JPH02210257A - Method for detecting surface layer flaw of square steel billet - Google Patents

Method for detecting surface layer flaw of square steel billet

Info

Publication number
JPH02210257A
JPH02210257A JP1032199A JP3219989A JPH02210257A JP H02210257 A JPH02210257 A JP H02210257A JP 1032199 A JP1032199 A JP 1032199A JP 3219989 A JP3219989 A JP 3219989A JP H02210257 A JPH02210257 A JP H02210257A
Authority
JP
Japan
Prior art keywords
square steel
area
detected
defects
steel piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1032199A
Other languages
Japanese (ja)
Inventor
Kenji Yuya
油谷 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1032199A priority Critical patent/JPH02210257A/en
Publication of JPH02210257A publication Critical patent/JPH02210257A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To securely find the position of a defect by setting a flaw detection area by a vertical method from the surface layer area of the square steel billet whose defect is to be detected and further setting a flaw detection area by an oblique method. CONSTITUTION:An internal defect in the surface area T(ABCD) within a range of specific depth from the surface of the square steel billet 2 is detected by ultrasonic flaw detection. For the purpose, ultrasonic probes S1 - S3, S5, and S6 are arranged outside an area-side surface 2a facing the area T and outside both flanks 2b and 2c of the steel billet 2 adjoining the end part of the area T only in a flaw detection angle area to detect the internal defect by the straight method or oblique method. Here, it is estimated that defects which are not detected by the probes S1 - S3 and detected by the probes S5 and S6 are in the area T and defects detected by the probes S1 - S3 are all inside the area T.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波探傷方法に係り、特に角鋼片の表層欠陥
を容易に検出できるようにした角鋼片の表層欠陥探傷方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an ultrasonic flaw detection method, and more particularly to a method for detecting surface defects in a square steel billet, which makes it possible to easily detect surface defects in a square steel billet.

〔従来の技術〕[Conventional technology]

角鋼片は、製品化するためにさらに二次加工されるが、
この角鋼片の内部に微細な介在物があると、二次加工段
階において介在物の存在に起因する加工割れや断線が発
生したりすることが多々ある。このような不具合発生防
止対策として、製銑、製鋼段階における介在物の除去お
よび介在物の混入防止の為の炉外精腺技術と共に、微細
な介在物の存在を検出する検査技術の確立が必要不可欠
である。ところで、角鋼片等の素材に悪影響を及ぼす介
在物はその素材段階から存在するものであるから、二次
加工前の素材の段階でこれらの介在物を検出することが
できれば二次加工後の製品の内部品質の保証が可能にな
る。
The square steel pieces are further processed to make them into products, but
If there are minute inclusions inside this square steel piece, processing cracks or wire breaks often occur during the secondary processing stage due to the presence of the inclusions. As a measure to prevent the occurrence of such defects, it is necessary to establish inspection technology to detect the presence of minute inclusions, as well as extra-furnace semen technology to remove inclusions and prevent inclusions from entering the ironmaking and steelmaking stages. It is essential. By the way, inclusions that have a negative effect on materials such as square steel slabs are present from the material stage, so if these inclusions can be detected at the stage of the material before secondary processing, it will be possible to improve the quality of the product after secondary processing. It becomes possible to guarantee internal quality.

しかしながら、このような素材である角鋼片の内部欠陥
(以下、欠陥と略称する)の検出は従来から超音波探傷
によって行われているが、これら介在物は角鋼片の表I
O領域に介在することが多いので、この裏店領域内に住
じるこれら介在物に基づく欠陥を垂直法により確実に検
出することは難しい、つまり、超音波探触子(以下、探
触子と略称する)を配置した面やその面と反対側の面に
近接した位置に欠陥があると、これら表面により反射さ
れる反射超音波である反射エコーと、この欠陥により反
射される反射超音波である欠陥エコーとが近接している
関係上、検出されたこれらのエコーが表面により反射さ
れたものか、あるいは欠陥により反射されたものかの判
別が困難であるからに他ならない、その為、角鋼片の表
面に対して探触子を傾斜させて配置する、所謂斜角法が
導入されるようになってきている。
However, detection of internal defects (hereinafter referred to as defects) in square steel slabs, which is a material such as this, has conventionally been carried out by ultrasonic flaw detection, but these inclusions are detected in Table I of square steel slabs.
Since they often occur in the O region, it is difficult to reliably detect defects based on these inclusions living in this back area using the vertical method. If there is a defect in the vicinity of the surface on which the surface (abbreviated as ``)'' is placed or the surface opposite to that surface, there will be a reflected echo, which is the reflected ultrasonic wave reflected by these surfaces, and a reflected ultrasonic wave reflected by this defect. The reason is that it is difficult to determine whether the detected echoes are reflected by the surface or by the defect due to the proximity of the defective echoes. The so-called bevel method, in which a probe is arranged at an angle with respect to the surface of a square steel piece, has been introduced.

