子電解質によってほぼ覆われている触媒粒子を有する触媒層とを備える膜電極接合体と、前記膜電極接合体の両側に配置されているセパレータとを備える。本発明によれば、膜電極接合体の触媒粒子は、その外周が高分子電解質によりほぼ覆われているので、当該膜電極接合体を燃料電池に用いれば、燃料電池の電気化学反応を促進させ、燃料電池の性能を向上させることができる。   A fuel cell according to the present invention comprises a polymer electrolyte membrane and a catalyst layer formed on both surfaces of the polymer electrolyte membrane, the catalyst particles having catalyst particles substantially covered with a polymer electrolyte. A membrane electrode assembly including the catalyst layer, and separators disposed on both sides of the membrane electrode assembly. According to the present invention, since the outer periphery of the catalyst particles of the membrane electrode assembly is substantially covered with the polymer electrolyte, if the membrane electrode assembly is used for a fuel cell, the electrochemical reaction of the fuel cell is promoted. The performance of the fuel cell can be improved.

本発明に係る触媒インクの製造方法は、貴金属を担持体上に担持させてなる触媒粒子と高分子電解質溶液と水とを混合して攪拌する工程と、攪拌した溶液にエタノールを加えて攪拌混合する工程と、混合溶液に対して分散処理する工程とを備える。本発明に係る触媒インクの製造方法によれば、貴金属を担持体上に担持してなる触媒粒子と高分子電解質溶液と水とを攪拌する工程でエタノールを加えないので、触媒粒子は高分子電解質膜によりほぼ被覆される。したがって触媒インクの分散の経時安定性を向上させ、燃料電池の電圧のバラツキを少なくし、燃料電池の性能を向上させることができる。   The method for producing a catalyst ink according to the present invention includes a step of mixing and stirring catalyst particles obtained by supporting a noble metal on a support, a polymer electrolyte solution, and water, and stirring and mixing ethanol to the stirred solution. And a step of dispersing the mixed solution. According to the method for producing a catalyst ink according to the present invention, since no ethanol is added in the step of stirring the catalyst particles, the polymer electrolyte solution and the water in which the noble metal is supported on the support, the catalyst particles are polymer electrolyte. It is almost covered by the membrane. Therefore, it is possible to improve the temporal stability of the dispersion of the catalyst ink, reduce the variation in the voltage of the fuel cell, and improve the performance of the fuel cell.

本発明に係る触媒インクの製造方法は、前記貴金属を担持体上に担持させてなる触媒粒子と高分子電解質溶液と水とを加えて攪拌する工程は、減圧下で実行される。本発明によれば、当該工程を減圧下で実行することにより、触媒粒子の表面あるいはその細孔に付着している気泡を除去することができ、高分子電解質の吸着量を多くすることができる。その結果、燃料電池の性能を向上させることができる。   In the method for producing a catalyst ink according to the present invention, the step of adding and stirring the catalyst particles obtained by supporting the noble metal on the support, the polymer electrolyte solution, and water is performed under reduced pressure. According to the present invention, by carrying out the process under reduced pressure, it is possible to remove bubbles adhering to the surfaces of the catalyst particles or the pores thereof, and to increase the amount of adsorption of the polymer electrolyte. . As a result, the performance of the fuel cell can be improved.

本発明に係る燃料電池用膜電極接合体の製造方法は、前記製造方法で製造した燃料電池用触媒インクを、高分子電界質膜に塗布する工程と、前記高分子電解質膜に塗布した前記燃料電池用触媒インクを乾燥させる工程とを有する。本発明に係る燃料電池用膜電極接合体の製造方法によれば、燃料電池に用いたときに電圧のバラツキが少なく性能のよい燃料電池用膜電極接合体を容易に製造することができる。   The method for producing a membrane electrode assembly for a fuel cell according to the present invention comprises a step of applying a catalyst ink for a fuel cell produced by the production method to a polymer electrolyte membrane, and the fuel applied to the polymer electrolyte membrane. And drying the battery catalyst ink. According to the method for producing a membrane electrode assembly for a fuel cell according to the present invention, it is possible to easily produce a membrane electrode assembly for a fuel cell having good performance with little voltage variation when used in a fuel cell.

A.触媒インク100の構造
図1、図2、図3を用いて本実施例に係る触媒インク100について説明する。図1は、第1の実施例に係る触媒インク100の構造を模式的に示す説明図である。図2は、高分子電解質108の構造を示す化学式である。図3は、従来の触媒インク400の構造を模式的に示す説明図である。
A. Structure of catalyst ink 100 The catalyst ink 100 according to the present embodiment will be described with reference to FIGS. 1, 2, and 3. FIG. 1 is an explanatory view schematically showing the structure of the catalyst ink 100 according to the first embodiment. FIG. 2 is a chemical formula showing the structure of the polymer electrolyte 108. FIG. 3 is an explanatory view schematically showing the structure of a conventional catalyst ink 400.

触媒インク100は、触媒インク粒子101を溶媒に分散させてなる混合液である。触媒インク粒子101は、略球体状であり、中心部の触媒粒子102と触媒粒子102の回りを覆う高分子電解質108とから形成されている。触媒粒子102は、担持体104に貴金属106が担持されたものである。本実施例においては、担持体104として、例えば、疎水性のカーボンブラック(粒径約0.1〜20μm)が用いられている。また担持される貴金属106として、例えば、白金あるいは白金合金が用いられている。   The catalyst ink 100 is a mixed liquid obtained by dispersing catalyst ink particles 101 in a solvent. The catalyst ink particle 101 has a substantially spherical shape, and is formed of a catalyst particle 102 at the center and a polymer electrolyte 108 covering the periphery of the catalyst particle 102. The catalyst particles 102 are obtained by supporting a noble metal 106 on a carrier 104. In this embodiment, for example, hydrophobic carbon black (particle diameter of about 0.1 to 20 μm) is used as the carrier 104. Moreover, as the noble metal 106 to be supported, for example, platinum or a platinum alloy is used.

本実施例における高分子電解質108は、疎水基112と、親水基113を有している。触媒粒子102は疎水性であるため、高分子電解質108は疎水基112を触媒粒子102側に向けて触媒粒子102に吸着され、触媒インク粒子101が形成される。触媒インク粒子101は、球体表面に向かって高分子電解質108の親水基113を露出している。その結果、触媒インク粒子101は親水コロイドを形成し、沈降しにくくなり、分散の経時安定性が良くなる。   The polymer electrolyte 108 in this embodiment has a hydrophobic group 112 and a hydrophilic group 113. Since the catalyst particles 102 are hydrophobic, the polymer electrolyte 108 is adsorbed by the catalyst particles 102 with the hydrophobic groups 112 facing the catalyst particles 102, and catalyst ink particles 101 are formed. The catalyst ink particle 101 exposes the hydrophilic group 113 of the polymer electrolyte 108 toward the spherical surface. As a result, the catalyst ink particles 101 form a hydrocolloid and are difficult to settle, and the dispersion stability over time is improved.

高分子電解質108としては、例えば、図2に示すパーフルオロカーボンスルホン酸ポリマ110を用いることができる。パーフルオロカーボンスルホン酸ポリマ110は、疎水性の主鎖114と、親水基113としてスルホン酸基116をもつ側鎖115とを有する。   As the polymer electrolyte 108, for example, a perfluorocarbon sulfonic acid polymer 110 shown in FIG. 2 can be used. The perfluorocarbon sulfonic acid polymer 110 has a hydrophobic main chain 114 and side chains 115 having sulfonic acid groups 116 as hydrophilic groups 113.

