JPS61129606A - Optical coupler - Google Patents

Optical coupler

Info

Publication number
JPS61129606A
JPS61129606A JP25242184A JP25242184A JPS61129606A JP S61129606 A JPS61129606 A JP S61129606A JP 25242184 A JP25242184 A JP 25242184A JP 25242184 A JP25242184 A JP 25242184A JP S61129606 A JPS61129606 A JP S61129606A
Authority
JP
Japan
Prior art keywords
lens
rod lens
face
light emitting
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25242184A
Other languages
Japanese (ja)
Inventor
Yuichi Odagiri
小田切 雄一
Yuji Abe
雄二 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25242184A priority Critical patent/JPS61129606A/en
Publication of JPS61129606A publication Critical patent/JPS61129606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To permit easy packaging while maintaining the low coupling loss of a semiconductor light emitting element and optical fiber by constituting an optical coupler of the semiconductor light emitting element, the 1st near parabolic rod lens of which the end face on the side facing said element has a convex curved face and the 2nd near parabolic rod lens. CONSTITUTION:The 1st near parabolic lens of which the end face on the side facing the semiconductor light emitting element 2 is formed to the convex curved face shape and of which the refractive index decreases in an approximately square distribution with respect to the distance from the central axis is disposed in proximity to a light emitting face 3 of said element 2. The 2nd near parabolic rod lens 7 is disposed in such a manner that the 1st end face faces the lens 6 and the 2nd end face 9 contacts with the end face of an optical fiber 10. The focusing parameter and refractive index on the central axis of the 1st lens 6 are made larger than said parameter and refractive index of the 2nd lens 7 and the pitch of the respective lenses is made <=0.25 pitch.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体発光素子の出力光ビームを光ファイバに
結合するための光通信用及び元情報処理用の光結合器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical coupler for optical communication and original information processing for coupling an output light beam of a semiconductor light emitting device to an optical fiber.

〔従来技術〕[Prior art]

半導体発光素子を光源とし、元ファイノくを光伝送路と
して用いる光通信方式や光情報処理方式は、その広帯域
性あるいは優れた経済性等の丸め公衆通信や放送をはじ
めとする多くの分野で実用化されてきている。その光通
信システムや光情報処理システムを構成するさまざまな
光回路の中の一つに半導体発光素子と光伝送路の結合回
路がある。
Optical communication systems and optical information processing systems that use semiconductor light-emitting devices as light sources and optical fibers as optical transmission lines have been put to practical use in many fields, including public communications and broadcasting, due to their wide-band characteristics and excellent economic efficiency. It is becoming more and more popular. One of the various optical circuits that make up such optical communication systems and optical information processing systems is a coupling circuit between a semiconductor light emitting device and an optical transmission line.

従来、性能の良い結合回路としては、例えばアブライト
オプティクス(Applied 0ptics ) 1
980年、第19巻、 42578頁所載の桑原氏式よ
る論文に記載されたテーパ先球ファイバを使うものや、
実願昭54−137440 r先球集束性光伝送体」や
実願昭59−136824.昭和59年9月10日出願
「凸曲面付ロッドレンズを用いた光結合器」に記載され
た先球集束性ロッドレンズを使うものが掲けられる。こ
れらの結合回路により半導体装置素子特に半導体レーザ
と光伝送路特に光ファイバとの結合効率がかなり良くな
ることは既に知られている。光ファイバとして単一モー
ドファイバを用いた場合には、各々3.5dB、L7d
Bの結合損失で半導体レーザからの出力光ビームが結合
されている。
Conventionally, as a coupling circuit with good performance, for example, Applied Optics 1
1980, Volume 19, page 42578, which uses a tapered tip fiber described in the paper by Mr. Kuwabara,
Utility Model Application No. 54-137440 r-Sphere Focusing Optical Transmitter” and Utility Application Application No. 59-136824. A device using a converging rod lens with a spherical tip described in the application filed on September 10, 1980, ``Optical coupler using a rod lens with a convex curved surface,'' is proposed. It is already known that these coupling circuits can considerably improve the coupling efficiency between a semiconductor device element, particularly a semiconductor laser, and an optical transmission line, particularly an optical fiber. When a single mode fiber is used as the optical fiber, 3.5 dB and L7d, respectively.
The output light beams from the semiconductor lasers are combined with a coupling loss of B.