このような超音波を利用した斜角法としては、時開昭和
56〜129852公報にて開示された技術が公知であ
る。
As such an oblique angle method using ultrasonic waves, a technique disclosed in Jikai Publication No. 129852 of 1983 is well known.

この超音波を利用して各鋼片の欠陥を検出する斜角法を
、超音波斜角法における探触子配置説明図の第2図と、
その作用説明図の第3図(イ)と、エコー状況説明図の
第3図(ロ)とに基づいて説明すると、第2図に示すよ
うに、角鋼片(2)の上面の外方に4個の探触子(S、
)、(Sり、(Sl)、(S4)を角鋼片(2)の幅方
向の中心位置では垂直に、また角鋼片(2)の幅方向の
中心から外方にはづれた位置になるほど前記角鋼片(2
)の上面に対して傾斜させて配設してなる構成になって
いる。
The bevel method, which uses this ultrasonic wave to detect defects in each steel piece, is shown in Figure 2, which is an explanatory diagram of the probe arrangement in the ultrasonic bevel method.
To explain this based on Figure 3 (A), which is an explanatory diagram of its action, and Figure 3 (B), which is an explanatory diagram of the echo situation, as shown in Figure 2, 4 probes (S,
), (S, (Sl), (S4) are perpendicular to the center position in the width direction of the square steel piece (2), and as they are further away from the center of the width direction of the square steel piece (2) Said square steel piece (2
) is arranged so as to be inclined with respect to the upper surface.

従って、これら探触子(S、)、(S2)、(S、)、
(S4)から角鋼片(2)の底面側に向かって超音波を
発信し、そして反射して帰ってきた反射超音波、所謂エ
コーを検出することによって欠陥の位置を評定するが、
このようにして検出されるエコーの中には、欠陥エコー
の他に、送信部から発信されて反射して帰ってくる送信
エコー、角鋼片(2)の上面により反射される上面エコ
ー(T[)、底面から反射される底面エコーとがあるの
で、検出された時点における時間差によって何に起因す
るエコーかを61実に判別して内部欠陥を評定する必要
がある。
Therefore, these probes (S,), (S2), (S,),
The position of the defect is evaluated by emitting ultrasonic waves from (S4) toward the bottom side of the square steel piece (2) and detecting the reflected ultrasonic waves, so-called echoes, which are reflected back.
Among the echoes detected in this way, in addition to defective echoes, there are transmission echoes that are emitted from the transmitter and reflected back, and top surface echoes (T[ ) and bottom echoes reflected from the bottom surface, it is necessary to determine the cause of the echo based on the time difference at the time of detection and evaluate the internal defect.

つまり、第3図(イ)、(ロ)とにおいて示すように、
角鋼片(2)の内部に欠陥F、 、F、があるときは、
これらの欠陥F、 、F、により反射された欠陥エコー
CP+)、(Pg)とが検出されることになるが、これ
らの欠陥Fl、F!の位置は以下のようにして評定され
る。
In other words, as shown in Figure 3 (a) and (b),
When there are defects F, , F inside the square steel piece (2),
Defect echoes CP+), (Pg) reflected by these defects F, , F, will be detected, but these defects Fl, F! The position of is evaluated as follows.

即ち、この角鋼片(2)の上面で反射された表面エコー
(TIりが検出されてから、欠陥Fl、Ftにより反射
された欠陥エコー(p+)、<pg)が検出されるまで
の時間をり、とすれば、この角鋼片(2)の上面からこ
の欠陥までの距離2は次式、 1 = (1/2)  ・C・LF で求められる。
That is, the time from when the surface echo (TI) reflected on the upper surface of this square steel piece (2) is detected until the defect echo (p+), <pg) reflected by the defects Fl and Ft is detected. Then, the distance 2 from the top surface of this square steel piece (2) to this defect is determined by the following formula: 1 = (1/2) ・C・LF.