一方、従来の触媒インク400においては、図3に示すように、触媒粒子102に、例えば、エタノールが吸着するため、触媒粒子102は、高分子電解質108によって十分に覆われることができない。一方、触媒粒子102の担持体104にはカーボンブラックが用いられており、カーボンブラック同士はお互いに吸着しやすい。その結果、触媒粒子102は、高分子電解質108により覆われていない部分が吸着し、大きな触媒インク粒子401が形成され易い。大きな触媒インク粒子401は、触媒インク粒子101に比べて触媒粒子102が占める割合が多いので比重が重い。したがって、触媒インク粒子401は沈降しやすくなり、触媒インク400の分散の経時安定性は悪い。   On the other hand, in the conventional catalyst ink 400, as shown in FIG. 3, for example, ethanol is adsorbed on the catalyst particles 102, so that the catalyst particles 102 cannot be sufficiently covered with the polymer electrolyte 108. On the other hand, carbon black is used for the carrier 104 of the catalyst particles 102, and the carbon blacks are easily adsorbed to each other. As a result, portions of the catalyst particles 102 that are not covered with the polymer electrolyte 108 are adsorbed, and large catalyst ink particles 401 are easily formed. The large catalyst ink particle 401 has a higher specific gravity because the catalyst particle 102 occupies a larger proportion than the catalyst ink particle 101. Therefore, the catalyst ink particles 401 are likely to settle, and the stability of the dispersion of the catalyst ink 400 over time is poor.

B.触媒インク100の製造方法
次に、図4を参照して、触媒インク100の製造方法について説明する。図4は、触媒インク100の製造方法を説明する工程図である。
B. Method for Producing Catalyst Ink 100 Next, a method for producing the catalyst ink 100 will be described with reference to FIG. FIG. 4 is a process diagram illustrating a method for manufacturing the catalyst ink 100.

貴金属106を担持した担持体104(触媒粒子102)と高分子電解質溶液と水とを混合し攪拌する(第1工程)。攪拌によって、触媒粒子102表面に高分子電解質溶液中の高分子電解質108が吸着しコロイドが形成される。   The support 104 (catalyst particles 102) supporting the noble metal 106, the polymer electrolyte solution, and water are mixed and stirred (first step). By stirring, the polymer electrolyte 108 in the polymer electrolyte solution is adsorbed on the surface of the catalyst particles 102 to form a colloid.

次に、攪拌溶液にエタノールを加えてさらに攪拌する(第2工程)。エタノールを加えることにより、触媒インクを電解質膜に塗布した後、容易に余分な溶媒を蒸発させて触媒インクを乾燥させることができる。   Next, ethanol is added to the stirring solution and further stirred (second step). By adding ethanol, after applying the catalyst ink to the electrolyte membrane, the excess solvent can be easily evaporated to dry the catalyst ink.

次に、エタノールを加えた攪拌した溶液を超音波等の手段により分散処理し、触媒インク100を得る(第3工程)。攪拌溶液のコロイドは、一般的に、エタノールを加えて攪拌した段階では、触媒インク粒子101の親水基同士が吸着しあって、かなり大きな固まりで凝集している。ここで超音波による振動により、触媒インク粒子101の親水基同士の吸着を切り、凝集している固まりを分解し、凝集サイズを小さくする。触媒インク粒子101は、比重が軽くなり、溶媒中に浮遊しやすくなる。この結果、触媒インク粒子101は、沈降しにくくなり、分散の経時安定性が増す。また、触媒インク100を高分子電解質膜にスプレーで塗布するときに、触媒インクが均一に分布するように塗布することができ、燃料電池の性能を向上させることができる。   Next, the stirred solution to which ethanol has been added is dispersed by means of ultrasonic waves or the like to obtain the catalyst ink 100 (third step). In general, the colloid of the stirring solution is agglomerated in a considerably large mass because the hydrophilic groups of the catalyst ink particles 101 are adsorbed when ethanol is added and stirred. Here, the adsorption of the hydrophilic groups of the catalyst ink particles 101 is cut by vibration by ultrasonic waves, the aggregated mass is decomposed, and the aggregate size is reduced. The catalyst ink particles 101 have a low specific gravity and are likely to float in the solvent. As a result, the catalyst ink particles 101 are less likely to settle and the dispersion stability over time increases. Further, when the catalyst ink 100 is applied to the polymer electrolyte membrane by spraying, the catalyst ink can be applied so as to be uniformly distributed, and the performance of the fuel cell can be improved.

なお、触媒粒子102と高分子電解質溶液と水とを混合し攪拌する工程(第1工程)は、減圧下で行ってもよい。触媒粒子102の担持体104の表面あるいは表面に形成されている細孔には気泡が付着している。気泡部分には高分子電解質108は吸着しにくいが、減圧することにより、付着している気泡を除去することができ、より多くの高分子電解質108を触媒粒子102に吸着させることができる。その結果、触媒インク粒子101の比重が軽くなり、さらに触媒インクの分散の経時安定性が増し、燃料電池の性能を向上させることができる。   The step of mixing and stirring the catalyst particles 102, the polymer electrolyte solution, and water (first step) may be performed under reduced pressure. Bubbles are attached to the surface of the carrier 104 of the catalyst particles 102 or pores formed on the surface. Although the polymer electrolyte 108 is difficult to adsorb to the bubble portion, the adhering bubbles can be removed by reducing the pressure, and more polymer electrolyte 108 can be adsorbed to the catalyst particles 102. As a result, the specific gravity of the catalyst ink particles 101 is reduced, the stability of the catalyst ink dispersion over time is increased, and the performance of the fuel cell can be improved.

上記触媒インクの製造方法により得られた触媒インクについて、従来の製法の触媒インクと比較する。   The catalyst ink obtained by the catalyst ink production method is compared with the catalyst ink of the conventional production method.

(実施例1)
白金合金粒子をカーボンブラック(ケッチェンブラックインターナショナル社製 Ketjen EC)上に担持させた触媒粒子10gに対してナフィオン(登録商標:NAFION)溶液(DuPont社製 DE−2020 20%溶液)20gと水60gを加えて12時間攪拌した。次に攪拌溶液にエタノール50gを加え、よく攪拌し、混合させた。この混合溶液に対して超音波ホモジナイザーにより分散処理を行い、触媒インクを作製した。
Example 1
20 g of Nafion (registered trademark: NAFION) solution (DuPont DE-2020 20% solution) and 60 g of water with respect to 10 g of catalyst particles having platinum alloy particles supported on carbon black (Ketjen EC made by Ketjen Black International) And stirred for 12 hours. Next, 50 g of ethanol was added to the stirring solution, and the mixture was thoroughly stirred and mixed. The mixed solution was subjected to a dispersion treatment using an ultrasonic homogenizer to prepare a catalyst ink.

(実施例2)
白金合金粒子をカーボンブラック(ケッチェンブラックインターナショナル社製 Ketjen EC)上に担持させた触媒粒子10gに対してナフィオン溶液(DuPont社製 DE−2020 20%溶液)20g、水60gを加えて、13.3kPaに減圧し、12時間攪拌した。次に常圧に戻して攪拌溶液にエタノール50gを加え、よく攪拌し、混合させた。この混合溶液に対して超音波ホモジナイザーにより分散処理を行い、触媒インクを作製した。
(実施例3)
白金合金粒子を担持させた触媒粒子とナフィオン溶液と水を混合して攪拌する時間を24時間とした以外、実施例2と同様に触媒インクを作製した。
(Example 2)
12. 20 g of Nafion solution (DE-2020 20% solution manufactured by DuPont) and 60 g of water are added to 10 g of catalyst particles in which platinum alloy particles are supported on carbon black (Ketjen EC manufactured by Ketjen Black International). The pressure was reduced to 3 kPa, and the mixture was stirred for 12 hours. Next, the pressure was returned to normal pressure, 50 g of ethanol was added to the stirred solution, and the mixture was stirred well and mixed. The mixed solution was subjected to a dispersion treatment using an ultrasonic homogenizer to prepare a catalyst ink.
(Example 3)
A catalyst ink was prepared in the same manner as in Example 2 except that the catalyst particles carrying platinum alloy particles, the Nafion solution, and water were mixed and stirred for 24 hours.