しかしながら、テーパ先球ファイバを用いた結合回路で
は、テーパ先球ファイバを半導体発光素子例えは半導体
レーザに対して光軸方向に数μm光軸に垂直な方向に1
μm以内の位置精度で実装する必要がある。このため、
テーパ先球ファイバの実装はかならずしも容易ではなく
、場合によっては実装の際に半導体発光素子例えば半導
体レーザとの接触により発光面を損傷させ劣化させる恐
れがある。このためこの樵の結合回路をモジュール化し
た場合には、結合損失が調整時よりもさらに2〜3dB
増加するという問題があった。
However, in a coupling circuit using a tapered spherical fiber, the tapered spherical fiber is connected to a semiconductor light emitting device, for example, a semiconductor laser, by a few μm in the optical axis direction.
It is necessary to implement with positional accuracy within μm. For this reason,
Mounting a tapered spherical fiber is not always easy, and in some cases, there is a risk that the light emitting surface may be damaged and deteriorated due to contact with a semiconductor light emitting element, such as a semiconductor laser, during mounting. Therefore, if this woodcutter's coupling circuit is made into a module, the coupling loss will be 2 to 3 dB more than when adjusting.
The problem was that it was increasing.

他方、テーパ先球ファイバにくらべて実装の容易な先球
集束性ロッドレンズでは、先球面での光の屈折を利用す
ることにより、半導体発光素子からのかなりの割合の出
力光ビームがレンズ周辺部でのレンズ収差の影響を受け
ることなくレンズ内を通過することができる。従って半
導体発光素子例えば半導体レーザと光伝送路例えば光フ
ァイバの結合損失は端面が先球化されていないロッドレ
ンズに較ぺて大幅に低減できる。しかしながら、実装が
容易とはいっても光ファイバを光軸に垂直な方向にZ5
μm以内の位置精度で実装する必要があり量産性を高く
するには多少問題があった。
On the other hand, a converging rod lens with a spherical tip, which is easier to implement than a tapered spherical fiber, utilizes the refraction of light at the spherical tip surface to direct a significant proportion of the output light beam from the semiconductor light emitting device to the periphery of the lens. can pass through the lens without being affected by lens aberrations. Therefore, the coupling loss between a semiconductor light emitting element, such as a semiconductor laser, and an optical transmission line, such as an optical fiber, can be significantly reduced compared to a rod lens whose end face is not rounded. However, although it is easy to install, it is difficult to install the optical fiber in the direction perpendicular to the optical axis.
It is necessary to implement the device with a positional accuracy within μm, which poses some problems in increasing mass productivity.

したがって光ファイバが単一モードファイバの場合であ
ってもマルチモード7アイパ並の位置精度で実装できる
ような量産性の優れた光結合器の開発が要請されていた
Therefore, there has been a demand for the development of an optical coupler that can be mass-produced and can be mounted with a positional accuracy comparable to that of a multimode 7-eyeper even when the optical fiber is a single mode fiber.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の欠点を除いて、半導体発光素子
と光ファイバの低損失な結合損失を維持しつつ、しかも
実装が容易で量産性に適した光結合器を提供することに
ある。
An object of the present invention is to provide an optical coupler that eliminates the above-mentioned drawbacks, maintains low coupling loss between a semiconductor light emitting device and an optical fiber, is easy to implement, and is suitable for mass production.