なお、上記式中において英文字で記載したCは角鋼片(
2)中を伝播する超音波の音速を示す。
In addition, in the above formula, C written in English is a square steel piece (
2) Shows the sound speed of ultrasound propagating inside.

ところが、例えばこれらの欠陥F+ 1Fgとが探触子
(S、)から等距離離れた位置にある場合、この探触子
(S4)から発信された超音波ビームが角鋼片(2)の
内部に入射するときの屈折角をθとし、角鋼片(2)の
側面から超音波ビーム入射位置までの距離をDとすると
、この側面からこれら欠陥F6、F8までの深さdは全
て次式、 d−D−(1/2)  =  むy−C−srn  θ
で表され、この側面から欠陥位置までの深さdを判別す
ることができないという問題点があった。
However, for example, if these defects F+1Fg and Fg are located at the same distance from the probe (S,), the ultrasonic beam emitted from the probe (S4) may penetrate inside the square steel piece (2). If the refraction angle at the time of incidence is θ and the distance from the side surface of the square steel piece (2) to the ultrasonic beam incident position is D, then the depth d from this side surface to these defects F6 and F8 is calculated by the following formula, d -D-(1/2) = Muy-C-srn θ
There was a problem in that the depth d from this side surface to the defect position could not be determined.

このような問題点は、実用上面光たりの探触子のチャン
ネル数を2〜4程度しか配置できず、指向角の広い超音
波ビームを使用せざるを得ないということに起因してい
る。
These problems arise from the fact that the number of channels of the probe can be arranged in a practical manner only about 2 to 4, and an ultrasonic beam with a wide directivity angle must be used.

そごで、上記したような欠点を改善する為に従業された
のが本出願人の出願になる特開昭59−11(3541
号公報にて開示された技術である。
Therefore, in order to improve the above-mentioned drawbacks, Japanese Patent Application Laid-Open No. 59-11 (3541), which was filed by the present applicant, was developed.
This is the technology disclosed in the publication.

この斜角法の例を、超音波斜角法における探触子配置説
明図の第4図により説明すると、角鋼片(2)の上面側
にアレイ型の探触子(S+)を傾斜させて配置したもの
で、この111斜したこの探触子(S、)から超音波を
発信し、反射して帰ってきたエコーによって、例えば探
傷領域(3)における欠陥の有無を評定するものである
An example of this bevel method is explained with reference to FIG. 4, which is an explanatory diagram of the probe arrangement in the ultrasonic bevel method. An array type probe (S+) is tilted on the upper surface side of a square steel piece (2). This 111-inclined probe (S) emits ultrasonic waves, and the presence or absence of defects in the flaw detection area (3), for example, is evaluated based on the reflected echoes.

このようにして検出されるエコーには、前記斜角法の場
合と同様であって、欠陥エコーの他に送信エコー、角鋼
片(2)の上面で反射する上面エコー(TE)があるが
、前記アレイ型の探触子(S、)から発信される超音波
ビームを、高速かつ任意に偏向、集束させることができ
るので、この偏向角度と集束角度とから角鋼片(2)の
内部の欠陥の位置を容易に評定することができる。
The echoes detected in this way are similar to the case of the oblique angle method, and include, in addition to defective echoes, transmitted echoes and top surface echoes (TE) reflected from the top surface of the square steel piece (2). The ultrasonic beam emitted from the array type probe (S) can be deflected and focused arbitrarily at high speed, so that defects inside the square steel piece (2) can be detected based on the deflection angle and the focusing angle. position can be easily evaluated.

(発明が解決しようとする課題〕 上記特開昭59 116541号公報にて開示された斜
角法は、角鋼片の内部の欠陥を検出する上においてそれ
なりに有用であるが、欠陥の位置の評定精度の観点から
すると未だに以下に説明するような問題点を持っている
(Problems to be Solved by the Invention) The bevel method disclosed in JP-A-59-116541 is somewhat useful in detecting defects inside square steel pieces, but From the viewpoint of accuracy, there are still problems as explained below.

即ち、角鋼片それ自体は中間製品であって、二次加工製
品でないので、このような角鋼片の表面形状精度が二次
加工後の棒鋼、線材あるいは板材等の製品のそれと比較
して良(ない。
In other words, since the square steel piece itself is an intermediate product and not a secondary processed product, the surface shape accuracy of such a square steel piece is better than that of products such as steel bars, wire rods, or plates after secondary processing. do not have.