(比較例1)
白金合金粒子をカーボンブラック(ケッチェンブラックインターナショナル社製 Ketjen EC)上に担持させた触媒粒子10gに対してナフィオン溶液(DuPont社製 DE−2020 20%溶液)20g、水60g、エタノール50gを加え、よく攪拌し、混合させた。この混合溶液に対して超音波ホモジナイザーにより分散処理を行い、触媒インクを作製した。
(Comparative Example 1)
20 g of Nafion solution (DE-2020 20% solution manufactured by DuPont), 60 g of water, and 50 g of ethanol are added to 10 g of catalyst particles on which platinum alloy particles are supported on carbon black (Ketjen EC manufactured by Ketjen Black International). Stir well and mix. The mixed solution was subjected to a dispersion treatment using an ultrasonic homogenizer to prepare a catalyst ink.

実施例1では、白金合金粒子を担持させた触媒粒子とナフィオン溶液と水を混合し攪拌した後、攪拌溶液にエタノールを加えて攪拌しているが、比較例1では、最初から白金合金粒子を担持させた触媒粒子とナフィオン溶液と水とエタノールを混合して攪拌している点が異なる。   In Example 1, the catalyst particles supporting the platinum alloy particles, the Nafion solution, and water were mixed and stirred, and then ethanol was added to the stirring solution and stirred. In Comparative Example 1, the platinum alloy particles were initially mixed. The difference is that the supported catalyst particles, Nafion solution, water and ethanol are mixed and stirred.

実施例1では、触媒粒子とナフィオン溶液と水を混合して攪拌する工程を常圧で行っているが、実施例2では、減圧で行っている点が異なる。 また、実施例2と実施例3では、触媒粒子とナフィオン溶液と水を混合して攪拌する工程での攪拌時間が異なる。   In Example 1, the step of mixing and stirring the catalyst particles, the Nafion solution, and water is performed at normal pressure, but Example 2 is different in that it is performed at reduced pressure. Moreover, in Example 2 and Example 3, the stirring time in the process which mixes and stirs a catalyst particle, a Nafion solution, and water differs.

C.触媒インクの評価
生成した触媒インクの高分子電界質108の吸着比率、触媒インクの沈降速度を評価した。触媒インクの沈降速度により、触媒インクの分散の経時安定性がわかる。すなわち、触媒インク100の沈降速度が小さいほど触媒インク100はインク溶液中を浮遊でき、経持安定性が高い。高分子電解質吸着比率は、触媒粒子102に吸着している高分子電解質108の量を触媒粒子102の質量に対する質量パーセントで示したものである。
C. Evaluation of catalyst ink The adsorption ratio of the polymer electrolyte 108 of the produced catalyst ink and the sedimentation rate of the catalyst ink were evaluated. The temporal stability of the dispersion of the catalyst ink can be seen from the sedimentation rate of the catalyst ink. In other words, the lower the sedimentation speed of the catalyst ink 100, the more the catalyst ink 100 can float in the ink solution, and the longer the sustaining stability. Polyelectrolyte adsorption ratio is one in which the amount of the polymer electrolyte 108 adsorbed on the catalyst particles 102 shown in weight percentage of the weight of the catalyst particles 102.

本実施例では、ナフィオン溶液を高分子電解質溶液として使用しているため、高分子電解質108の成分は、ナフィオン溶液に含まれているパーフルオロカーボンスルホン酸ポリマ110である。触媒粒子102に吸着している高分子電解質108の量は、以下の様にして求めることができる。   In this embodiment, since the Nafion solution is used as the polymer electrolyte solution, the component of the polymer electrolyte 108 is the perfluorocarbon sulfonic acid polymer 110 contained in the Nafion solution. The amount of the polymer electrolyte 108 adsorbed on the catalyst particles 102 can be determined as follows.

作製した触媒インク100をろ過して残渣118とろ液120に分離する。残渣118には、触媒粒子102と触媒粒子102に吸着している高分子電解質108とが含まれ、ろ液120には、触媒粒子102に吸着していない高分子電解質108が含まれる。高分子電解質108にはスルホン酸基116があるので、酸塩基滴定により、ろ液の高分子電解質108のスルホン酸基116の量を測定することができる。ろ液120中のスルホン酸基116の量がわかれば、ろ液120の中の高分子電解質108の量がわかる。したがって、投入したナフィオン溶液に含まれている高分子電界質108の量からろ液120中の高分子電解質108の量を引けば、触媒粒子102に吸着している高分子電解質108の量を求めることができる。   The produced catalyst ink 100 is filtered to separate the residue 118 and the filtrate 120. The residue 118 includes the catalyst particles 102 and the polymer electrolyte 108 adsorbed on the catalyst particles 102, and the filtrate 120 includes the polymer electrolyte 108 that is not adsorbed on the catalyst particles 102. Since the polymer electrolyte 108 has the sulfonic acid group 116, the amount of the sulfonic acid group 116 of the polymer electrolyte 108 in the filtrate can be measured by acid-base titration. If the amount of the sulfonic acid group 116 in the filtrate 120 is known, the amount of the polymer electrolyte 108 in the filtrate 120 can be known. Therefore, the amount of the polymer electrolyte 108 adsorbed on the catalyst particles 102 is obtained by subtracting the amount of the polymer electrolyte 108 in the filtrate 120 from the amount of the polymer electrolyte 108 contained in the charged Nafion solution. be able to.

また、高分子電解質108の量は、ろ液120を乾燥させて、残った高分子電解質108の量を、投入した高分子電解質108の量から引くことによっても求めることができる。なお、残渣118を乾燥させて、残渣118の質量を計り、残渣118の質量から投入した触媒粒子102の質量を引いても吸着している高分子電解質108の量を求めることができるが、触媒粒子102には貴金属106(白金合金)が担持されているので、残渣118の乾燥時に発火する場合がある。 The amount of the polymer electrolyte 108 can also be obtained by drying the filtrate 120 and subtracting the amount of the remaining polymer electrolyte 108 from the amount of the polymer electrolyte 108 that has been added. Although the residue 118 is dried and the mass of the residue 118 is measured, the amount of adsorbed polymer electrolyte 108 can be determined by subtracting the mass of the charged catalyst particles 102 from the mass of the residue 118. Since the noble metal 106 (platinum alloy) is supported on the particles 102, there are cases where ignition occurs when the residue 118 is dried.

触媒インク100の沈降速度については、遠心沈降法により測定した。ガラス製シリンジに2mlの触媒インクを入れ、3000rpmで回転させながらシリンジに光を当てた。シリンジの触媒インク部分を透過する光量を測定し、透過する光量の変化の割合から触媒インクの沈降速度を見積もった。   The sedimentation speed of the catalyst ink 100 was measured by a centrifugal sedimentation method. 2 ml of the catalyst ink was put in a glass syringe, and light was applied to the syringe while rotating at 3000 rpm. The amount of light transmitted through the catalyst ink portion of the syringe was measured, and the sedimentation rate of the catalyst ink was estimated from the rate of change in the amount of transmitted light.

表1および図5を用いて電解質吸着比率と沈降速度の関係を説明する。図5は、電解質吸着比率と沈降速度の関係を示すグラフである。   The relationship between the electrolyte adsorption ratio and the sedimentation rate will be described with reference to Table 1 and FIG. FIG. 5 is a graph showing the relationship between the electrolyte adsorption ratio and the sedimentation rate.

