JPH02210406A - Optical coupling circuit - Google Patents

Optical coupling circuit

Info

Publication number
JPH02210406A
JPH02210406A JP3150389A JP3150389A JPH02210406A JP H02210406 A JPH02210406 A JP H02210406A JP 3150389 A JP3150389 A JP 3150389A JP 3150389 A JP3150389 A JP 3150389A JP H02210406 A JPH02210406 A JP H02210406A
Authority
JP
Japan
Prior art keywords
optical fiber
hemispherical
face
coupling circuit
single mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3150389A
Other languages
Japanese (ja)
Inventor
Hiroshi Honmo
本望 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3150389A priority Critical patent/JPH02210406A/en
Publication of JPH02210406A publication Critical patent/JPH02210406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To allow efficient coupling of a semiconductor light emitting element and an optical fiber with high efficiency by providing a semiconductor light emitting element and a circular cylindrical hemispherical lens, the end face of which is formed to a hemispherical shape and the end face on the opposite side is fusion-spliced to the incident end of the optical fiber. CONSTITUTION:The circular cylindrical hemispherical lens 4, the 1st end face of which is formed to the hemispherical shape and the 2nd end face 3 is formed to a plane shape is fusion-spliced to the incident end face of the single mode optical fiber 5 on the optical axis of the light beam (a) outputted from the semiconductor laser 1. The light beam outputted from the semiconductor laser 1 in this constitution is condensed by the hemispherical part 7 and is coupled to the single mode optical fiber 5 fusion-spliced to the circular cylindrical hemi spherical lens 4. The optical coupling circuit which has high efficiency, is rela tively gentle in the tolerance of axis adjustment, is simple in constitution and has high reliability is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、発光素子の出力光ビームを光ファイバに結
合するための光通信用の光結合回路に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical coupling circuit for optical communication for coupling an output light beam of a light emitting element to an optical fiber.

(従来の技術) 光通信システムにおける光信号源である半導体発光素子
に出力光を光伝送路である光ファイバに結合させる光結
合回路は、光通信システムを構成する上で重要なデバイ
スの1つである。
(Prior Art) An optical coupling circuit that couples output light from a semiconductor light emitting device, which is an optical signal source, to an optical fiber, which is an optical transmission line, in an optical communication system is one of the important devices in configuring the optical communication system. It is.

従来、光結合回路としては、例えばアブライドオプティ
クス(Appliecl 0ptics)1980年、
第19巻第2578頁の桑原氏による論文に記載された
先球ファイバをもちいるものがあげられる。この光結合
回路は、入射端を半球面状に形成した単一モードファイ
バを半導体レーザの出射端に近接して、半導体レーザか
らの出力光を単一モードファイバへ結合させるものであ
る。
Conventionally, as an optical coupling circuit, for example, Appliecl Optics (1980),
One example is one using a tipped fiber described in an article by Mr. Kuwabara in Vol. 19, p. 2578. In this optical coupling circuit, a single mode fiber having a hemispherical input end is placed close to an output end of a semiconductor laser, and output light from the semiconductor laser is coupled to the single mode fiber.

(発明が解決しようとする課題) この光結合回路は、構成が簡単であるが、単一モードフ
ァイバの入射端部まで光ファイバのコアが形成されてい
るため、光ビームがその入射端部に入射する時のスポッ
トサイズが非常に7卦さくなり、単一モードファイバの
軸調整のトレランスが非常に厳しいという欠点があった
。例えば星−モードファイバを実装する場合半導体レー
ザに対して光軸に垂直な方向にIpm以内の位置精度で
調整する必要がある。したがってこの光結合回路は、実
用上、組立て調整に大きな問題を生じる。
(Problem to be Solved by the Invention) This optical coupling circuit has a simple configuration, but since the core of the optical fiber is formed up to the input end of the single mode fiber, the light beam reaches the input end. The problem is that the spot size at the time of incidence is very small, and the tolerance for axis adjustment of the single mode fiber is very strict. For example, when mounting a star-mode fiber, it is necessary to adjust the position of the semiconductor laser in a direction perpendicular to the optical axis with a positional accuracy within Ipm. Therefore, in practice, this optical coupling circuit poses a major problem in assembly and adjustment.