〔発明の構成〕[Structure of the invention]

本発明によれば、半導体発光素子と、半導体発光素子に
面する側の端面が凸曲面状に形成され中心軸からの距離
に対して屈折率がほぼ2乗分布で減少する凸曲面付の第
1の集束性ロッドレンズと、第1の端面がその凸曲面行
第1の集束性ロッドレンズに面し第2の端面が光ファイ
バに近接する第2の集束性ロッドレンズとで構成されて
おり、しかも凸曲面付の第1の集束性ロッドレンズの集
束パラメータ及び中心軸上の屈折率が第2の集束性ロッ
ドレンズに比べて大きく且つ各レンスノヒッチが0.2
5ピ、チ以下であることを特徴とする光結合器が得られ
る。
According to the present invention, a semiconductor light emitting device and a semiconductor light emitting device having a convex curved surface whose end face facing the semiconductor light emitting device is formed in a convex curved shape and whose refractive index decreases with a substantially square distribution with respect to the distance from the central axis. The second focusing rod lens has a first end face facing the first focusing rod lens and a second end face close to the optical fiber. Moreover, the focusing parameter and the refractive index on the central axis of the first focusing rod lens with a convex curved surface are larger than those of the second focusing rod lens, and each lens angle is 0.2.
An optical coupler characterized in that it is 5 or less pins is obtained.

〔実施例〕〔Example〕

次に本発明の実施例を図面を参照して詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.

最初、本発明の詳細な説明する前に、本発明の原理と作
用を説明する。
First, before explaining the present invention in detail, the principle and operation of the present invention will be explained.

本発明では半導体発光素子例えば半導体レーザに面する
側の端面が凸曲面状に形成され且つ中心軸からの距離の
2乗にほぼ比例して屈折率が減少するような凸曲面付の
第1の集束性ロッドレンズと平端面の第2の集束性ロッ
ドレンズにおいて、中心軸での屈折率をno、中心軸か
らの距離r。
In the present invention, the end face of the semiconductor light emitting device, for example, the side facing the semiconductor laser, is formed in a convex curved shape, and the first end face has a convex curved surface whose refractive index decreases approximately in proportion to the square of the distance from the central axis. In the focusing rod lens and the second focusing rod lens with a flat end surface, the refractive index at the central axis is no, and the distance from the central axis is r.

集束パラメータをaとするとレンズ内での屈折率nは n (r) =no (1−上a r”)で与えられる
。半導体発光素子例えば半導体レーザと第1の集束性ロ
ッドレンズとの距離は焦点距離を除くその近傍とする。
When the focusing parameter is a, the refractive index n within the lens is given by n (r) = no (1 - upper a r'').The distance between the semiconductor light emitting element, for example a semiconductor laser, and the first focusing rod lens is The vicinity excluding the focal length.

これは第1の集束性ロッドレンズから数園離れたところ
に第2の集束性ロッドレンズを置くためであり、また第
2の集束性ロッドレンズに入射するときの出力光ビーム
のスポットサイズを拡くとるためである。そして第2の
集束性ロッドレンズと光ファイバとは、双方の端面同士
が互いに近接するように固定される。
This is because the second focusing rod lens is placed several degrees away from the first focusing rod lens, and it also expands the spot size of the output light beam when it enters the second focusing rod lens. This is to save money. The second focusing rod lens and the optical fiber are fixed such that their end surfaces are close to each other.

第2図はこれらの理・由をわかりやすく説明するための
図で、光ファイバと第2の集束性ロッドレンズの端面同
士が一体化された場合に第1の集束性ロッドレンズから
の出射光が第2の集束性ロッドレンズに入射するときの
スポットサイズの計算値を、第2の集束性ロッドレンズ
のレンズピッチを変えて示したものである。スポットサ
イズは第2.  の集束性ロッドレンズのレンズピッチ
が大きい程拡がる。例えば0.2ピッチのレンズでは、
スボ。
Figure 2 is a diagram to explain these reasons in an easy-to-understand manner, and shows the light emitted from the first focusing rod lens when the end surfaces of the optical fiber and the second focusing rod lens are integrated. The calculated value of the spot size when the light is incident on the second focusing rod lens is shown by changing the lens pitch of the second focusing rod lens. Spot size is second. The larger the lens pitch of the convergent rod lens, the wider it becomes. For example, with a 0.2 pitch lens,
Subo.