Figure 0005217131
Figure 0005217131

実施例1と比較例1の電解質吸着比率を比較すると、実施例1の方が高い。触媒粒子102と水とナフィオン溶液を混合して攪拌するときに、同時にエタノールを入れた場合の高分子電解質の吸着量は、同時にエタノールを入れない場合に比較して、少なくなっている。エタノールは疎水性のエチル基と親水性のアルコール基を有するため、触媒粒子102と水を混合して攪拌するときに、同時にエタノールを入れた場合には、エタノールも触媒粒子102に吸着しようとする。すなわち、エタノールが触媒粒子102に吸着した分、触媒粒子102への高分子電解質108の吸着量が減少することになる。   When the electrolyte adsorption ratios of Example 1 and Comparative Example 1 are compared, Example 1 is higher. When the catalyst particles 102, water and the Nafion solution are mixed and stirred, the amount of adsorption of the polymer electrolyte when ethanol is simultaneously added is smaller than when ethanol is not simultaneously added. Since ethanol has a hydrophobic ethyl group and a hydrophilic alcohol group, when ethanol is added at the same time when the catalyst particles 102 and water are mixed and stirred, ethanol also tends to be adsorbed on the catalyst particles 102. . That is, the amount of adsorption of the polymer electrolyte 108 on the catalyst particles 102 is reduced by the amount of ethanol adsorbed on the catalyst particles 102.

したがって、触媒粒子102への高分子電解質108の吸着量を増加させるためには、エタノールを加えずに触媒粒子102と水とナフィオン溶液を混合して攪拌し、触媒粒子102へ高分子電解質108が吸着した後にエタノールを加えて攪拌するとよい。エタノールが触媒粒子102に吸着することを抑制し、より多くの高分子電解質108を触媒粒子102に吸着させることができる。   Therefore, in order to increase the adsorption amount of the polymer electrolyte 108 on the catalyst particles 102, the catalyst particles 102, water and Nafion solution are mixed and stirred without adding ethanol, and the polymer electrolyte 108 is added to the catalyst particles 102. After adsorbing, ethanol may be added and stirred. It is possible to suppress the adsorption of ethanol to the catalyst particles 102 and to adsorb more polymer electrolyte 108 to the catalyst particles 102.

実施例1と実施例2とを比較して、高分子電解質108の吸着比率をみると、実施例2の方が高分子電解質108の吸着比率が高い。触媒粒子102と水とナフィオン溶液を混合して攪拌するときに、減圧した方が、高分子電解質108の吸着量が多くなっている。触媒粒子102の担持体104にはカーボンブラックを用いている。その表面には多数の細孔があり、その細孔あるいは、カーボンブラックの表面には気泡が付着しており、気泡部分には高分子電解質が吸着しにくい。しかし、減圧することにより、付着している気泡を除去することができ、触媒粒子102表面への高分子電解質16の吸着を促進できる。   Comparing Example 1 and Example 2, and looking at the adsorption ratio of the polymer electrolyte 108, the adsorption ratio of the polymer electrolyte 108 is higher in Example 2. When the catalyst particles 102, water, and Nafion solution are mixed and stirred, the amount of adsorption of the polymer electrolyte 108 increases when the pressure is reduced. Carbon black is used for the carrier 104 of the catalyst particles 102. There are a large number of pores on the surface, and bubbles are attached to the pores or the surface of the carbon black, and the polymer electrolyte is difficult to adsorb on the bubble portions. However, by reducing the pressure, adhering bubbles can be removed, and adsorption of the polymer electrolyte 16 to the surface of the catalyst particles 102 can be promoted.

実施例2と実施例3の結果を比較すると、沈降速度はほとんど変わりない。沈降速度は、触媒粒子102の表面のうち高分子電解質108に覆われていない表面の大きさに依存し、高分子電解質108に覆われていない表面が少ないほど小さい。高分子電解質108の吸着量が触媒粒子102の質量の30質量パーセントを超えると沈降速度はほぼ一定になることから、触媒粒子102に吸着している高分子電解質108の質量が触媒粒子102の質量の30質量パーセント以上あれば、触媒粒子102はほぼ高分子電解質に覆われていると考えられる。 Comparing the results of Example 2 and Example 3, the sedimentation rate is almost unchanged. The settling velocity depends on the size of the surface of the catalyst particle 102 that is not covered with the polymer electrolyte 108, and the lower the surface that is not covered with the polymer electrolyte 108, the smaller the settling rate. Since the amount of adsorption of the polymer electrolyte 108 is constant and sedimentation rate substantially greater than 30 weight percent of the weight of the catalyst particles 102, the mass of the polymer electrolyte 108 adsorbed on the catalyst particles 102 is the mass of the catalyst particles 102 If it is 30 mass percent or more, it is considered that the catalyst particles 102 are almost covered with the polymer electrolyte.

実施例2と実施例3の高分子電解質吸着比率を比較すると、実施例3の方が高い。触媒粒子102と水とナフィオン溶液を合わせて攪拌する攪拌時間を長くすれば、高分子電解質吸着比率を高めることができるといえる。高分子電解質108の吸着に関してエタノールの影響がない実施例1では、電解質吸着比率は30%にわずかに満たなかったが、26.8%の電界質吸着比率を達成している。したがって、実施例1において、さらに長時間攪拌すれば、電解質吸着比率30%を達成し、触媒粒子102を高分子電解質108でほぼ覆うことが期待される。   Comparing the polymer electrolyte adsorption ratios of Example 2 and Example 3, Example 3 is higher. It can be said that the polymer electrolyte adsorption ratio can be increased by increasing the stirring time for stirring the catalyst particles 102, water, and Nafion solution together. In Example 1 where there is no influence of ethanol on the adsorption of the polyelectrolyte 108, the electrolyte adsorption ratio was slightly less than 30%, but an electric field adsorption ratio of 26.8% was achieved. Therefore, in Example 1, it is expected that if the stirring is continued for a longer time, an electrolyte adsorption ratio of 30% is achieved and the catalyst particles 102 are almost covered with the polymer electrolyte 108.

本実施例によれば、白金合金粒子を担持した担持体104とナフィオン溶液と水とをエタノールを加えずに攪拌し、十分攪拌した後にエタノールを加える。したがって触媒粒子102の表面は高分子電解質108によってほぼ覆われる。その結果、超音波振動により触媒インク粒子101の親水基同士の吸着を切り凝集を細かくした後に、触媒粒子102同士の吸着が起こりにくくなる。触媒インク粒子101は沈降しにくくなり、触媒インク100の分散の経時安定性を増すことができる。   According to the present example, the carrier 104 carrying the platinum alloy particles, the Nafion solution, and water are stirred without adding ethanol, and after sufficient stirring, ethanol is added. Therefore, the surface of the catalyst particle 102 is almost covered with the polymer electrolyte 108. As a result, the adsorption of the catalyst particles 102 is less likely to occur after the adsorption of the hydrophilic groups of the catalyst ink particles 101 is cut off by ultrasonic vibration to reduce the aggregation. The catalyst ink particles 101 are less likely to settle, and the temporal stability of the dispersion of the catalyst ink 100 can be increased.

また、本実施例によれば、白金合金粒子を担持した担持体104とナフィオン溶液と水を混合して攪拌するときに減圧下で攪拌することにより、短時間で、触媒粒子102への高分子電解質108の吸着量を、触媒粒子102の質量の30質量パーセント以上とすることができる。なお、触媒粒子102への高分子電解質108の吸着量が触媒粒子102の質量の30質量パーセント以上あれば、触媒インクの沈降速度の結果から、触媒粒子102の表面ほぼ高分子電解質108で覆われていると判断することができる。 Further, according to the present example, when the carrier 104 carrying the platinum alloy particles, the Nafion solution, and water are mixed and stirred, the polymer is applied to the catalyst particles 102 in a short time by stirring under reduced pressure. The adsorption amount of the electrolyte 108 can be 30 mass percent or more of the mass of the catalyst particles 102. If the adsorption amount of the polymer electrolyte 108 on the catalyst particles 102 is 30 mass percent or more of the mass of the catalyst particles 102, the surface of the catalyst particles 102 is almost covered with the polymer electrolyte 108 from the result of the sedimentation rate of the catalyst ink. Can be judged.