方、光ファイバの軸調整のトレランスが比較的緩い光結
合回路として、従来2つの集束性ロッドレンズを使って
半導体レーザからの出力光を単一モードファイバへ結合
さぜるものがあるが、これは集束性ロッドレンズを2つ
も用いるため、光結合回路の構成が複雑になるという欠
点がある。
On the other hand, as an optical coupling circuit with relatively loose tolerance for optical fiber axis adjustment, there is a conventional one that uses two focusing rod lenses to couple the output light from a semiconductor laser into a single mode fiber. Since the method uses two focusing rod lenses, it has the disadvantage that the configuration of the optical coupling circuit becomes complicated.

本発明は、上述のような問題を解決して、半導体発光素
子と光ファイバの結合を高効率で行なうことができ、し
かも光ファイバの軸調整のトレランスが比較的緩く、構
成が簡単な光結合回路を提供することにある。
The present invention solves the above-mentioned problems and provides an optical coupling that can couple a semiconductor light emitting device and an optical fiber with high efficiency, has a relatively loose tolerance for axis adjustment of the optical fiber, and has a simple configuration. The purpose is to provide circuits.

(課題を解決するための手段) 本発明の光結合回路は、半導体発光素子と前記半導体発
光素子に近接した側の端面が半球面状に形成され、かつ
、光ファイバのガラス部の外径とほぼ等しい外径を有し
、前記半球面状に形成された端面と反対側の端面が光フ
ァイバの入射端に融着接続されている円柱状半球面レン
ズとを含むことを特徴とする。
(Means for Solving the Problems) An optical coupling circuit of the present invention has a semiconductor light emitting element and an end face near the semiconductor light emitting element formed in a hemispherical shape, and an outer diameter of a glass portion of an optical fiber. It is characterized in that it includes a cylindrical hemispherical lens having approximately the same outer diameter and whose end face opposite to the hemispherical end face is fusion-spliced to the input end of the optical fiber.

(作用) 本発明の光結合回路は、従来の入射端を半球面状に形成
した光ファイバの代わりに入射端面が半球面状に形成さ
れ、かつ、外径が光ファイバのガラス部の外径にほぼ等
しい円柱状半球面レンズと、その円柱状半球面レンズと
融着接続されている光ファイバとを用いた構成となって
いる。この構成は、光ファイバの入射端部に円柱状半球
面レンズを設けるため、光ファイバのコア端部と半球面
状部分との距離が従来に比べ水弁。これにより、半導体
レーザと半球面状部分との距離を長くすることが出来、
半導体レーザから出力された光ビームが半球面状部分に
入射する時のスポットサイズを従来より大きくすること
ができる。光ファイバのトレランスは、その半球面状部
分での光ビームのスポットサイズが大きい程、大きくな
るため、本発明の円柱状半球面レンズに融着接続されて
いる光ファイバのトレランスは、従来より大きくなる。
(Function) The optical coupling circuit of the present invention has an input end face formed in a hemispherical shape instead of a conventional optical fiber having an input end formed in a hemispherical shape, and the outer diameter is the outer diameter of the glass portion of the optical fiber. It has a configuration using a cylindrical hemispherical lens that is approximately equal to , and an optical fiber that is fusion-spliced to the cylindrical hemispherical lens. In this configuration, since a cylindrical hemispherical lens is provided at the input end of the optical fiber, the distance between the core end of the optical fiber and the hemispherical portion is shorter than that of the conventional one. This makes it possible to increase the distance between the semiconductor laser and the hemispherical part.
The spot size when the light beam output from the semiconductor laser enters the hemispherical portion can be made larger than before. The tolerance of an optical fiber increases as the spot size of the light beam on its hemispherical portion increases. Therefore, the tolerance of the optical fiber fusion-spliced to the cylindrical hemispherical lens of the present invention is greater than that of the conventional one. Become.

また、本発明の半球面状の部分の屈折率を光ファイバの
屈折率より大きくすることにより、従来より半球面状部
分の受光角を大きくすることができるため、より項効率
で光ビームを光ファイバへ結合させることができる。
In addition, by making the refractive index of the hemispherical portion of the present invention larger than the refractive index of the optical fiber, the acceptance angle of the hemispherical portion can be made larger than before, so the light beam can be transmitted with higher efficiency. It can be coupled to a fiber.