トテイズが16μm程度にまでなり、見かけ上スポット
サイズ16μmの光ファイバに半導体発光素子例えば半
導体レーザからの出力光ビームが結合されるのに郷しい
。これは丁度マルチモードファイバに半導体レーザから
の出力光ビームを結合させるのとはt!等価であり、実
装が極めて容易となる。第1の集束性ロッドレンズと第
2の集束性ロッドレンズの間隔は像倍率に合わせて調整
される。ここで2個の集束性ロッドレンズの焦束パラメ
ータ及び中心軸上の屈折率は、実装をさらに容易にする
ため、第1の集束性ロッドレンズを大きく、第2の集束
性ロッドレンズを小さくする必要がある。第1の集束性
ロッドレンズでは半導体発光素子からの出力光ビームを
出来る限りレンズ内に取込むため開口数の大きいレンズ
既ち集束パラメータ及び中心軸上の屈折率の大きいレン
ズを使わなくてはならない。他方第2の集束性ロッドレ
ンズでは、見かけ上スポットサイズが拡がったとは言っ
ても光フアイバ自身の開口数が小さいため、入射した出
力光ビームを出来るだけ緩やかに集束させる必要がある
。したがって集束パラメータ及び中心軸上の屈折率の小
さいレンズを使わなくてはならない。また2個の集束性
ロッドレンズ同士は反射光対策から非共焦点系である方
が望ましく、レンズピッチについても各々が0.25ピ
ッチ以内にあれは、レンズ間の相対位置関係で像倍率を
任意の大きさに調整できる。
This is suitable for coupling an output light beam from a semiconductor light emitting device, such as a semiconductor laser, to an optical fiber with an apparent spot size of 16 μm. This is just like coupling the output light beam from a semiconductor laser into a multimode fiber! They are equivalent and extremely easy to implement. The distance between the first focusing rod lens and the second focusing rod lens is adjusted according to the image magnification. Here, the focusing parameters and refractive indexes on the central axis of the two focusing rod lenses are such that the first focusing rod lens is large and the second focusing rod lens is small, in order to further facilitate implementation. There is a need. In the first focusing rod lens, in order to incorporate as much of the output light beam from the semiconductor light emitting element into the lens as possible, a lens with a large numerical aperture, a focusing parameter, and a large refractive index on the central axis must be used. . On the other hand, in the second focusing rod lens, although the spot size has apparently expanded, the numerical aperture of the optical fiber itself is small, so it is necessary to focus the incident output light beam as gently as possible. Therefore, a lens with a small focusing parameter and a small refractive index on the central axis must be used. In addition, it is preferable that the two converging rod lenses be non-confocal lenses to prevent reflected light, and if the lens pitch is within 0.25 pitch, the image magnification can be adjusted arbitrarily depending on the relative positional relationship between the lenses. The size can be adjusted.

第1図は本発明の実施例を示す側面図、第3図は第1図
に示す実施例における光ファイバの許容軸ずれ範囲を測
定した結果の一例を示す線図である。説明をわかりやす
くするために、X軸、Y軸。
FIG. 1 is a side view showing an embodiment of the present invention, and FIG. 3 is a diagram showing an example of the results of measuring the allowable axis misalignment range of the optical fiber in the embodiment shown in FIG. To make the explanation easier to understand, use the X and Y axes.

Z軸を図示のように定める。Y軸は紙面に垂直に向いて
いる。
Define the Z axis as shown. The Y-axis is oriented perpendicular to the plane of the paper.