D.膜電極接合体の構成
図6を用いて、膜電極接合体触媒層200について説明する。図6は、膜電極接合体の構成を模式的に示す説明図である。
D. Configuration of Membrane / Electrode Assembly A membrane / electrode assembly catalyst layer 200 will be described with reference to FIG. FIG. 6 is an explanatory view schematically showing the configuration of the membrane electrode assembly.

膜電極接合体200は、高分子電解質膜202と、触媒層204とを備えている。触媒層204は、触媒粒子102と触媒粒子102をほぼ覆う高分子電解質108とを備えている。触媒層204は、高分子電解質膜202の両面に形成され、それぞれアノード側の触媒層204a、カソード側の触媒層204bとなる。触媒層204の隙間には空間206が形成されている。アノード側の空間206aに対して、燃料ガス(水素ガス)を供給し、カソード側の空間206bに酸化ガス(空気)を供給する。   The membrane electrode assembly 200 includes a polymer electrolyte membrane 202 and a catalyst layer 204. The catalyst layer 204 includes catalyst particles 102 and a polymer electrolyte 108 that substantially covers the catalyst particles 102. The catalyst layer 204 is formed on both surfaces of the polymer electrolyte membrane 202, and becomes a catalyst layer 204a on the anode side and a catalyst layer 204b on the cathode side, respectively. A space 206 is formed in the gap between the catalyst layers 204. Fuel gas (hydrogen gas) is supplied to the anode-side space 206a, and oxidizing gas (air) is supplied to the cathode-side space 206b.

本実施例に係る膜電極接合体200によれば、触媒層204の触媒粒子102は高分子電解質108によりほぼ覆われているので、触媒粒子102と高分子電解質108との界面の面積が広い。燃料電池の電気化学反応は触媒粒子102と高分子電解質108との界面で起こるため、電気化学反応は、触媒粒子102と高分子電解質108との界面の面積が広い方が促進される。したがって、膜電極接合体200を燃料電池に用いたときには、電圧のバラツキも少なくなり、燃料電池の性能を向上させることができる。   According to the membrane electrode assembly 200 according to this example, the catalyst particles 102 of the catalyst layer 204 are almost covered with the polymer electrolyte 108, so that the area of the interface between the catalyst particles 102 and the polymer electrolyte 108 is wide. Since the electrochemical reaction of the fuel cell occurs at the interface between the catalyst particle 102 and the polymer electrolyte 108, the electrochemical reaction is promoted when the area of the interface between the catalyst particle 102 and the polymer electrolyte 108 is large. Therefore, when the membrane electrode assembly 200 is used for a fuel cell, voltage variation is reduced, and the performance of the fuel cell can be improved.

E.膜電極接合体200の作製方法
図7を用いて、膜電極接合体200の作製方法について説明する。図7は膜電極接合体200の作製方法を示す模式図である。上述した製造方法により作製した触媒インク100を噴霧器208に入れ、圧力をかけて、ノズル210から高分子電解質膜202に対して触媒インク100を霧状に噴出させて吹きつける。これにより触媒インク100を高分子電解質膜202上に均一に分布するように吹きつけることができる。その後、余分な溶媒を乾燥させて、膜電極接合体200を作製する。なお、触媒インクの吹きつけは、高分子電解質膜の両面に対して行う。
E. Method for Producing Membrane / Electrode Assembly 200 A method for producing the membrane / electrode assembly 200 will be described with reference to FIG. FIG. 7 is a schematic view showing a method for producing the membrane electrode assembly 200. The catalyst ink 100 produced by the manufacturing method described above is put into the sprayer 208, pressure is applied, and the catalyst ink 100 is sprayed from the nozzle 210 onto the polymer electrolyte membrane 202 in a mist form. As a result, the catalyst ink 100 can be sprayed on the polymer electrolyte membrane 202 so as to be evenly distributed. Then, the excess solvent is dried and the membrane electrode assembly 200 is produced. The catalyst ink is sprayed on both sides of the polymer electrolyte membrane.

F.膜電極接合体200の評価
以下、実施例1〜3および比較例1により作製した触媒インクを使って形成した膜電極接合体200の電圧安定性およびセル電圧を比較する。
F. Evaluation of Membrane / Electrode Assembly 200 Hereinafter, the voltage stability and cell voltage of the membrane / electrode assembly 200 formed using the catalyst inks produced in Examples 1 to 3 and Comparative Example 1 will be compared.

膜電極接合体200の電圧安定性およびセル電圧については、図8に示す燃料電池性能評価測定装置300を用いて測定した。図8は、燃料電池性能評価測定装置300を模式的に示す説明図である。膜電極接合体200は、水素ガスを供給する水素ガス流路310と、空気を供給し生成する水を排出する酸化ガス流路312の間に挟まれている水素ボンベ314とガスの流路310の間には、加湿器316および断熱材318で断熱されたパイプ320が設けられている。空気および水の流路312側には、加湿器322および断熱材324で断熱されたパイプ326が設けられている。膜電極接合体のアノード側触媒層204aとカソード側触媒層204bの間には負荷328が接続されている。   The voltage stability and cell voltage of the membrane electrode assembly 200 were measured using a fuel cell performance evaluation and measurement apparatus 300 shown in FIG. FIG. 8 is an explanatory diagram schematically showing the fuel cell performance evaluation measuring apparatus 300. The membrane electrode assembly 200 includes a hydrogen gas channel 310 that supplies hydrogen gas, a hydrogen cylinder 314 that is sandwiched between an oxidizing gas channel 312 that supplies air and discharges water that is generated, and a gas channel 310. In between, the pipe 320 insulated with the humidifier 316 and the heat insulating material 318 is provided. A pipe 326 thermally insulated by a humidifier 322 and a heat insulating material 324 is provided on the air and water flow path 312 side. A load 328 is connected between the anode side catalyst layer 204a and the cathode side catalyst layer 204b of the membrane electrode assembly.

水素ガスは、ボンベ314から出た後、加湿器316で70℃の温度に加温され、断熱材318で断熱されたパイプ320を通って水素ガス流路310に供給される。水素ガスは水素ガス流路310からアノード側触媒層204aに拡散する。膜電極接合体200は80℃に加温されている。水素ガスは、アノード側触媒層204a上で下記の反応を起こす。   After leaving the cylinder 314, the hydrogen gas is heated to a temperature of 70 ° C. by the humidifier 316 and supplied to the hydrogen gas flow path 310 through the pipe 320 insulated by the heat insulating material 318. The hydrogen gas diffuses from the hydrogen gas flow path 310 to the anode side catalyst layer 204a. The membrane electrode assembly 200 is heated to 80 ° C. The hydrogen gas causes the following reaction on the anode catalyst layer 204a.

アノード電極: H2 → 2H+ + 2e- (1) Anode electrode: H 2 → 2H + + 2e (1)

発生した水素イオンは高分子電解質膜202を通過し、カソード側触媒層204bに移動する。一方、発生した電子はアノード側触媒層204aから負荷328を通ってカソード側触媒層204bに移動する。すなわち、膜電極接合体200は、負荷328に電流を流す電池の一部となる。   The generated hydrogen ions pass through the polymer electrolyte membrane 202 and move to the cathode catalyst layer 204b. On the other hand, the generated electrons move from the anode side catalyst layer 204a through the load 328 to the cathode side catalyst layer 204b. That is, the membrane electrode assembly 200 becomes a part of a battery that allows current to flow through the load 328.