(実施例) 以下、本発明について、図面を参照して説明する。第1
図は、本発明の一実施例を示す断面図である。半導体レ
ーザ1から出力される波長1.55pmの光ビームの光
軸上に第1端面2が半球面状に形成され、第2の端面3
が平面状になっているガラスから成る曲率半径約65p
m、長さ約650pmの円柱状半球面レンズ4がスポッ
トサイズ511m、カットオフ波長1.1pm外径12
5pmの単一モード光ファイバ5の入射端面に融着接続
されている。また、半導体レーザ1は熱放出を行なうた
め、ヒートシンク6上に固着されている。また、上記の
円柱状半球面レンズ4の半球面状の部分7の材料は、受
光角を大きくするため、単一モード光ファイバ5の屈折
率約1.5より太きい屈折率約1.9を有するガラス材
料を用いている。
(Example) The present invention will be described below with reference to the drawings. 1st
The figure is a sectional view showing one embodiment of the present invention. A first end face 2 is formed in a hemispherical shape on the optical axis of a light beam with a wavelength of 1.55 pm output from the semiconductor laser 1, and a second end face 3 is formed in a hemispherical shape.
The radius of curvature is approximately 65p.
A cylindrical hemispherical lens 4 with a length of about 650 pm has a spot size of 511 m, a cutoff wavelength of 1.1 pm, and an outer diameter of 12
It is fusion spliced to the input end face of a 5 pm single mode optical fiber 5. Further, the semiconductor laser 1 is fixed on a heat sink 6 in order to emit heat. In addition, the material of the hemispherical portion 7 of the cylindrical hemispherical lens 4 has a refractive index of approximately 1.9, which is thicker than the refractive index of approximately 1.5 of the single mode optical fiber 5, in order to increase the acceptance angle. A glass material with

なお円柱状部分8は単一モード光ファイバ5の屈折率と
ほぼ同程度の屈折率を有する位置用なガラスである。こ
の円柱状半球面レンズ4を製作するのは、比較的容易で
、例えば、単一モード光ファイバ5の外径とほぼ等しい
外径を有する円柱状部材の端面に単一モード光ファイバ
5の端面を放電による溶融し、接続する。次に、その円
柱状部材を所望の長さで切断する。次に高屈折率ガラス
の溶融液に上記の切断面を浸すことにより、その高屈折
率ガラスの表面張力により高屈折率ガラスから成る半球
状部分7が形成される。なお、この高屈折率の半球状部
分7の形成方法は、例えばエレクトロニクスレターズ(
Electronics Letters)1983年
、第19巻第205頁のクー(KHOE)氏による「高
屈折率端先球光ファイバとレーザダイトートとの高効率
結合(Effeicient Coopling of
 La5er Diodes to TaperedM
onomode Fibres with High−
Indes End)と題する論文に詳しく記載されて
いる。ここで、半球状部分7の曲率半径65pmは以下
のようにして決定した。まず半導体レーザの出力端と半
球状部分7の先端との距離をa(第1図参照)とし、半
球状部分7の曲率半径、像倍率をそれぞれR,mとする
とそれらの間の関係は次式で表わすことができる。
Note that the cylindrical portion 8 is a positional glass having a refractive index that is approximately the same as that of the single mode optical fiber 5. It is relatively easy to manufacture this cylindrical hemispherical lens 4. For example, the end face of the single mode optical fiber 5 is attached to the end face of a cylindrical member having an outer diameter approximately equal to the outer diameter of the single mode optical fiber 5. be melted by electric discharge and connected. Next, the cylindrical member is cut to a desired length. Next, by immersing the cut surface in a melt of high refractive index glass, a hemispherical portion 7 made of high refractive index glass is formed due to the surface tension of the high refractive index glass. The method for forming this high refractive index hemispherical portion 7 is described, for example, in Electronics Letters (
Electronics Letters), 1983, Vol. 19, p. 205, by KHOE, "Efficient Coupling of a High Refractive Index Spherical Optical Fiber and a Laser Die-Tote"
La5er Diodes to TaperedM
onomode fibers with High-
It is described in detail in a paper entitled Indes End). Here, the radius of curvature of 65 pm of the hemispherical portion 7 was determined as follows. First, let the distance between the output end of the semiconductor laser and the tip of the hemispherical portion 7 be a (see Figure 1), and the radius of curvature and image magnification of the hemispherical portion 7 be R and m, respectively, then the relationship between them is as follows. It can be expressed by the formula.