図において、接合面1を有する半導体レーザ2はその発
光面3からの出力光ビーム4の光軸51がZ軸と平行に
なるようにヒートシンク5上に融着固定されている。屈
折率分布がほぼ n (r+) = net (1−工atri”)で与
えられる第1の集束性ロッドレンズ6には、半導体ビー
プ2の発光面3に近接して配置される側が先球状に研磨
されている。ここで、no、は中心軸52上の屈折率+
alは第1の集束性ロッドレンズ6の集束パラメータ+
rlは第1の集束性ロンドレンズ6の中心軸52からの
距離をそれぞれあられす。第2の集束性ロッドレンズは
第1の端面8が第1の集束性ロッドレンズ6に面し、第
2の端面9が光ファイバー0の端面に接して配置されて
いる。特に第2の集束性ロッドレンズ7と光ファイバー
0は双方が一体となって固定されている。第2の集束性
ロッドレンズ7の屈折率分布についても、はぼ n (r z ) = 111! (1ia!r:)で
与えられている。2つの集束性ロッドレンズはa+>a
21 noi>no2を満たすように選び、第1の集束
性ロッドレンズ6では開口数を大きく取れるように、そ
して第2の集束性ロッドレンズ7では緩やかに出力光ビ
ーム4を集光している。
In the figure, a semiconductor laser 2 having a bonded surface 1 is fused and fixed on a heat sink 5 so that an optical axis 51 of an output light beam 4 from its light emitting surface 3 is parallel to the Z axis. The first focusing rod lens 6 whose refractive index distribution is approximately given by n (r+) = net (1 - atri'') has a spherical tip on the side disposed close to the light emitting surface 3 of the semiconductor beep 2. Polished. Here, no is the refractive index on the central axis 52 +
al is the focusing parameter of the first focusing rod lens 6 +
rl is the distance from the central axis 52 of the first focusing Rondo lens 6, respectively. The second focusing rod lens has a first end surface 8 facing the first focusing rod lens 6 and a second end surface 9 in contact with the end surface of the optical fiber 0. In particular, the second focusing rod lens 7 and the optical fiber 0 are both fixed as one body. Regarding the refractive index distribution of the second focusing rod lens 7, n (r z ) = 111! It is given by (1ia!r:). Two focusing rod lenses are a+>a
21 noi>no2, the first focusing rod lens 6 is configured to have a large numerical aperture, and the second focusing rod lens 7 is configured to gently focus the output light beam 4.

本実施例では第1の集束性ロッドレンズ6としてflo
t=L63 、 a1=α175w  s rt =0
.9mm+レンズビ、チ0.23ピッチ、第2の集束性
ロッドレンズ7としてno=1.59 、a=0.10
7m  sr 2 = 0.9■!レンズピッチ0.2
0ピッチのものを使用した。また光フアイバ10社コア
径10μm。
In this embodiment, the first focusing rod lens 6 is a flo lens.
t=L63, a1=α175w s rt =0
.. 9mm + lens beam, chi 0.23 pitch, second focusing rod lens 7, no=1.59, a=0.10
7m sr 2 = 0.9■! Lens pitch 0.2
A 0 pitch one was used. In addition, the core diameter of 10 optical fibers is 10 μm.

カットオフ波長1.1μmの単一モードファイバ。Single mode fiber with a cutoff wavelength of 1.1μm.

半導体レーザ2は発振波長1.3μmのものを使用した
。このときの結合損失は2−7dBで、先球集束性ロッ
ドレンズ単独の場合と同程度の低損失な値が得られた。
The semiconductor laser 2 used had an oscillation wavelength of 1.3 μm. The coupling loss at this time was 2-7 dB, which was about the same low loss as when using only the spherical focusing rod lens.

また光ファイバ10は第2の集束性ロッドレンズ7と一
体化されているため、相対的    ”にスポットサイ
ズが拡くなって出力光ビーム4との結合が容易となる。
Furthermore, since the optical fiber 10 is integrated with the second converging rod lens 7, the spot size becomes relatively large and coupling with the output light beam 4 becomes easy.

また第3図に示すように光ファイバ10の軸ずれに対す
る損失の増加する程度は、先球集束性ロッドレンズを単
独に使用した従来例よりも緩くなる。損失増加量が1d
Bのところで従来例と本実施例とを較べてみると3.4
倍も許容軸ずれ量が拡くなっていることがわかる。
Further, as shown in FIG. 3, the degree of increase in loss due to axis deviation of the optical fiber 10 is slower than in the conventional example in which a converging rod lens with a spherical tip is used alone. Loss increase amount is 1d
Comparing the conventional example and this example at point B, the result is 3.4.
It can be seen that the allowable axis misalignment amount has expanded twice as much.

本実施例では以上説明した代表的な実施例の他に幾つか
の変形が考えられる。前述の実施例では半導体レーザ2
.第1.第2の集束性ロッドレンズ6.7.光ファイバ
ー0のパラメータを明示したが、本発明がそれらの数値
に限定されないことは言うまでもない。また本実施例で
は光ファイバ10と第2の集束性ロッドレンズ7が接し
て一体化されているが、一体となっている限り双方が若
干の間隔をおいて固定されていてもよい。さらに前述の
実施例では凸曲面として先球面の第1の集束性ロッドレ
ンズ6を用いたが、球面収差が小さいとされる双曲面等
の非球面形状とすることも可能である。
In this embodiment, several modifications can be made in addition to the typical embodiment described above. In the above embodiment, the semiconductor laser 2
.. 1st. Second focusing rod lens 6.7. Although the parameters of the optical fiber 0 have been specified, it goes without saying that the present invention is not limited to these values. Further, in this embodiment, the optical fiber 10 and the second focusing rod lens 7 are integrated in contact with each other, but as long as they are integrated, they may be fixed with a slight interval between them. Further, in the above-described embodiment, the first converging rod lens 6 having a spherical tip was used as the convex curved surface, but it is also possible to use an aspheric shape such as a hyperboloid, which is said to have a small spherical aberration.

以上説明したように本発明によれば、低損失で、実装時
光ファイバの軸ずれに対する損失増加量が従来に比べて
3.4倍も緩くなるような結合回路を実現できる。また
半導体レーザと第1の集束性ロッドレンズ、第2の集束
性ロッドレンズと光ファ占 イバをそれぞれ一つのブロックとして構成するよにすれ
ば、量産性の為い光結合器を実現できる。
As described above, according to the present invention, it is possible to realize a coupling circuit with low loss and in which the amount of increase in loss due to axis misalignment of optical fibers during mounting is 3.4 times less than in the prior art. Furthermore, by configuring the semiconductor laser, the first focusing rod lens, the second focusing rod lens, and the optical fiber fiber as one block, an optical coupler can be realized for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す側面図、第2図は本発明
をわがりやすく説明するため第2の集束性ロッドレンズ
と元ファイバが一体化されたときのレンズピッチに対す
るスポットサイズの計算結果を表わした線図、第3図は
本発明の実施例と従来例での元ファイバの軸ずれ量に対
する損失増加量の測定結果を示す線図である。 1・・・・・・接合面、2・・・・・・半導体レーザ、
3・・・・・・発光面、4・・・・・・出力光ビーム、
5・・・・・・ヒートシンク、6°°°゛°°第1の集
束性ロッドレンズ、7・・・・・・第2の集束性ロッド
レンズ、8・・・・・・第1の端面、91990.。 第2の端面、10・・・・・・光ファイバ、51・・・
・・・光軸、52・・・・・・中心軸。 為1図 第3図 レンス゛ビシ手 第Z図
FIG. 1 is a side view showing an embodiment of the present invention, and FIG. 2 is a diagram showing the spot size relative to the lens pitch when the second focusing rod lens and the original fiber are integrated, in order to explain the present invention in an easy-to-understand manner. FIG. 3 is a diagram showing the calculation results, and FIG. 3 is a diagram showing the measurement results of the amount of loss increase with respect to the amount of axial deviation of the original fiber in the embodiment of the present invention and the conventional example. 1... Junction surface, 2... Semiconductor laser,
3... Light emitting surface, 4... Output light beam,
5...Heat sink, 6°°°゛°°first focusing rod lens, 7...second focusing rod lens, 8...first end surface , 91990. . Second end face, 10... Optical fiber, 51...
...Optical axis, 52... Central axis. Figure 1 Figure 3 Lens hand Figure Z

Claims (1)

【特許請求の範囲】[Claims] 半導体発光素子と、前記半導体発光素子に面する側の端
面が凸曲面状に形成され中心軸からの距離に対して屈折
率がほぼ2乗分布で減少する凸曲面付の第1の集束性ロ
ッドレンズと、第1の端面が前記凸曲面付の第1の集束
性ロッドレンズの端面に面し第2の端面が光ファイバに
近接する第2の集束性ロッドレンズとを含み、前記凸曲
面付の第1の集束性ロッドレンズの集束パラメータ及び
中心軸上の屈折率が前記第2の集束性ロッドレンズに比
べて大きく且つ各レンズピッチが0.25ピッチ以下で
あることを特徴とする光結合器。
a semiconductor light emitting element; and a first focusing rod with a convex curved surface whose end face facing the semiconductor light emitting element is formed in a convex curved shape and whose refractive index decreases with a substantially square distribution with respect to the distance from the central axis. a second focusing rod lens having a first end face facing the end face of the first focusing rod lens with the convex curved surface and a second end face close to the optical fiber; An optical coupling characterized in that the focusing parameter and the refractive index on the central axis of the first focusing rod lens are larger than those of the second focusing rod lens, and the pitch of each lens is 0.25 pitch or less. vessel.
JP25242184A 1984-11-29 1984-11-29 Optical coupler Pending JPS61129606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25242184A JPS61129606A (en) 1984-11-29 1984-11-29 Optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25242184A JPS61129606A (en) 1984-11-29 1984-11-29 Optical coupler

Publications (1)

Publication Number Publication Date
JPS61129606A true JPS61129606A (en) 1986-06-17

Family

ID=17237120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25242184A Pending JPS61129606A (en) 1984-11-29 1984-11-29 Optical coupler

Country Status (1)

Country Link
JP (1) JPS61129606A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308988A (en) * 1987-06-11 1988-12-16 Mitsubishi Electric Corp Semiconductor laser coupling device
US5236210A (en) * 1990-07-27 1993-08-17 Toyota Jidosha Kabushiki Kaisha Suspension device for steering vehicle wheel with asymmetric toe-in biasing for turning
WO1998047032A3 (en) * 1997-04-11 1999-03-04 Digital Optics Corp Optical transmission systems including optical rods with three-dimensional patterns thereon and related structures
WO2008096832A1 (en) * 2007-02-09 2008-08-14 Nippon Sheet Glass Company, Limited Optical module
JP2011237531A (en) * 2010-05-07 2011-11-24 Fujitsu Ltd Optical transmission device and optical transmission system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308988A (en) * 1987-06-11 1988-12-16 Mitsubishi Electric Corp Semiconductor laser coupling device
US5236210A (en) * 1990-07-27 1993-08-17 Toyota Jidosha Kabushiki Kaisha Suspension device for steering vehicle wheel with asymmetric toe-in biasing for turning
WO1998047032A3 (en) * 1997-04-11 1999-03-04 Digital Optics Corp Optical transmission systems including optical rods with three-dimensional patterns thereon and related structures
WO2008096832A1 (en) * 2007-02-09 2008-08-14 Nippon Sheet Glass Company, Limited Optical module
JP2011237531A (en) * 2010-05-07 2011-11-24 Fujitsu Ltd Optical transmission device and optical transmission system
US8783971B2 (en) 2010-05-07 2014-07-22 Fujitsu Limited Optical transmission apparatus and optical transmission system

Similar Documents

Publication Publication Date Title
KR940004211B1 (en) Coupling of optical devices to optical fibers by means of microlenses
US3894789A (en) Light beam coupler for semiconductor lasers
US4807954A (en) Optical coupling device
JP2006512616A (en) Optical fiber lens and manufacturing method
CA1269267A (en) Two lens optical package and method of making same
JP3067968B2 (en) Optical fiber interface for coupling light source and method of manufacturing the same
US20030081897A1 (en) Aspherical rod lens and method of manufacturing aspherical rod lens
JP2004085717A (en) Optical fiber with lens
JP2000206359A (en) Optical fiber coupling device
JPH0466323B2 (en)
Bludau et al. Low-loss laser-to-fiber coupling with negligible optical feedback
KR20050092126A (en) Lensed fiber having small form factor and method of making same
JPS61129606A (en) Optical coupler
US5642233A (en) Optical device
US5946140A (en) Fiber lens for use with a confocal lens system
JPH0544643B2 (en)
CN102109645A (en) Coupling device for semiconductor stripe laser diode (LD) and single mode fiber (SMF)
JPS6160595B2 (en)
JP2004133176A (en) Optical module using graded-index rod lens
JP2017026660A (en) Optical fiber terminal
JPS6338909A (en) Optical fiber with lens
JPH0266505A (en) Optical coupling circuit
JPH02210406A (en) Optical coupling circuit
JPH02111906A (en) Optical coupler
JPH02210405A (en) Optical coupling circuit