空気は、加湿器322で70℃に加温され、断熱材324で断熱されたパイプ326を通って酸化ガス流路312に供給される。空気は、カソード電極板側の触媒層204bに拡散する。空気は、触媒層204b上で、電解質膜を通過してきた水素イオンおよび負荷328を通ってきた電子と以下の反応を起こす。   The air is heated to 70 ° C. by the humidifier 322 and supplied to the oxidizing gas flow path 312 through the pipe 326 insulated by the heat insulating material 324. Air diffuses into the catalyst layer 204b on the cathode electrode plate side. Air causes the following reaction with hydrogen ions that have passed through the electrolyte membrane and electrons that have passed through the load 328 on the catalyst layer 204b.

カソード電極: (1/2)O2 + 2H+ + 2e- → H20 (2) Cathode electrode: (1/2) O 2 + 2H + + 2e → H 2 0 (2)

触媒層の電圧安定性およびセル電圧の測定は、燃料電池性能評価測定装置300の負荷328の両端の電圧を測定することにより行う。表2に測定結果を示す。   The voltage stability of the catalyst layer and the cell voltage are measured by measuring the voltage across the load 328 of the fuel cell performance evaluation measuring device 300. Table 2 shows the measurement results.

Figure 0005217131
Figure 0005217131

実施例1、実施例2、実施例3と比較例1を用いて作製した触媒インクを塗布した膜電極接合体について、負荷328の両端の電圧を測定し、電圧安定性を比較すると、電圧のばらつきは、実施例2または実施例3で作製した触媒インクを用いた膜電極接合体では5〜6mV、実施例1で作製した触媒インクを用いた膜電極接合体では10mV、比較例1で作製した触媒インクを用いた膜電極接合体では13mVであり、電解質吸着比率が高い方(沈降速度が低い方)が電圧のばらつきが低く、電圧安定性が高い結果となった。また、セル電圧については、実施例2、3で作製した触媒インクを用いた膜電極接合体では0.63から0.65V、実施例1で作製した触媒インクを用いた膜電極接合体では0.60V、比較例で作製した触媒インクを用いた膜電極接合体では0.55Vであり、セル電圧は、高分子電解質108の吸着比率が高い方が高い結果となった。   For the membrane / electrode assembly coated with the catalyst ink produced using Example 1, Example 2, Example 3 and Comparative Example 1, the voltage across the load 328 was measured and the voltage stability was compared. The variation is 5 to 6 mV for the membrane electrode assembly using the catalyst ink produced in Example 2 or Example 3, 10 mV for the membrane electrode assembly using the catalyst ink produced in Example 1, and produced in Comparative Example 1. The membrane electrode assembly using the catalyst ink was 13 mV, and the higher the electrolyte adsorption ratio (the lower the sedimentation rate), the lower the voltage variation and the higher the voltage stability. The cell voltage was 0.63 to 0.65 V for the membrane electrode assembly using the catalyst ink prepared in Examples 2 and 3, and 0 for the membrane electrode assembly using the catalyst ink prepared in Example 1. The membrane electrode assembly using the catalyst ink produced in the comparative example of .60 V was 0.55 V, and the cell voltage was higher when the adsorption ratio of the polymer electrolyte 108 was higher.

上記(1)および(2)の化学反応は、触媒粒子102と高分子電解質108との界面で起こるため、触媒粒子102に高分子電解質108がより多く吸着している方が、触媒粒子102表面が高分子電解質108に覆われていない面積が少なく、触媒粒子102と高分子電解質の界面の面積が広いため、電圧安定性が高く、セル電圧も高くなると考えられる。   Since the chemical reactions (1) and (2) occur at the interface between the catalyst particles 102 and the polymer electrolyte 108, the surface of the catalyst particles 102 is more adsorbed to the catalyst particles 102. However, it is considered that since the area not covered with the polymer electrolyte 108 is small and the area of the interface between the catalyst particles 102 and the polymer electrolyte is large, the voltage stability is high and the cell voltage is also high.

G.燃料電池
図9を参照して、膜電極接合体200を用いた燃料電池400について説明する。図9は、燃料電池400を模式的に示す説明図である。燃料電池400は、セパレータ402と膜電極接合体200とが交互に重なり合ったスタック構造をしている。膜電極接合体200は、上述したように、高分子電解質膜202に触媒インク100を塗布したものである。セパレータ402は、燃料ガス(水素ガス)と酸化ガス(空気)とが直接接触しないように分離しているプレートである。燃料電池には、また、連通孔404から414が設けられている。連通孔404は燃料ガスの供給口であり、連通孔406は燃料ガスの排出口である。連通孔408は酸化ガス(空気)の供給口であり、連通孔410は酸化ガスおよび反応で生成した水の排出口である。連通孔412は冷却水の供給口であり、連通孔414は、冷却水の排出口である。
G. Fuel Cell A fuel cell 400 using the membrane electrode assembly 200 will be described with reference to FIG. FIG. 9 is an explanatory diagram schematically showing the fuel cell 400. The fuel cell 400 has a stack structure in which separators 402 and membrane electrode assemblies 200 are alternately overlapped. As described above, the membrane / electrode assembly 200 is obtained by applying the catalyst ink 100 to the polymer electrolyte membrane 202. The separator 402 is a plate that separates the fuel gas (hydrogen gas) and the oxidizing gas (air) so that they do not come into direct contact with each other. The fuel cell is also provided with communication holes 404 to 414. The communication hole 404 is a fuel gas supply port, and the communication hole 406 is a fuel gas discharge port. The communication hole 408 is a supply port for oxidizing gas (air), and the communication hole 410 is a discharge port for oxidizing gas and water generated by the reaction. The communication hole 412 is a cooling water supply port, and the communication hole 414 is a cooling water discharge port.

本実施例に係る燃料電池400は膜電極接合体200として、高分子電解質膜202と、前記高分子電解質膜上に吸着している触媒粒子102と、前記触媒粒子の外周をほぼ覆っている高分子電解質108と、を有する膜電極接合体200を備える。したがって、膜電極接合体200の電圧安定性が高く、セル電圧も大きい。したがって、燃料電池400を高性能にすることができる。   The fuel cell 400 according to the present embodiment is a membrane electrode assembly 200 that includes a polymer electrolyte membrane 202, catalyst particles 102 adsorbed on the polymer electrolyte membrane, and a high height that substantially covers the outer periphery of the catalyst particles. A membrane electrode assembly 200 having a molecular electrolyte 108. Therefore, the voltage stability of the membrane electrode assembly 200 is high and the cell voltage is also large. Therefore, the fuel cell 400 can have high performance.

以上説明したように、触媒粒子102と水とナフィオン溶液とをエタノールを加えずに混合して攪拌して高分子電解質108を触媒粒子102に吸着させた後、混合攪拌溶液にエタノールを加えて攪拌し、攪拌溶液を超音波により分散処理することにより得られる触媒インク100は、触媒粒子102が高分子電解質108によりほぼ覆われているので、触媒粒子102同士が吸着して大きな触媒インク粒子を形成することが抑制し、触媒インク100の分散の経時安定性を向上させることができる。   As described above, the catalyst particles 102, water and the Nafion solution are mixed and stirred without adding ethanol to adsorb the polymer electrolyte 108 to the catalyst particles 102, and then ethanol is added to the mixed stirred solution and stirred. In the catalyst ink 100 obtained by dispersing the stirring solution with ultrasonic waves, the catalyst particles 102 are almost covered with the polymer electrolyte 108, so that the catalyst particles 102 are adsorbed to form large catalyst ink particles. This can be suppressed and the temporal stability of the dispersion of the catalyst ink 100 can be improved.