R(m+1)=am(nl−1) 、、、、、、、、、
、、、、、、、、、、  ■ここではnlは半球状部分
7の屈折率である。本実施例では、半導体レーザ1のス
ポットサイズと単一モード光ファイバ5のスポットサイ
ズの比から像倍率mは5とし、また屈折率n1は1.9
とした。これらの値を■式に代入すると、 R=0.75a 、、、、、、、、、、、、、、01.
−−−−1−−−−1−−−  ■となる。半導体レー
ザの出力端と半球状部分7の先端との間の距離aは水弁
程、曲率半径Rは大きくなり、その結果、半球状部分7
の製作が容易となる。
R(m+1)=am(nl-1) , , , , , , ,
, , , , , , , , , where nl is the refractive index of the hemispherical portion 7 . In this embodiment, the image magnification m is set to 5 based on the ratio of the spot size of the semiconductor laser 1 and the spot size of the single mode optical fiber 5, and the refractive index n1 is set to 1.9.
And so. Substituting these values into equation (2), R=0.75a , , , , , , , , , , , 01.
−−−−1−−−−1−−− ■. The distance a between the output end of the semiconductor laser and the tip of the hemispherical portion 7 becomes as large as the water valve, and the radius of curvature R becomes larger.
It becomes easy to manufacture.

しかし、その反面、aが長くなると光ビームの拡がりの
ため半球状部分7が取り込む光ビームの量が少なくなり
、結合損失の像かを招く。第2図に距離9と半導体レー
ザ1のスポットサイズに対するビーム拡がりの割合の関
係を示す。ビーム拡がりの割合が50程度以上であれば
半球状部分7が取り込む光ビームの量は、あまり減少せ
ず、また曲率半径Rが約50pm以上であれば、比較的
容易に製作できる(第2図の斜線部分の領域)。このこ
とを考慮して、本実施例では、曲率半径Rを約6511
mとした。一方、円柱状半球面レンズ4の長さは、以下
のようにして決定した。まず円柱状半球面レンズ4の長
さを1とすると曲率半径Rとの関係は次式で表わすこと
ができる。
However, on the other hand, when a becomes longer, the amount of the light beam taken in by the hemispherical portion 7 decreases due to the spread of the light beam, resulting in a coupling loss. FIG. 2 shows the relationship between the distance 9 and the beam spread ratio with respect to the spot size of the semiconductor laser 1. If the beam divergence ratio is about 50 or more, the amount of light beam taken in by the hemispherical part 7 will not decrease much, and if the radius of curvature R is about 50 pm or more, it can be manufactured relatively easily (see Fig. 2). (shaded area). Taking this into consideration, in this example, the radius of curvature R is set to approximately 6511
It was set as m. On the other hand, the length of the cylindrical hemispherical lens 4 was determined as follows. First, assuming that the length of the cylindrical hemispherical lens 4 is 1, the relationship with the radius of curvature R can be expressed by the following equation.

ここでn2は円柱状部分8の屈折率で、単一モード光フ
ァイバ5の屈折率と同程度の約1.5である。■式に値
を代入すると、 1、=1OR、、、、、、、、、、、、、、、、、、、
、、、、、、、、、、、、、■となる。曲率半径Rは約
65pmであるので、円柱状半球面レンズ4の長さ1は
約650μmとなる。
Here, n2 is the refractive index of the cylindrical portion 8, which is about 1.5, which is about the same as the refractive index of the single mode optical fiber 5. ■Substituting the value into the formula: 1,=1OR, , , , , , , , , , , , , , ,
, , , , , , , , , , ■. Since the radius of curvature R is about 65 pm, the length 1 of the cylindrical hemispherical lens 4 is about 650 μm.