従って、中間製品の表面形状精度に起因して数■1m程
度の誤差が生じてしまい、しかもこれを回避することが
できないという問題点がある。
Therefore, there is a problem in that an error of about several square meters occurs due to the surface shape accuracy of the intermediate product, and this cannot be avoided.

つまり、角鋼片から圧延されて製品となった線材、棒鋼
等が、例えば二次加工メーカで冷間或いは熱間で鍛造さ
れるときに、最も問題になるのは加工度が高い表面から
3〜4mm深さまでの表層領域であり、この表層領域内
の欠陥の位置を精度良く評定する必要がある為に他なら
ない。
In other words, when wire rods, steel bars, etc., which are rolled from square steel pieces into products, are cold or hot forged by a secondary processing manufacturer, the most problematic problem is This is because this is a surface layer region up to a depth of 4 mm, and it is necessary to accurately evaluate the position of the defect within this surface layer region.

従って、本発明は限定された表N’uM域内にある欠陥
を、確実に検出することのできる角鋼片の表層欠陥探傷
方法の提供を目的とする。
Therefore, an object of the present invention is to provide a surface defect detection method for a square steel piece that can reliably detect defects within a limited surface N'uM range.

(課題を解決するための手段) 本発明は、垂直法と斜角法とを併用することにより上記
したような問題点の解決を図ったものであって、従って
本発明に係る角鋼片の表層欠陥探傷方法の要旨、は、角
鋼片の表面下の所定深さ範囲の表N領域内にある欠陥を
超音波探傷により検出する角鋼片の表層欠陥探傷方法で
あって、前記表WJ領域の相対する領域側の表面の外方
に複数の探触子を配置して角鋼片の欠陥を垂直法により
検出し、前記表N領域の表面と直交する角鋼片の両側面
のこの領域の端部に近接した位置の外方に探傷角度領域
を限定して探触子を配置し゛C角鋼片の欠陥を斜角法に
より検出すると共に、これらの探触子によって検出され
る欠陥の有無に基づいて前記表JffluJl域内にお
ける欠陥を評定することを特徴とする。
(Means for Solving the Problems) The present invention aims to solve the above-mentioned problems by using both the vertical method and the oblique method. The gist of the defect detection method is a surface layer defect detection method for a square steel billet, which detects defects in the table N region in a predetermined depth range below the surface of the square steel billet by ultrasonic testing, A plurality of probes are placed outside the surface of the area to detect defects in the square steel piece using the vertical method, and the defects are detected at the ends of this area on both sides of the square steel piece perpendicular to the surface of the table N area. The probes are placed outside the close position with a limited detection angle range, and the defects in the square steel piece are detected by the bevel method. It is characterized by evaluating defects within the table JffluJl area.

〔作用〕[Effect]

角鋼片の探傷側の表N領域に相対する領域側の表面の外
方に配設された探触子から発信された超音波は一定の広
がりを持って前記表面から垂直方向に進むので、探傷側
の全表面層領域が、所謂垂直法によって探傷される。一
方、前記表層領域の端部に隣接した各綱片の側面の外方
に探傷角度領域を限定して配設された超音波探触子から
発信される超音波も一定の広がりを持ってこの側面と相
対する側面方向に進み、いわゆる斜角法により超音波伝
達範囲内の欠陥が検出される。
The ultrasonic waves emitted from the probe disposed outside the surface of the area opposite to the area N area on the flaw detection side of the square piece of steel propagate perpendicularly from the surface with a certain spread. The entire side surface layer area is tested by the so-called vertical method. On the other hand, the ultrasonic waves emitted from the ultrasonic probes, which are placed outside the side surfaces of each rope adjacent to the ends of the surface area with a limited detection angle area, also spread to a certain extent. Proceeding in the direction of the side facing the side, defects within the ultrasonic transmission range are detected using the so-called oblique angle method.

従って、角鋼片内部の欠陥は両探触子により共に検出さ
れるときと、何れか一方で検出されるものの、他方で検
出されないときとがあるから、垂直法による探触子によ
って検出されず、限定された所定の表層領域に向けた斜
角法による探触子で検出された欠陥は、前記表F!IH
JI域の内部に存在する欠陥であると評定することがで
きる。
Therefore, defects inside the square steel piece are sometimes detected by both probes, and sometimes by one but not by the other, so they are not detected by the vertical probe. Defects detected by the bevel method probe aimed at a limited predetermined surface area are shown in Table F! IH
It can be determined that the defect exists within the JI area.