触媒インク100を作製するとき、触媒粒子102と水とナフィオン溶液を合わせて攪拌する工程では、減圧して行うと、なお好ましい。触媒粒子102を構成する担持体104の表面には多数の細孔があり、担持体104の表面あるいはその細孔には気泡が付着しているが、減圧することにより、付着している気泡を除去することができ、高分子電解質108の吸着量を多くすることができるため、触媒インク100の分散の経時安定性を向上させることができる。   When the catalyst ink 100 is manufactured, it is more preferable to reduce the pressure in the step of stirring the catalyst particles 102, water, and Nafion solution together. There are a large number of pores on the surface of the support 104 constituting the catalyst particles 102, and air bubbles are attached to the surface of the support 104 or the pores. Since it can be removed and the amount of adsorption of the polymer electrolyte 108 can be increased, the stability over time of dispersion of the catalyst ink 100 can be improved.

また、かかる触媒インクを高分子電解質膜202に塗布することにより、触媒粒子102が高分子電解質108にほぼ覆われた構造を有する触媒層204を有する膜電極接合体200を作製することができる。本実施例に係る膜電極接合体は、触媒粒子102と高分子電解質108の界面の面積が広いため、膜電極接合体200の電圧安定性が高く、セル電圧も大きい。したがって、かかる膜電極接合体200を用いれば、燃料電池400の性能を向上させることができる。   In addition, by applying such a catalyst ink to the polymer electrolyte membrane 202, a membrane electrode assembly 200 having a catalyst layer 204 having a structure in which the catalyst particles 102 are substantially covered with the polymer electrolyte 108 can be produced. The membrane / electrode assembly according to this example has a large area at the interface between the catalyst particles 102 and the polymer electrolyte 108, so that the voltage stability of the membrane / electrode assembly 200 is high and the cell voltage is also large. Therefore, if such a membrane electrode assembly 200 is used, the performance of the fuel cell 400 can be improved.

以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。   The embodiments of the present invention have been described above based on some examples. However, the above-described embodiments of the present invention are for facilitating the understanding of the present invention and limit the present invention. It is not a thing. The present invention can be changed and improved without departing from the spirit and scope of the claims, and it is needless to say that the present invention includes equivalents thereof.

第1の実施例に係る触媒インクの構造を模式的に示す説明図。Explanatory drawing which shows typically the structure of the catalyst ink which concerns on a 1st Example. 高分子電解質の構造を示す化学式。Chemical formula showing the structure of the polymer electrolyte. 従来の触媒インクの構造を模式的に示す説明図。Explanatory drawing which shows the structure of the conventional catalyst ink typically. 触媒インクの製造方法を示す工程図。Process drawing which shows the manufacturing method of catalyst ink. 触媒インクの高分子電解質の吸着比率と沈降速度の関係を示すグラフ。The graph which shows the relationship between the adsorption ratio of the polymer electrolyte of catalyst ink, and a sedimentation rate. 第2の実施例に係る触媒層の構成を模式的に示す説明図。Explanatory drawing which shows typically the structure of the catalyst layer which concerns on a 2nd Example. 触媒層の作製方法を模式的に示す説明図。Explanatory drawing which shows the preparation methods of a catalyst layer typically. 燃料電池性能評価測定装置を模式的に示す説明図。Explanatory drawing which shows a fuel cell performance evaluation measuring device typically. 燃料電池を模式的に示す説明図。Explanatory drawing which shows a fuel cell typically.

符号の説明Explanation of symbols

100…触媒インク
101…触媒インク粒子
102…触媒粒子
104…担持体
106…貴金属
108…高分子電解質
110…パーフルオロカーボンスルホン酸ポリマ
112…疎水基
113…親水基
114…主鎖
115…側鎖
116…スルホン酸基
118…残渣
120…ろ液
200…膜電極接合体
202…高分子電解質層
204…触媒層
206…空間
300…燃料電池性能評価測定装置
310…水素ガス流路
312…酸化ガス流路
314…水素ボンベ
316、322…加湿器
318、324…断熱材
320、326…パイプ
328…負荷
400…従来の触媒インク
401…触媒インク粒子
DESCRIPTION OF SYMBOLS 100 ... Catalyst ink 101 ... Catalyst ink particle 102 ... Catalyst particle 104 ... Carrier 106 ... Precious metal 108 ... Polymer electrolyte 110 ... Perfluorocarbon sulfonic acid polymer 112 ... Hydrophobic group 113 ... Hydrophilic group 114 ... Main chain 115 ... Side chain 116 ... Sulfonic acid group 118 ... Residue 120 ... Filtrate 200 ... Membrane electrode assembly 202 ... Polymer electrolyte layer 204 ... Catalyst layer 206 ... Space 300 ... Fuel cell performance evaluation and measurement device 310 ... Hydrogen gas channel 312 ... Oxidizing gas channel 314 ... Hydrogen cylinders 316, 322 ... Humidifiers 318, 324 ... Heat insulation materials 320,326 ... Pipe 328 ... Load 400 ... Conventional catalyst ink 401 ... Catalyst ink particles

Claims (6)