上述のような構成で半導体レーザ1から出力された光ビ
ームは、半球状部分7により集光され、円柱状半球面レ
ンズ4に融着接続されている単一モード光ファイバ5に
結合される。本実施例での単一モート光ファイバ5の光
軸に垂直な方向のトレランスを従来の先球光ファイバの
場合とともに第3図に示す。単一モード光ファイバ5の
位置ずれに対する結合損失の増加量は、従来の先球光フ
ァイバの場合に比べ非常に緩く、損失増加量が1clB
のところで従来例と本実施例とを較べてみると7倍程度
も許容軸ずれ量が拡くなっていることがわかる。また、
本実施例では、結合損失が3dB程度の高効率な光結合
回路が得られる。
The light beam output from the semiconductor laser 1 with the above-described configuration is focused by the hemispherical portion 7 and coupled to the single mode optical fiber 5 which is fusion-spliced to the cylindrical hemispherical lens 4. The tolerance in the direction perpendicular to the optical axis of the single moat optical fiber 5 in this embodiment is shown in FIG. 3 together with the case of a conventional tipped optical fiber. The amount of increase in coupling loss due to positional deviation of the single mode optical fiber 5 is very gentle compared to the case of a conventional optical fiber with a tip end, and the amount of increase in loss is 1 clB.
By the way, when comparing the conventional example and this embodiment, it can be seen that the allowable axis deviation amount is increased by about 7 times. Also,
In this embodiment, a highly efficient optical coupling circuit with a coupling loss of about 3 dB can be obtained.

なお、本実施例では発振波長1.55pmの半導体レー
ザ1を用いたがこれに限定されず、例えば発振波長が1
.3pm帯の半導体レーザを用いても良い。
In this example, the semiconductor laser 1 with an oscillation wavelength of 1.55 pm was used, but the invention is not limited to this.
.. A 3 pm band semiconductor laser may also be used.

また、本実施例では、第2の端面3を光軸に垂直な面内
と平行に形成し、単一モード光ファイバ5の入射端に融
着接続されているが、半導体レーザへの反射戻り光を防
ぐために第2の端面と単一モード光ファイバの入射端を
それぞれ光軸に対して斜めに形成し、融着接続しても良
い。またさらに第1の端面2に無反射コートを施しても
良い。
In addition, in this embodiment, the second end face 3 is formed parallel to the plane perpendicular to the optical axis, and is fusion spliced to the input end of the single mode optical fiber 5, but the second end face 3 is formed parallel to the plane perpendicular to the optical axis, and is fusion spliced to the input end of the single mode optical fiber 5. In order to prevent light from entering, the second end face and the input end of the single mode optical fiber may be formed obliquely with respect to the optical axis, and fusion spliced. Furthermore, the first end surface 2 may be coated with an anti-reflection coating.

また、本実施例では、円柱状部分8の材料として位置用
なガラスを用いたが、半球状部分7の製作性を考慮して
、本実施例よりさらに曲率半径を大きくする場合には、
円柱状部分8の材料として屈折率分布を有したもの(例
えば集束型多モード光ファイバ等)を用いても良い。
Further, in this embodiment, positional glass was used as the material for the cylindrical portion 8, but in consideration of the manufacturability of the hemispherical portion 7, if the radius of curvature is made larger than in this embodiment,
As the material of the cylindrical portion 8, a material having a refractive index distribution (for example, a focusing multimode optical fiber) may be used.

(発明の効果) 以上述べた通り、半導体発光素子と光ファイバとの結合
が高効率で、光ファイバの軸調整のトレランスが比較的
緩く、しかも構成が簡単な信頼性の高い光結合回路が得
られる。
(Effects of the Invention) As described above, it is possible to obtain a highly reliable optical coupling circuit in which the semiconductor light emitting device and the optical fiber are coupled with high efficiency, the tolerance of the axis adjustment of the optical fiber is relatively loose, and the configuration is simple. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す側面図であり、
第2図はビーム拡がり量を説明するための説明図であり
、第3図は本発明の実施例と従来例での光ファイバの位
置ずれ量に対する結合損失増加量の評価結果を示す線図
である。1は半導体レーザ、2は第1の端面、3は第2
の端面、4は円柱状半球面レンズ、5は単一モード光フ
ァイバ、6はヒートシンク、7は半球状部分、8は円柱
状部分である。 第 図
FIG. 1 is a side view showing the configuration of an embodiment of the present invention.
Fig. 2 is an explanatory diagram for explaining the amount of beam spread, and Fig. 3 is a diagram showing the evaluation results of the amount of increase in coupling loss with respect to the amount of positional deviation of the optical fiber in the embodiment of the present invention and the conventional example. be. 1 is a semiconductor laser, 2 is a first end facet, 3 is a second
, 4 is a cylindrical hemispherical lens, 5 is a single mode optical fiber, 6 is a heat sink, 7 is a hemispherical portion, and 8 is a cylindrical portion. Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)半導体発光素子と、前記半導体発光素子に近接し
た側の端面が半球面状に形成され、かつ、光ファイバの
ガラス部の外径を有し、前記半球面状に形成された端面
と反対側の端面が光ファイバの入射端に融着接続されて
いる円柱状半球面レンズとを含むことを特徴とする光結
合回路。
(1) A semiconductor light emitting element, an end face on a side close to the semiconductor light emitting element is formed in a hemispherical shape, and has an outer diameter of a glass portion of an optical fiber; An optical coupling circuit comprising: a cylindrical hemispherical lens whose opposite end surface is fusion-spliced to an input end of an optical fiber.
(2)特許請求の範囲第(1)項記載の光結合回路にお
いて、前記円柱状半球面レンズの半球面状の部分の屈折
率が前記光ファイバのガラス部の屈折率より高いことを
特徴とする光結合回路。
(2) The optical coupling circuit according to claim (1), wherein the refractive index of the hemispherical portion of the cylindrical hemispherical lens is higher than the refractive index of the glass portion of the optical fiber. optical coupling circuit.
JP3150389A 1989-02-10 1989-02-10 Optical coupling circuit Pending JPH02210406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150389A JPH02210406A (en) 1989-02-10 1989-02-10 Optical coupling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150389A JPH02210406A (en) 1989-02-10 1989-02-10 Optical coupling circuit

Publications (1)

Publication Number Publication Date
JPH02210406A true JPH02210406A (en) 1990-08-21

Family

ID=12333034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150389A Pending JPH02210406A (en) 1989-02-10 1989-02-10 Optical coupling circuit

Country Status (1)

Country Link
JP (1) JPH02210406A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174552A (en) * 1992-12-07 1994-06-24 Nkk Corp Measuring apparatus for temperature of steel plate between stands of continuous hot press roll
US5446816A (en) * 1993-08-04 1995-08-29 The Furukawa Electric Co., Ltd. Optical fiber having a lens formed at an end thereof
JP2007192955A (en) * 2006-01-18 2007-08-02 Utsunomiya Univ Lensed optical fiber formed with high refractive index layer on distal end of coreless optical fiber and optical coupling module using the lensed optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174552A (en) * 1992-12-07 1994-06-24 Nkk Corp Measuring apparatus for temperature of steel plate between stands of continuous hot press roll
US5446816A (en) * 1993-08-04 1995-08-29 The Furukawa Electric Co., Ltd. Optical fiber having a lens formed at an end thereof
JP2007192955A (en) * 2006-01-18 2007-08-02 Utsunomiya Univ Lensed optical fiber formed with high refractive index layer on distal end of coreless optical fiber and optical coupling module using the lensed optical fiber

Similar Documents

Publication Publication Date Title
US4807954A (en) Optical coupling device
JP3067968B2 (en) Optical fiber interface for coupling light source and method of manufacturing the same
US7113671B2 (en) Optical coupling device, fabricating method thereof, optical coupling device assembly, and lensed fiber using the optical coupling device
JP2004029798A (en) Alignment device
US4830453A (en) Device for optically coupling a radiation source to an optical transmission fiber
JPH10282364A (en) Assembly of optical device
KR20040015261A (en) Thermally-formed lensed fibers
KR102100312B1 (en) Optical fiber and optical coupler with lens
JP2896947B2 (en) Optical fiber end structure and method of manufacturing the same
JPH02210406A (en) Optical coupling circuit
JPH05288967A (en) Optical fiber for laser input
JPS6061707A (en) Optical coupling method
JPS61129606A (en) Optical coupler
JPS6338909A (en) Optical fiber with lens
JPH02210405A (en) Optical coupling circuit
JP3821576B2 (en) Optical module
JPS62247209A (en) Optical gyroscope
JPS6160595B2 (en)
JPH0688922A (en) Optical coupler
JP3786648B2 (en) Mode size conversion optical waveguide
JPH0266505A (en) Optical coupling circuit
JPS6029081B2 (en) Method for manufacturing semiconductor light emitting device
JPS582469B2 (en) Manufacturing method of semiconductor laser device with lens
JPS61189517A (en) Manufacture of semiconductor laser device with optical isolator
JPH02278210A (en) Optical coupler