また、垂直法、斜角法による探触子によって共に検出さ
れる欠陥、或いは斜角法による探触子によって検出され
ず、垂直法による探触子によって検出される欠陥は、何
れも角鋼片の前記表r!J領域よりも内部の欠陥と評定
される。
In addition, defects that are detected by both the vertical method and the oblique method probe, or defects that are not detected by the oblique method probe but are detected by the perpendicular method probe, are Said table r! It is rated as an internal defect rather than the J area.

〔実施例〕〔Example〕

本発明の一実施例を、その作用説明図の第1図に基づい
て以下に説明する。
An embodiment of the present invention will be described below based on FIG. 1, which is an explanatory diagram of its operation.

即ら、図において示す符号(Sl)、(SZ)、(S、
)、(S4)は、角鋼片(2)の探傷を目的とする表F
l ?+111域Tに相対する領域側の表面(2a)に
垂直に配設した、所謂垂直法によって角鋼片(2)の内
部の欠陥を検出する探触子群であって、この角鋼片(2
)の大きさと超音波ビームの広がりによりこの角鋼片(
2)の内部の全域をカバーし得る個数だけを配設する一
方、前記表N領域Tに隣接した角鋼片(2)の側面(2
b)、(2c)にはそれらの側面(2bL (2c)に
対して下方に傾斜させると共に、超音波ビームをこの表
N?J域Tに向けて発信させる探触子(S、)、(S、
)を各々配設してなる構成とした。
That is, the symbols (Sl), (SZ), (S,
), (S4) is Table F for the purpose of flaw detection of square steel piece (2)
l? A group of probes arranged perpendicularly to the surface (2a) on the area side facing the +111 area T to detect defects inside the square steel piece (2) by the so-called vertical method.
) and the spread of the ultrasonic beam, this square steel piece (
2), while arranging only the number that can cover the whole area inside the square steel piece (2), while
b) and (2c) are probes (S,), which are tilted downward with respect to their sides (2bL (2c)) and emit ultrasonic beams toward this table N?J region T, ( S,
) are arranged respectively.

次に、上記したように探触子を配設した場合の探傷方法
の作用態様について以下に説明する・即ち、側面(2b
)、(2c)側に配設した斜角法による探触子(S、)
、(S&)から超音波ビームを発信させると、これらの
探触子(Ss)、(S4)により角鋼片(2)の超音波
ビーム伝播領域内における欠陥が検出される。一方、垂
直法による探触子(Sl)により探傷されるt1114
は図においてal 、bl、C2、d、で示す扇形の一
部であり、また垂直法による探触子(S、)により探傷
される領域はQl % bl、Cps dlで示す扇形
の一部であり、また垂直法による探触子(Sl)により
探傷される領域はal 、b2、C1、d、で示す扇形
の一部であり、また垂直法による探触子(S4)により
探傷される領域はa、 、b4、C4、d4で示す扇形
の一部である。
Next, the mode of operation of the flaw detection method when the probe is arranged as described above will be explained below.
), bevel method probe (S, ) placed on the (2c) side
, (S&), defects in the ultrasonic beam propagation region of the square steel piece (2) are detected by these probes (Ss) and (S4). On the other hand, t1114 detected by vertical method probe (Sl)
is a part of the sector shown as al, bl, C2, d in the figure, and the area detected by the vertical probe (S,) is part of the sector shown as Ql % bl, Cps dl. The area detected by the vertical probe (Sl) is a part of the fan shape indicated by al, b2, C1, d, and the area detected by the vertical probe (S4). are parts of the fan shape indicated by a, , b4, C4, and d4.

さらに、斜角法による探触子(SS)により探傷される
開城は扇形8% s b%、C1、d、で示す扇形の一
部であり、そして斜角法による探触子(S&)により探
傷される領域は扇形ahs ’IJh、C6、dhで示
す扇形の一部である。つまり、C2とdあとを結ぶ線に
円弧a、 b、、円弧am bts円弧a3 b3、円
弧a。
Furthermore, the open castle flaw detected by the angle probe (SS) is a part of the sector indicated by 8% s b%, C1, d, and by the angle probe (S &). The area to be inspected is a part of the sector ahs' IJh, C6, and dh. In other words, the line connecting C2 and d has arcs a, b, arc am bts arc a3 b3, arc a.

b4を近づけて、また表層領域Tの深さを示すBC線に
円弧c、 d、、円弧c、 d、、円弧C2ds、円弧
C4d、を近づけて各々設定しである。
b4, and the arcs c, d, c, d, C2ds, and C4d are set close to the line BC indicating the depth of the surface region T.

ここで、上記した円弧Cm d4と角鋼片(2)の図に
おける下面の面(2d)との交点をA点、円弧Chd4
と円弧c(dlとの交点をB点、円弧Cs dsと円弧
ca dJとの交点を0点、円弧Cs d、と角鋼片(
2)の面(2d)との交点をD点、線c、Sd、と線a
l d、との交点をE点とし、また線C5d、と線bn
 C4との交点をF点とすると共に、斜角法による探触
子(S、)、(S&)によって探傷されるA d4 C
8Dにより囲まれた領域をXとして、さらに垂直法によ
る探触子(S、)、(S8〕、(Sl)、(S4)によ
って探傷されるBCFEで囲まれた領域をYとすれば、
角鋼片(2)6の表層fIJl域ABCD、即ち表層領
域Tは、表N領域T−領域X−領域Y として表すことができる。
Here, the intersection of the above-mentioned circular arc Cm d4 and the lower surface (2d) in the diagram of the square steel piece (2) is the point A, and the circular arc Chd4
The intersection of the arc Cs ds and the arc ca dJ is the point B, the intersection of the arc Cs ds and the arc ca dJ is the 0 point, the arc Cs d, and the square steel piece (
The intersection of 2) with the surface (2d) is point D, lines c, Sd, and line a
Let the intersection with the line C5d and the line bn be the point E, and the intersection with the line C5d and the line bn
The intersection with C4 is set as point F, and A d4 C is detected by angle probes (S, ) and (S&).
Let X be the area surrounded by 8D, and Y be the area surrounded by BCFE detected by vertical probes (S, ), (S8), (Sl), and (S4).
The surface layer fIJl area ABCD of the square steel piece (2) 6, that is, the surface layer area T, can be expressed as: table N area T - area X - area Y.

故に、斜角法による探触子(Ss)、(S、)によって
検出された各鋼片(2Jの内部の欠陥(Fl)が、垂直
法による探触子(51)、(S8)、(S、)、(S4
)によって検出されないときは、この表Jifil城T
の内部に欠陥(F、)があると判定され、一方斜角法に
ょる探触子(S、)、(S4)によって検出された欠陥
(F、)が、前記垂直法による探触子(S、)、(S8
)、(S3)、(S4)によって検出されたときは、こ
の表M fiJT域′rの内部に欠陥がないと判定され
る。
Therefore, the internal defects (Fl) of each steel piece (2J) detected by the oblique method probes (Ss), (S,) are the same as those detected by the vertical method probes (51), (S8), ( S, ), (S4
), this table Jifil Castle T
On the other hand, the defect (F,) detected by the bevel method probes (S, ), (S4) is detected by the perpendicular method probe (F,). S, ), (S8
), (S3), and (S4), it is determined that there is no defect inside this table MfiJT area'r.

よって、従来の斜角法では角鋼片の表面に近接した位置
に欠陥が存在しても、この欠陥の位置を高精度で評定す
ることが不可能であったが、本発明になる超音波探傷方
法によって、角鋼片の所定深さの表層領域Tの内部に介
在する欠陥を高精度で検出することができることになる
Therefore, with the conventional bevel method, even if a defect exists in a position close to the surface of a square steel piece, it is impossible to evaluate the position of the defect with high precision.However, the ultrasonic flaw detection method of the present invention By this method, it is possible to detect defects existing inside the surface layer T at a predetermined depth of a square steel piece with high accuracy.

以上では、角鋼片(2)の−面側の表N?i1域Tの内
部にのみ存在する欠陥の検出について説明したが、生産
現場のオンラインにおいて搬送されている角鋼片の四面
全ての表層領域の内部に存在する欠陥を同時に検出する
には上記した探触子の組みを、この角鋼片の長手方向に
所定の間隔を隔てて各同配設すれば良く、実用上特に支
障を生じたりすることはない。
In the above, the table N on the - side of the square steel piece (2)? Although we have described the detection of defects that exist only inside the i1 area T, the above-mentioned probe can be used to simultaneously detect defects that exist inside the surface area on all four sides of a square steel billet that is being transported online at the production site. It is sufficient to arrange the child sets at predetermined intervals in the longitudinal direction of the square steel piece, and there is no problem in practical use.

なお、以上に説明した実施例は本発明の一具体例にすぎ
ず、従ってこの実施例によって本発明の技術思想の範囲
が限定されるものではない。
Note that the embodiment described above is only one specific example of the present invention, and therefore the scope of the technical idea of the present invention is not limited by this embodiment.

(発明の効果〕 本発明になる角鋼片の表層欠陥探傷方法によれば、欠陥
を検出すべき角鋼片の表層領域を、垂直法によって探傷
する領域を設定し、さらに斜角法によって探傷する領域
を設定することにより、任、意の厚さに設定することが
できるので、角鋼片を線材や棒鋼等の製品とする二次加
工段階において、加工前れや断f!等の原因となる内部
の微細な介在物は、その存在領域の位置が正確に限定さ
れるので、欠陥の位置を確実に評定することができるよ
うになった。
(Effects of the Invention) According to the surface defect detection method of a square steel piece according to the present invention, the surface area of the square steel piece where defects are to be detected is set by a vertical method, and further by an oblique method. By setting the thickness, it is possible to set the thickness to any desired value, so in the secondary processing stage where square steel pieces are turned into products such as wire rods and steel bars, the internal thickness can be Since the location of the fine inclusions is precisely limited, it is now possible to reliably evaluate the location of the defect.

従って、本発明によって角鋼片の限定された表層領域の
内部にある欠陥を、確実に検出することのできる極めて
優れ、かつ有用な角鋼片の表層欠陥探(1方法を確立す
ることができた。
Therefore, according to the present invention, we have been able to establish an extremely excellent and useful method for detecting surface defects in square steel pieces that can reliably detect defects within the limited surface area of square steel pieces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の超音波探傷方法における作用
説明図、第2図は従来の第−例の超音波斜角法における
超音波探触子配置説明図、第3図(イ)は従来の第−例
の超音波斜角法における作用説明図、第3図(ロ)は従
来の第−例の超音波斜角法におけるエコー状況説明図、
第4図は従来の第二例の超音波斜角法における超音波探
触子配置説明図である。 (S、)〜(Sh)−超音波探触子、(2)−角鋼片、
(T)−一一表i領域、(Fl)、(pt)−内部欠陥
。 特許出願人 株式会社神戸製鋼所
Fig. 1 is an explanatory diagram of the operation in the ultrasonic flaw detection method of the embodiment of the present invention, Fig. 2 is an explanatory diagram of the arrangement of the ultrasonic probe in the ultrasonic bevel method of the conventional example, and Fig. 3 (A). 3(b) is an explanatory diagram of the action in the conventional ultrasonic oblique angle method according to the first example, and FIG.
FIG. 4 is an explanatory diagram of the arrangement of an ultrasonic probe in a second example of the conventional ultrasonic oblique angle method. (S,) ~ (Sh) - Ultrasonic probe, (2) - Square steel piece,
(T) - 11 table i region, (Fl), (pt) - internal defect. Patent applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 角鋼片の表面下の所定深さ範囲の表層領域内にある内部
欠陥を超音波探傷により検出する角鋼片の表層欠陥探傷
方法であって、前記表層領域の相対する領域側の表面の
外方に複数の超音波探触子を配置して角鋼片の内部欠陥
を垂直法により検出し、前記表層領域の表面と直交する
角鋼片の両側面の該領域の端部に近接した位置の外方に
探傷角度領域を限定して超音波探触子を配置して角鋼片
の内部欠陥を斜角法により検出すると共に、これらの探
触子によって検出される内部欠陥の有無に基づいて前記
表層領域内における欠陥を評定することを特徴とする角
鋼片の表層欠陥探傷方法。
A surface defect detection method for a square steel piece, which detects internal defects in a surface layer region in a predetermined depth range below the surface of a square steel piece by ultrasonic testing, wherein A plurality of ultrasonic probes are arranged to detect internal defects in the square steel piece using a vertical method, and the defects are detected on both sides of the square steel piece perpendicular to the surface of the surface area at a position close to the end of the area. Ultrasonic probes are placed with a limited flaw detection angle area to detect internal defects in the square steel piece using the bevel method, and based on the presence or absence of internal defects detected by these probes, A surface defect detection method for a square steel piece, characterized by evaluating defects in a square steel piece.
JP1032199A 1989-02-09 1989-02-09 Method for detecting surface layer flaw of square steel billet Pending JPH02210257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032199A JPH02210257A (en) 1989-02-09 1989-02-09 Method for detecting surface layer flaw of square steel billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032199A JPH02210257A (en) 1989-02-09 1989-02-09 Method for detecting surface layer flaw of square steel billet

Publications (1)

Publication Number Publication Date
JPH02210257A true JPH02210257A (en) 1990-08-21

Family

ID=12352237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032199A Pending JPH02210257A (en) 1989-02-09 1989-02-09 Method for detecting surface layer flaw of square steel billet

Country Status (1)

Country Link
JP (1) JPH02210257A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203630A (en) * 1992-01-28 1993-08-10 Mitsubishi Electric Corp Ultrasonic flaw detection for square steel
JP2002257794A (en) * 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method
WO2009041313A1 (en) * 2007-09-28 2009-04-02 Krautkramer Japan Co., Ltd Ultrasonic flaw detecting method and its device
JP2013156277A (en) * 2008-03-31 2013-08-15 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP2015010935A (en) * 2013-06-28 2015-01-19 株式会社神戸製鋼所 Defect detection device and defect detection method
WO2017030458A1 (en) * 2015-08-20 2017-02-23 Алексей Mиxaйлoвич КАШИН Ultrasonic diagnostics of vertically-oriented defects in prismatic metal products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633254A (en) * 1986-06-24 1988-01-08 Nippon Steel Corp Ultrasonic flaw detector for square billet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633254A (en) * 1986-06-24 1988-01-08 Nippon Steel Corp Ultrasonic flaw detector for square billet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203630A (en) * 1992-01-28 1993-08-10 Mitsubishi Electric Corp Ultrasonic flaw detection for square steel
JP2002257794A (en) * 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method
JP4524937B2 (en) * 2001-03-02 2010-08-18 住友金属工業株式会社 Ultrasonic flaw detection method
WO2009041313A1 (en) * 2007-09-28 2009-04-02 Krautkramer Japan Co., Ltd Ultrasonic flaw detecting method and its device
JP2013148597A (en) * 2007-09-28 2013-08-01 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP5279090B2 (en) * 2007-09-28 2013-09-04 株式会社Kjtd Ultrasonic flaw detection method and apparatus
US8584526B2 (en) 2007-09-28 2013-11-19 Krautkramer Japan Co., Ltd. Ultrasonic flaw detection method and ultrasonic flaw detection equipment
JP2013156277A (en) * 2008-03-31 2013-08-15 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP5288291B2 (en) * 2008-03-31 2013-09-11 株式会社Kjtd Ultrasonic flaw detection method and apparatus
JP2015010935A (en) * 2013-06-28 2015-01-19 株式会社神戸製鋼所 Defect detection device and defect detection method
WO2017030458A1 (en) * 2015-08-20 2017-02-23 Алексей Mиxaйлoвич КАШИН Ultrasonic diagnostics of vertically-oriented defects in prismatic metal products

Similar Documents

Publication Publication Date Title
CA1270940A (en) Method for classification of point and elongated single defects in workpieces by means of ultrasonics
CN112666265B (en) Water immersion ultrasonic nondestructive testing process making method for laser additive material connection area
JPH02210257A (en) Method for detecting surface layer flaw of square steel billet
JP2014219390A (en) Auto beam optimization for phased array weld inspection
JP5574731B2 (en) Ultrasonic flaw detection test method
JP4148959B2 (en) Ultrasonic flaw detection method and apparatus
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP2002207028A (en) Flaw discriminating method
KR870001259B1 (en) Steel piece inspection using electronic beam
JP4431926B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Woodward et al. Ultrasonic evaluation of steel bridge girders over long ranges
JP2002243703A (en) Ultrasonic flaw detector
CN211905205U (en) A-scanning nondestructive testing tool medium for R area of composite culvert casing
KR20150023434A (en) Steel material quality evaluation method and quality evaluation device
JP3765417B2 (en) Ultrasonic flaw detection method and apparatus
CN111896623A (en) Method for positioning defects of cast forging through ultrasonic detection
JPH05333001A (en) Apparatus for inspecting defective welded part
Ginzel et al. CIVA Modelling Module for Zonal Discrimination Method Part 1-Calibration Block
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JPH01297551A (en) Deciding method for kind of defect in ultrasonic flaw detection
Zolfaghari et al. Characterization of welded components flaws using an ultrasonic expert system based on static patterns
JP2531873B2 (en) Surface defect inspection method
JPH09229910A (en) Method for ultrasonic angle beam flaw detection
JP2002257800A (en) Ultrasonic flaw detection method and device for square billet
JP2001074703A (en) Ultrasonic flaw detecting apparatus