触媒インク粒子を含む燃料電池用触媒インクであって、
前記触媒インク粒子は、
貴金属を担持体上に担持させてなる疎水性の触媒粒子と、
疎水基と親水基とを有する高分子電解質であって、前記疎水基が前記触媒粒子に向け配向され、前記親水基が前記触媒インク粒子の表面に露出して前記触媒粒子を覆う高分子電解質と、
を備え
前記触媒粒子は、前記触媒粒子の質量に対して、30質量パーセント以上の高分子電解質によって被覆されている、
燃料電池用触媒インク。
A catalyst ink for fuel cells containing catalyst ink particles,
The catalyst ink particles are
Hydrophobic catalyst particles having a noble metal supported on a support, and
A polymer electrolyte having a hydrophobic group and a hydrophilic group, wherein the hydrophobic group is oriented toward the catalyst particle, and the hydrophilic group is exposed on the surface of the catalyst ink particle to cover the catalyst particle; ,
Equipped with a,
The catalyst particles, relative to the weight of the catalyst particles, that are covered by 30 mass% or more polyelectrolytes,
Catalyst ink for fuel cells.
燃料電池用触媒インクが高分子電解質膜に塗布されている膜電極接合体であって、
高分子電解質膜と、
前記高分子電解質膜の両面に形成されている触媒層であって、触媒インク粒子を有する触媒層と、
を備え、
前記触媒インク粒子は、
貴金属を担持体上に担持させてなる疎水性の触媒粒子と、
疎水基と親水基とを有する高分子電解質であって、前記疎水基が前記触媒粒子に向け配向され、前記親水基が前記触媒インク粒子の表面に露出して前記触媒粒子を覆う高分子電解質と、を備え
前記触媒粒子は、前記触媒粒子の質量に対して、30質量パーセント以上の高分子電解質によって被覆されている、
電極接合体。
A membrane electrode assembly in which a fuel cell catalyst ink is applied to a polymer electrolyte membrane,
A polymer electrolyte membrane;
A catalyst layer formed on both surfaces of the polymer electrolyte membrane, the catalyst layer having catalyst ink particles;
With
The catalyst ink particles are
Hydrophobic catalyst particles having a noble metal supported on a support, and
A polymer electrolyte having a hydrophobic group and a hydrophilic group, wherein the hydrophobic group is oriented toward the catalyst particle, and the hydrophilic group is exposed on the surface of the catalyst ink particle to cover the catalyst particle; , equipped with a,
The catalyst particles, relative to the weight of the catalyst particles, that are covered by 30 mass% or more polyelectrolytes,
Membrane electrode assembly .
燃料電池であって、
高分子電解質膜と、前記高分子電解質膜上の両面に形成されている触媒層であって、触媒インク粒子を有する触媒層とを備える膜電極接合体と、
前記膜電極接合体の両側に配置されているセパレータと、
を備え、
前記触媒インク粒子は、
貴金属を担持体上に担持させてなる疎水性の触媒粒子と、
疎水基と親水基とを有する高分子電解質であって、前記疎水基が前記触媒粒子に向け配向され、前記親水基が前記触媒インク粒子の表面に露出して前記触媒粒子を覆う高分子電解質と、を備え
前記触媒粒子は、前記触媒粒子の質量に対して、30質量パーセント以上の高分子電解質によって被覆されている、
燃料電池。
A fuel cell,
A membrane electrode assembly comprising a polymer electrolyte membrane and a catalyst layer formed on both surfaces of the polymer electrolyte membrane, the catalyst layer having catalyst ink particles;
Separators disposed on both sides of the membrane electrode assembly;
With
The catalyst ink particles are
Hydrophobic catalyst particles having a noble metal supported on a support, and
A polymer electrolyte having a hydrophobic group and a hydrophilic group, wherein the hydrophobic group is oriented toward the catalyst particle, and the hydrophilic group is exposed on the surface of the catalyst ink particle to cover the catalyst particle; , equipped with a,
The catalyst particles, relative to the weight of the catalyst particles, that are covered by 30 mass% or more polyelectrolytes,
Fuel cell.
燃料電池用触媒インクの製造方法であって、
貴金属を担持体上に担持させてなる触媒粒子と、疎水基と親水基とを有する高分子電解質の溶液と水とを混合して攪拌して、前記疎水基が前記触媒粒子に向け配向され、前記親水基が前記触媒インク粒子の表面に露出して前記触媒粒子を覆う高分子電解質を有する触媒インク粒子を含む溶液を生成する工程と、
攪拌した溶液にエタノールを加えて攪拌混合する工程と、
混合溶液に対して分散処理する工程と、
を備える燃料電池用触媒インクの製造方法。
A method for producing a catalyst ink for a fuel cell, comprising:
Mixing and stirring catalyst particles obtained by supporting a noble metal on a support, a polymer electrolyte solution having a hydrophobic group and a hydrophilic group, and water, the hydrophobic groups are oriented toward the catalyst particles, Producing a solution containing catalyst ink particles having a polymer electrolyte covering the catalyst particles with the hydrophilic groups exposed on the surfaces of the catalyst ink particles;
Adding ethanol to the stirred solution and stirring and mixing;
A step of dispersing the mixed solution;
A method for producing a fuel cell catalyst ink comprising:
請求項に記載の燃料電池用触媒インクの製造方法において、
貴金属を担持体上に担持させてなる触媒粒子と高分子電解質の溶液と水とを混合して攪拌する工程は、減圧下で実行される燃料電池用触媒インクの製造方法。
In the manufacturing method of the catalyst ink for fuel cells of Claim 4 ,
The step of mixing and stirring the catalyst particles obtained by supporting the noble metal on the support, the polymer electrolyte solution, and water is a method for producing a catalyst ink for a fuel cell, which is performed under reduced pressure.
燃料電池用膜電極接合体の製造方法であって、
請求項または請求項のいずれかに記載の製造方法で製造した燃料電池用触媒インクを、高分子電界質膜に塗布する工程と、
前記高分子電解質膜に塗布した前記燃料電池用触媒インクを乾燥させる工程と、
を有する、燃料電池用膜電極接合体の製造方法。
A method for producing a fuel cell membrane electrode assembly comprising:
The fuel cell catalyst ink was prepared by the method of any of claims 4 or claim 5, a step of applying the polymer electrolyte membrane,
Drying the fuel cell catalyst ink applied to the polymer electrolyte membrane;
The manufacturing method of the membrane electrode assembly for fuel cells which has these.
JP2006216526A 2006-08-09 2006-08-09 Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof Expired - Fee Related JP5217131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216526A JP5217131B2 (en) 2006-08-09 2006-08-09 Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216526A JP5217131B2 (en) 2006-08-09 2006-08-09 Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof

Publications (2)

Publication Number Publication Date
JP2008041514A JP2008041514A (en) 2008-02-21
JP5217131B2 true JP5217131B2 (en) 2013-06-19

Family

ID=39176289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216526A Expired - Fee Related JP5217131B2 (en) 2006-08-09 2006-08-09 Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof

Country Status (1)

Country Link
JP (1) JP5217131B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998934B2 (en) * 2010-09-28 2016-09-28 凸版印刷株式会社 Manufacturing method of electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell, polymer electrolyte fuel cell
JP5494585B2 (en) 2011-07-27 2014-05-14 トヨタ自動車株式会社 Catalyst ink for fuel cell electrode, membrane electrode assembly, fuel cell
JP2013127865A (en) * 2011-12-16 2013-06-27 Toyota Motor Corp Electrode catalyst for fuel cell, method for manufacturing ionomer used for electrode catalyst, method for manufacturing membrane electrode assembly, membrane electrode assembly and fuel cell
KR102552145B1 (en) * 2017-12-29 2023-07-05 현대자동차주식회사 Method of manufacturing membrane electrode assembly for fuel cell
JP7119607B2 (en) * 2018-06-12 2022-08-17 東レ株式会社 Coating liquid manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536418A (en) * 1991-03-13 1993-02-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell and manufacture of the same
JP2002352806A (en) * 2001-05-29 2002-12-06 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell and automatic control method for cell temperature
JP5119459B2 (en) * 2001-09-28 2013-01-16 新日鐵住金株式会社 Fuel cell
JP2005353376A (en) * 2004-06-09 2005-12-22 Japan Storage Battery Co Ltd Manufacturing method of electrode for polymer electrolyte fuel cell
JP2006066309A (en) * 2004-08-30 2006-03-09 Gs Yuasa Corporation:Kk Method of manufacturing catalyst for solid polymer type fuel cell
JP4463123B2 (en) * 2005-01-24 2010-05-12 三井造船株式会社 Method for producing electrode catalyst powder for polymer electrolyte fuel cell, electrode catalyst powder for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2007273138A (en) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas diffusion electrode, method of manufacturing gas diffusion electrode, and membrane-electrode assembly

Also Published As

Publication number Publication date
JP2008041514A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP5495387B2 (en) POLYMER ELECTROLYTE FUEL CELL ELECTRODE AND METHOD FOR PRODUCING MEMBRANE / ELECTRODE ASSEMBLY USING THE SAME
US9640824B2 (en) Fuel cell electrodes with conduction networks
JP7387905B2 (en) Gas diffusion layer, manufacturing method thereof, membrane electrode assembly and fuel cell
EP2048729A1 (en) Assembly for fuel cell, fuel cell, and method for manufacturing fuel cell
JP2013534707A5 (en)
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP5217131B2 (en) Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof
JP2008140763A (en) Manufacturing method of fuel cell
US11121379B2 (en) Caged nanoparticle electrocatalyst with high stability and gas transport property
JP2005235706A (en) Electrode for solid polymer fuel cell
CN111584879B (en) Gas diffusion layer, method for producing same, and corresponding membrane electrode assembly and fuel cell
JP6160591B2 (en) Catalyst electrode layer, membrane electrode assembly, and fuel cell
US7056615B2 (en) Electrode for polymer electrolyte fuel cells and manufacturing method therefor
JP2017188335A (en) Method for manufacturing membrane-electrode assembly
JP2005032668A (en) Electrode catalyst layer for solid high polymer fuel cell, electrode for solid high polymer fuel cell, and solid high polymer fuel cell
JP5332863B2 (en) Manufacturing method of gas diffusion electrode
JP2011081977A (en) Catalyst layer for fuel cell
JP2008123744A (en) Manufacturing method of catalyst layer for fuel cell, and fuel cell
JP4665536B2 (en) Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer
JP2005285670A (en) Manufacturing method of film/electrode assembly for polymer electrolyte type fuel cell
JP5270936B2 (en) Manufacturing method of membrane electrode structure for fuel cell
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP5270939B2 (en) Membrane electrode structure for fuel cell
CN102615026A (en) Hydrolytically-stable hydrophilic coating for bipolar plates
JP2007018801A (en) Manufacturing method of catalyst mixture for solid polymer fuel cell, and solid polymer fuel cell using electrode containing catalyst mixture obtained by the above manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5217131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees