JPH02210217A - Driving circuit for magnetism sensing element - Google Patents

Driving circuit for magnetism sensing element

Info

Publication number
JPH02210217A
JPH02210217A JP1310876A JP31087689A JPH02210217A JP H02210217 A JPH02210217 A JP H02210217A JP 1310876 A JP1310876 A JP 1310876A JP 31087689 A JP31087689 A JP 31087689A JP H02210217 A JPH02210217 A JP H02210217A
Authority
JP
Japan
Prior art keywords
magnetically sensitive
sensitive element
temperature
operational amplifier
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1310876A
Other languages
Japanese (ja)
Other versions
JPH0529849B2 (en
Inventor
Masao Nagashima
長島 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1310876A priority Critical patent/JPH02210217A/en
Publication of JPH02210217A publication Critical patent/JPH02210217A/en
Publication of JPH0529849B2 publication Critical patent/JPH0529849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable temperature compensation with high accuracy by controlling a current which flows through a magnetism sensing element and compensating variation in the detection sensitivity of the magnetism sensing element with temperature when the magnetism sensing element is driven with a constant current. CONSTITUTION:The magnetism sensing element 10 has one driving terminal connected to the output terminal of an operational amplifier 11 and the other driving terminal connected to the negative input terminal of the amplifier 11. The other driving terminal of the element 10 is grounded through a current detection resistance 12. Further, the positive input terminal of the amplifier 11 is connected to a reference voltage source 14 through an input resistance 13 and its output terminal and positive input terminal are connected through a feedback resistance 15. Thus, the output voltage of the amplifier 11 is fed back to the input side of the amplifier 11 through the resistance 15 to perform the compensation so that variation in the internal resistance of the element 10 with temperature and variation in the detection sensitivity of the element 10 with temperature when the element 10 is driven with the constant current cancel each other.

Description

【発明の詳細な説明】 A6産業上の利用分野 本発明は、強磁性磁気抵抗素子やGaAsホール素子等
の感磁性素子の駆動回路に関し、例えばビデオテープレ
コーダにおける磁気テープのバッククテンションサーポ
のテンション検出用感磁性素子の駆動回路に適用される
ものである。
Detailed Description of the Invention A6 Industrial Application Field The present invention relates to a drive circuit for a magnetically sensitive element such as a ferromagnetic magnetoresistive element or a GaAs Hall element. It is applied to a drive circuit for a magnetically sensitive element for tension detection.

B、従来の技術 従来、ビデオテープレコーダ等におけるテープ走行系で
は、走行中の磁気テープに一定のバッククテンションを
与えるために、例えば第1図に示す如く構成されたバン
ククテンションサーボ機構が採用されている。
B. Prior Art Conventionally, tape running systems in video tape recorders and the like employ a bank tension servo mechanism configured as shown in Figure 1, for example, in order to apply a constant back tension to the running magnetic tape. has been done.

このバンククテンションサーボ機構は、一端にテンショ
ン検出ピン2を植立したテンションアーム1を備えてい
る。このテンションアームlは、上記テンション検出ピ
ン2に巻回されて走行する磁気テープ8のバックテンシ
ョンに応じて回動変位するように支軸9を介して回動可
能に取付けられている。なお、上記テンションアーム1
は、上記磁気テープ8のバックテンションとつりあうよ
うにバネ7によって一方向に回動付勢されている。
This bank tension servo mechanism includes a tension arm 1 having a tension detection pin 2 planted at one end. This tension arm 1 is rotatably attached via a support shaft 9 so as to be rotatably displaced in response to the back tension of the magnetic tape 8 that is wound around the tension detection pin 2 and runs. In addition, the above tension arm 1
is biased to rotate in one direction by a spring 7 so as to balance the back tension of the magnetic tape 8.

また、上記テンションアーム1の他端には、感磁性素子
4に対向する発磁体3が取付けられている。
Further, a magnetic body 3 facing the magnetically sensitive element 4 is attached to the other end of the tension arm 1 .

上記感磁性素子4は上記発磁体3からの磁束を検出する
ものである。このように構成されたバックテンションサ
ーボ機構は、走行する磁気テープ80バツクテープの変
化に応じてテンションアーム1が回動変位すると、感磁
性素子4で検出される発磁体3からの磁束が変化する。
The magnetically sensitive element 4 detects the magnetic flux from the magnetizing body 3. In the back tension servo mechanism configured as described above, when the tension arm 1 is rotated and displaced in response to changes in the running magnetic tape 80, the magnetic flux from the magnetizing body 3 detected by the magnetically sensitive element 4 changes.

この磁束の変化量は、上記テンションアーム1の回動変
化量に比例した検出電圧■、として上記感磁性素子4か
ら出力される。この検出電圧■、と基準電圧E□2とを
比較してその差に応じた電流を誤差増幅器5から供給側
リールモータ6に供給し、磁気テープ8にバックテンシ
ョンを与え、このバックテンション力と上記テンション
アーム1にバネ7により与えられるバネ力のつりあい点
が常に一定になるようにテンションサーボをかけて、一
定のバックテンションを得るようになっている。
The amount of change in this magnetic flux is outputted from the magnetically sensitive element 4 as a detection voltage (2) proportional to the amount of rotational change of the tension arm 1. This detection voltage ■ is compared with the reference voltage E□2, and a current corresponding to the difference is supplied from the error amplifier 5 to the supply side reel motor 6 to apply back tension to the magnetic tape 8. A tension servo is applied so that the balance point of the spring force applied by the spring 7 to the tension arm 1 is always constant, thereby obtaining a constant back tension.

ところで、上記バックテンションサーボ機構に用いられ
るテンションアームlの回動変位量検出用の感磁性素子
4として、強磁性磁気抵抗素子やホール素子等の感磁性
素子が用いられている。
By the way, as the magnetically sensitive element 4 for detecting the amount of rotational displacement of the tension arm l used in the back tension servo mechanism, a magnetically sensitive element such as a ferromagnetic magnetoresistive element or a Hall element is used.

これら感磁性素子は、一般に検出感度に温度特性があり
、周囲温度の変化や、駆動電流による事故発熱等の影響
によって、検出出力が変化するので、上記温度特性によ
る検出誤差を伴うことが知られている。
These magnetically sensitive elements generally have a temperature characteristic in their detection sensitivity, and the detection output changes due to changes in ambient temperature or the effects of accidental heat generation due to the drive current, so it is known that detection errors due to the above temperature characteristics occur. ing.

従来、上述の如き温度特性を有する感磁性素子を用いて
テンションアーム1等の回動変位量の検出を高精度に行
う場合には、上記温度特性の改善を図るため、上記感磁
性素子の駆動方法として定電圧駆動法や定電流駆動法が
採用されている。そして、定電流駆動法を採用すると、
定電圧駆動の場合と比較して、強磁性磁気抵抗素子で約
1/7、G、A、ホール素子で約3/1程度にそれぞれ
温度特性を改善することができる。例えば、感磁性素子
では、第2図に温度特性の一例を示すように、定電流駆
動した場合の検出出力は、β、=−3,5XIO−”%
/C”程度温度係数β9であるのに対し、定電流駆動し
た場合の検出出力は、β、=5XIO−’%/C”程度
の温度係数β、となる。
Conventionally, when detecting the amount of rotational displacement of the tension arm 1 etc. with high accuracy using a magnetically sensitive element having the above-mentioned temperature characteristics, in order to improve the above-mentioned temperature characteristics, the driving of the magnetically sensitive element is A constant voltage driving method or a constant current driving method is adopted as a method. Then, if we adopt the constant current drive method,
Compared to constant voltage driving, the temperature characteristics can be improved to about 1/7 for the ferromagnetic magnetoresistive element, and about 3/1 for the G, A, and Hall elements. For example, in a magnetically sensitive element, as shown in Figure 2, which shows an example of temperature characteristics, the detection output when driven at a constant current is β, = -3,5XIO-''%
The temperature coefficient β9 is about /C'', whereas the detection output when driven with a constant current has a temperature coefficient β of about 5XIO-'%/C''.

なお、第2図には、感磁性素子の駆動端子間抵抗すなわ
ち内部抵抗の温度係数αは3X10−3%/C°程度で
あることが知られている。ここで、−般に、感磁性素子
の温度特性は、市販のものの場合、各製品毎に略一定に
なっており、通常上記各温度係数α、βV、βCがカタ
ログデータとして公表されている。
In addition, as shown in FIG. 2, it is known that the temperature coefficient α of the resistance between the drive terminals of the magnetically sensitive element, that is, the internal resistance, is about 3×10 −3%/C°. In general, the temperature characteristics of magnetically sensitive elements are approximately constant for each product in the case of commercially available devices, and the temperature coefficients α, βV, and βC are usually published as catalog data.

そして、上記感磁性素子の温度特性を定電圧駆動時の温
度係数β。よりもさらに改善する場合には、従来感温素
子を用いて感磁性素子の検出出力電圧の温度係数をゼロ
にするように、上記感磁性素子により駆動電流に温度特
性を与えて上記温度特性を補償する等の方法が採用され
ている。
The temperature characteristics of the magnetically sensitive element are determined by the temperature coefficient β when driven at a constant voltage. In order to further improve the above-described temperature characteristics, the temperature coefficient of the detected output voltage of the magnetically sensitive element can be set to zero by using the conventional temperature-sensitive element. Methods such as compensation are being adopted.

C1本発明が解決しようとする課題 しかし、上記感温素子を用いて温度補償を行う方法では
、感磁性素子とは別に感温素子を必要とし、各素子の熱
容量に差があると過渡的な温度変化に対応する補償を行
うことができない。また、感磁性素子の事故発熱に対す
る補償を行うことができないばかりか、さらに、各素子
の設置場所の違いによる環境条件の差による補償誤差を
生じるという問題点がある。
C1 Problems to be Solved by the Present Invention However, the above-mentioned method of performing temperature compensation using a temperature-sensitive element requires a temperature-sensitive element in addition to the magnetically-sensitive element, and if there is a difference in the heat capacity of each element, transient It is not possible to compensate for temperature changes. Furthermore, not only is it impossible to compensate for accidental heat generation of the magnetically sensitive elements, but there is also the problem that compensation errors occur due to differences in environmental conditions due to differences in the installation locations of each element.

そこで、本発明は、上述の如き感温素子を利用した感磁
性素子の温度補償における問題点に鑑み、感磁性素子自
体の内部抵抗の温度特性および検出感度の駆動電流に対
する依存性に着目し、過渡的な温度変化や自己発熱等に
対しても高精度に温度補償を行い得るようにした感磁性
素子の駆動回路を提供することを目的に提案されたもの
である。
Therefore, in view of the problems in temperature compensation of a magnetically sensitive element using a temperature sensitive element as described above, the present invention focuses on the temperature characteristics of the internal resistance of the magnetically sensitive element itself and the dependence of detection sensitivity on the drive current, This was proposed for the purpose of providing a drive circuit for a magnetically sensitive element that can perform temperature compensation with high precision even against transient temperature changes, self-heating, and the like.

09課題を解決するための手段 本発明は、上述したような従来の回路が有している問題
点の解消を図り、上記目的を達成するため、感磁性素子
に直列接続され上記感磁性素子に流れる駆動電流に応じ
た検出電圧を得る電流検出用抵抗と、上記検出電圧と基
準電圧とを比較して上記感磁性素子を定電流駆動する演
算増幅器とを備えた感磁性素子の駆動回路において、上
記感磁性素子の内部抵抗の変化による上記演算増幅器の
出力電圧の変化を上記演算増幅器の入力側に帰還する帰
還抵抗を上記演算増幅器の出力端と入力端の間に接続し
、上記感磁性素子の内部抵抗の温度による変化を上記演
算増幅器の出力電圧の変化として検出することにより、
上記感磁性素子に流れる電流を制御し上記感磁性素子を
定電流駆動した際の上記感磁性素子の検出感度の温度に
よる変化を補償するようにしたものである。
09 Means for Solving the Problems The present invention aims to solve the problems of the conventional circuits as described above, and in order to achieve the above object, the present invention provides a circuit that is connected in series to a magnetically sensitive element and connected to the magnetically sensitive element. A drive circuit for a magnetically sensitive element, comprising a current detection resistor that obtains a detection voltage according to a flowing drive current, and an operational amplifier that compares the detected voltage with a reference voltage and drives the magnetically sensitive element at a constant current, A feedback resistor that feeds back changes in the output voltage of the operational amplifier due to changes in the internal resistance of the magnetically sensitive element to the input side of the operational amplifier is connected between the output terminal and the input terminal of the operational amplifier, and By detecting the change in internal resistance due to temperature as a change in the output voltage of the operational amplifier,
The current flowing through the magnetically sensitive element is controlled to compensate for changes in detection sensitivity of the magnetically sensitive element due to temperature when the magnetically sensitive element is driven with a constant current.

89作用 よって、本発明に係る感磁性素子の駆動回路は、演算増
幅器の出力電圧を帰還抵抗を通して、上記演算増幅器の
入力側に帰還することにより、上記感磁性素子の内部抵
抗の温度による変化と、上記感磁性素子を定電流駆動し
た際の上記感磁性素子の温度による検出感度の変化とが
相殺されるように補償される。
Accordingly, the magnetically sensitive element drive circuit according to the present invention feeds back the output voltage of the operational amplifier to the input side of the operational amplifier through the feedback resistor, thereby reducing the temperature-induced change in the internal resistance of the magnetically sensitive element. , compensation is made so that a change in detection sensitivity due to temperature of the magnetically sensitive element when the magnetically sensitive element is driven with a constant current is offset.

F、実施例 以下、本発明の具体的な実施例を図面を参照して説明す
る。
F. Examples Specific examples of the present invention will be described below with reference to the drawings.

第3図は、本発明に係る感磁性素子の駆動回路の原理的
な構成を示す回路図である。
FIG. 3 is a circuit diagram showing the basic configuration of a drive circuit for a magnetically sensitive element according to the present invention.

第3図に示す駆動回路において、感磁性素子10は、一
方の駆動端子を演算増幅器11の出力端子に接続し、他
方の駆動端子を上記演算増幅器11の負側入力端子に接
続して配設されている。この感磁性素子10の他方の駆
動端子は、電流検出抵抗12を介して接地されている。
In the drive circuit shown in FIG. 3, the magnetically sensitive element 10 is arranged such that one drive terminal is connected to the output terminal of the operational amplifier 11 and the other drive terminal is connected to the negative input terminal of the operational amplifier 11. has been done. The other drive terminal of this magnetically sensitive element 10 is grounded via a current detection resistor 12.

また、上記演算増幅器11は、その正側入力端子が入力
抵抗13を介して基準電圧源14に接続され、さらにそ
の出力端子と上記正側入力端子とが帰還抵抗15を介し
て接続されている。
Further, the operational amplifier 11 has its positive input terminal connected to a reference voltage source 14 via an input resistor 13, and its output terminal and the positive input terminal connected via a feedback resistor 15. .

上述の如き回路構成の駆動回路は、上記感磁性素子10
の駆動端子間抵抗である内部抵抗をr、入力抵抗13の
抵抗値をRo、帰還抵抗15の抵抗値をRz、電流検出
抵抗12の抵抗値をR1とし、基準電圧源14から与え
られる基準電圧をE、演算増幅器11の出力電圧をR6
、上記感磁性素子10に流れる駆動電流をiとすると、
次のような動作を行う。
The drive circuit having the circuit configuration as described above includes the magnetically sensitive element 10.
r, the resistance value of the input resistor 13 is Ro, the resistance value of the feedback resistor 15 is Rz, the resistance value of the current detection resistor 12 is R1, and the reference voltage given from the reference voltage source 14 is is E, and the output voltage of operational amplifier 11 is R6.
, if the drive current flowing through the magnetically sensitive element 10 is i, then
Perform the following actions.

すなわち、演算増幅器11の出力端子と接地の間に直列
接続した感磁性素子10と電流検出抵抗12には、次に
示す第1式から求められる駆動電流iが流れる。
That is, a drive current i determined from the following equation 1 flows through the magnetically sensitive element 10 and the current detection resistor 12 that are connected in series between the output terminal of the operational amplifier 11 and the ground.

R。R.

i=     ・・・・ 第1式 そして、上記演算増幅器11の負入力端子には、上記電
流検出抵抗12から得られる上記駆動電流iに応じた次
に示す第2式から求められる検出電圧■。が印加される
i= . . . 1st equation. Then, at the negative input terminal of the operational amplifier 11, there is a detection voltage (2) determined from the following 2nd equation depending on the drive current i obtained from the current detection resistor 12. is applied.

Rツ VD= Vo       ・・・・・ 第2式また、
上記演算増幅器11の正側入力端子には、基準電圧源1
4にて与えられる基準電圧をEとが印加されるとともに
、帰還抵抗15および入力抵抗13の抵抗比に定められ
る上記演算増幅器11の出力電圧voの一部が帰還され
ているので、次に示す第2式から求められる比較基準電
圧■1Fが印加されることになる。
RtsVD=Vo... 2nd formula also,
A reference voltage source 1 is connected to the positive input terminal of the operational amplifier 11.
4 is applied to the reference voltage E, and a part of the output voltage vo of the operational amplifier 11 determined by the resistance ratio of the feedback resistor 15 and the input resistor 13 is fed back, as shown below. The comparison reference voltage 1F obtained from the second equation is applied.

17+ ’J*ty −(Vo  E)     十B ・・・
第3式そこで、上記演算増幅器11は、各入力端子に印
加される検出電圧v0と比較基準電圧VltEFとを比
較してVD−REFとなる次の第4式で示される出力電
圧■。を出力することになる。
17+ 'J*ty -(Vo E) 10B...
3rd Equation Then, the operational amplifier 11 compares the detection voltage v0 applied to each input terminal with the comparison reference voltage VltEF to obtain an output voltage (VD-REF) expressed by the following 4th equation. will be output.

RZR3−Rlr 従って、上記第1式にて示される電磁性素子10の駆動
電流iは、 i=      E    ・・・・・第5式%式% として示すことができ、上記感磁性素子lOの内部抵抗
rが変化しなければ一定値となる。すなわち、上記感磁
性素子10は、この駆動回路によって原理的に定電流駆
動される。
RZR3-Rlr Therefore, the drive current i of the electromagnetic element 10 shown in the above first equation can be shown as i=E...Fifth equation % equation %, and the inside of the above magnetic element lO If the resistance r does not change, it will be a constant value. That is, the magnetically sensitive element 10 is driven with a constant current in principle by this drive circuit.

ここで、上記感磁性素子lOの内部抵抗rの温度係数を
αとし、温度変化をもとして、上記内部抵抗rを r=ro(1+αL) ・・・・・・・第6式上記第5
式の駆動電流iは、 ・・・・第8式 %式% そして、上記感磁性素子10の内部抵抗rの温度係数α
および定電圧駆動時の感磁性素子の検出出力の温度係数
βゎは上述の如く一般にカタログデータ等にて予めもと
めることができるので、上記第8式における感磁性素案
子10の駆動電流iの温度係数 RtR3RIr。
Here, α is the temperature coefficient of the internal resistance r of the magnetically sensitive element IO, and based on temperature change, the internal resistance r is calculated as r=ro(1+αL)... Equation 6
The drive current i in the equation is: 8th equation % equation % And the temperature coefficient α of the internal resistance r of the magnetically sensitive element 10
The temperature coefficient βゎ of the detection output of the magnetically sensitive element during constant voltage driving can generally be determined in advance from catalog data, etc. as described above, so the temperature of the drive current i of the magnetically sensitive element 10 in the above equation 8 is Coefficient RtR3RIr.

■ R□Rs  −RIr6 であり、 1−          ・ at RtR3RIr。■ R□Rs -RIr6 and 1-       ・at RtR3RIr.

とおいて、R+、 Rz、 Rzを決定すれば上記感磁
性素子10の検出出力電圧が温度特性を持たないように
することができる。
By determining R+, Rz, and Rz, it is possible to prevent the detected output voltage of the magnetically sensitive element 10 from having temperature characteristics.

上記第3図に示した駆動回路において、例えば人力抵抗
13の抵抗値R1と電流検出抵抗12の抵抗値R1を予
め決定した場合には、 Lr。(α+β、) なる第10式から帰還抵抗15の抵抗値R2を決定する
ことができる。
In the drive circuit shown in FIG. 3, for example, when the resistance value R1 of the human resistor 13 and the resistance value R1 of the current detection resistor 12 are determined in advance, Lr. (α+β,) The resistance value R2 of the feedback resistor 15 can be determined from the 10th equation.

・なお、上述の第3図に示した駆動回路において、強磁
性体磁気抵抗素子やG、A、ホール素子以外の感磁性素
子を駆動する場合に、上記帰還抵抗15の抵抗値R2が
、第10式から負の値として算出されることがあるが、
この場合には演算増幅器11の出力電圧■。を極性反転
して帰還抵抗15を介して正側入力端子に帰還する方法
、あるいは上記出力電圧■。を負側入力端子に帰還する
方法等を採用すれば良い。
・In addition, in the drive circuit shown in FIG. Although it may be calculated as a negative value from formula 10,
In this case, the output voltage of the operational amplifier 11 is ■. A method of inverting the polarity and feeding it back to the positive input terminal via the feedback resistor 15, or the above output voltage (2). What is necessary is to adopt a method such as feeding back the signal to the negative input terminal.

ところで、第4図は三端子型感磁性素子の動作原理を示
すものであって、2つの感磁性素子r。
By the way, FIG. 4 shows the operating principle of a three-terminal type magnetically sensitive element, in which two magnetically sensitive elements r.

rtが直列に接続されており、これら2つの感磁性素子
r+、rzは、印加される磁界が変化した際の抵抗の変
化が互いに逆の極性を有するように構成されている。そ
して、これら2つの感磁性素子rl、r、の両端に所定
の電圧Eが加えられるとともに、上記2つの感磁性素子
rl+r!の接続点から出力を得るようになされており
、上記2つの感磁性素子r 1 *  r zに印加さ
れた磁界を変化させることにより、上記2つの感磁性素
子r1、r!の抵抗が変化し、検出電圧v0が変化する
ように構成されている。
rt are connected in series, and these two magnetically sensitive elements r+, rz are configured such that the change in resistance when the applied magnetic field changes has opposite polarity. Then, a predetermined voltage E is applied across these two magnetically sensitive elements rl, r, and the two magnetically sensitive elements rl+r! By changing the magnetic field applied to the two magnetically sensitive elements r1*rz, the output is obtained from the connection point of the two magnetically sensitive elements r1, r! The resistance is changed, and the detection voltage v0 is changed.

次に、第5図は上述の第4図に示す三端子型感磁性素子
の動作原理に従って感磁性素子を定電流駆動するように
した具体的な実施例の回路構成を示している。
Next, FIG. 5 shows a circuit configuration of a specific embodiment in which a magnetically sensitive element is driven at a constant current according to the operating principle of the three-terminal type magnetically sensitive element shown in FIG. 4 described above.

この第5図において、第1の演算増幅器11の正側入力
端子は、第1の抵抗13Aを介して接地されているとと
もに第2の抵抗13Bを介して駆動電源入力端子20に
接続されており、上記駆動電源入力端子20に供給され
る電源電圧VCCを上記各抵抗13A、13Bの抵抗比
R+A:R+*にて分割した基準電圧Eが与えられるよ
うになっている。
In FIG. 5, the positive input terminal of the first operational amplifier 11 is grounded via a first resistor 13A and connected to the drive power input terminal 20 via a second resistor 13B. A reference voltage E is provided by dividing the power supply voltage VCC supplied to the drive power input terminal 20 by the resistance ratio R+A:R+* of each of the resistors 13A and 13B.

そして、この第5図に示す回路は、2つの三端子型感磁
性素子18.19を組合せ、この2つの三端子型感磁性
素子の検出電圧■、と■、の差を出力電圧としている。
The circuit shown in FIG. 5 combines two three-terminal type magnetically sensitive elements 18 and 19, and uses the difference between the detection voltages (1) and (2) of the two three-terminal type magnetically sensitive elements as an output voltage.

ここで、上記三端子型感磁性素子18.19の抵抗は、
rl とr4+r!とr、がそれぞれ同極性となってお
り、上記三端子型感磁性素子18.19に印加される磁
界が変化し、r、とr、の抵抗が増加した場合にはr2
とr、の抵抗が減少し、rl とr4の抵抗が減少した
場合にはr2とr、の抵抗が増加するようになされてい
る。従って、2つの三端子型感磁性素子18.19を用
いたために検出電圧■^とV++の差が2倍となり、1
つの三端子型感磁性素子を用いた場合の2倍の検出感度
を得られるようにしたもので、第1の演算増幅器11が
本発明に係る駆動回路を構成し、第2の演算増幅器21
が上記感磁性素子10から出力される検出出力を増幅す
る作動増幅回路を構成している。
Here, the resistance of the three-terminal type magnetically sensitive element 18 and 19 is:
rl and r4+r! and r have the same polarity, and when the magnetic field applied to the three-terminal magnetically sensitive element 18 and 19 changes and the resistances of r and r increase, r2
When the resistances of r and r decrease, and the resistances of rl and r4 decrease, the resistances of r2 and r increase. Therefore, since two three-terminal type magnetically sensitive elements 18, 19 are used, the difference between the detection voltage ■^ and V++ is doubled, and 1
The first operational amplifier 11 constitutes the drive circuit according to the present invention, and the second operational amplifier 21 constitutes the drive circuit according to the present invention.
constitutes an operational amplifier circuit that amplifies the detection output output from the magnetically sensitive element 10.

G1発明の効果 上述の説明から明らかなように、本発明に係る感磁性素
子の駆動回路では、演算増幅器の出力電圧を帰還抵抗を
通して、上記演算増幅器の入力側に帰還することにより
、上記感磁性素子の内部抵抗の温度による変化と、上記
感磁性素子を定電流駆動した際の上記感磁性素子の温度
による検出感度の変化とが相殺されるように補償してい
るので、上記感磁性素子の過度的な温度変化や事故発熱
等に対しても高精度に温度補償を行うことができ、感磁
性素子を極めて安定に作動させることができる。
G1 Effects of the Invention As is clear from the above description, in the drive circuit for the magnetically sensitive element according to the present invention, the output voltage of the operational amplifier is fed back to the input side of the operational amplifier through the feedback resistor, thereby reducing the magnetically sensitive element. Since the change in internal resistance of the element due to temperature is compensated for and the change in detection sensitivity due to temperature of the magnetically sensitive element when the magnetically sensitive element is driven with a constant current are compensated for, Temperature compensation can be performed with high precision even against excessive temperature changes, accidental heat generation, etc., and the magnetically sensitive element can be operated extremely stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用される感磁性素子を利用したバッ
クテンションサーボ機構の一般的な機構を示す概略図で
ある。第2図は強磁性磁気抵抗素子の温度特性の一例を
示す特性線図である。 第3図は本発明に係る感磁性素子の駆動回路の基本的な
回路構成を示す回路図である。 第4図は三端子型感磁性素子の動作原理を示す原理図で
あり、第5図は上記第4図に示す三端子型感磁性素子の
動作原理に従って構成した感磁性駆動回路を示す回路図
である。 10・・・感磁性素子 11・・・演算増幅器 12・・・電流検出抵抗 14・・・基準電圧源 15・・・帰還抵抗
FIG. 1 is a schematic diagram showing a general mechanism of a back tension servo mechanism using a magnetically sensitive element to which the present invention is applied. FIG. 2 is a characteristic diagram showing an example of the temperature characteristics of a ferromagnetic magnetoresistive element. FIG. 3 is a circuit diagram showing the basic circuit configuration of a drive circuit for a magnetically sensitive element according to the present invention. FIG. 4 is a principle diagram showing the operating principle of a three-terminal type magnetically sensitive element, and FIG. 5 is a circuit diagram showing a magnetically sensitive drive circuit configured according to the operating principle of the three-terminal type magnetically sensitive element shown in FIG. 4 above. It is. 10... Magnetically sensitive element 11... Operational amplifier 12... Current detection resistor 14... Reference voltage source 15... Feedback resistor

Claims (1)

【特許請求の範囲】 感磁性素子に直列接続され上記感磁性素子に流れる駆動
電流に応じた検出電圧を得る電流検出用抵抗と、上記検
出電圧と基準電圧とを比較して上記感磁性素子を定電流
駆動する演算増幅器とを備えた感磁性素子の駆動回路に
おいて、 上記感磁性素子の内部抵抗の変化による上記演算増幅器
の出力電圧の変化を上記演算増幅器の入力側に帰還する
帰還抵抗を上記演算増幅器の出力端と入力端の間に接続
し、 上記感磁性素子の内部抵抗の温度による変化を上記演算
増幅器の出力電圧の変化として検出することにより、上
記感磁性素子に流れる電流を制御し上記感磁性素子を定
電流駆動した際の上記感磁性素子の検出感度の温度によ
る変化を補償するようにしたことを特徴とする感磁性素
子の駆動回路。
[Claims] A current detection resistor that is connected in series with the magnetically sensitive element and obtains a detection voltage corresponding to the drive current flowing through the magnetically sensitive element, and a current detection resistor that compares the detected voltage with a reference voltage to detect the magnetically sensitive element. In a drive circuit for a magnetically sensitive element comprising an operational amplifier that drives a constant current, the feedback resistor is configured to feed back changes in the output voltage of the operational amplifier due to changes in internal resistance of the magnetically sensitive element to the input side of the operational amplifier. It is connected between the output terminal and the input terminal of the operational amplifier, and controls the current flowing through the magnetically sensitive element by detecting a change in the internal resistance of the magnetically sensitive element due to temperature as a change in the output voltage of the operational amplifier. A driving circuit for a magnetically sensitive element, characterized in that the magnetically sensitive element is configured to compensate for changes in detection sensitivity of the magnetically sensitive element due to temperature when the magnetically sensitive element is driven with a constant current.
JP1310876A 1989-12-01 1989-12-01 Driving circuit for magnetism sensing element Granted JPH02210217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310876A JPH02210217A (en) 1989-12-01 1989-12-01 Driving circuit for magnetism sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310876A JPH02210217A (en) 1989-12-01 1989-12-01 Driving circuit for magnetism sensing element

Publications (2)

Publication Number Publication Date
JPH02210217A true JPH02210217A (en) 1990-08-21
JPH0529849B2 JPH0529849B2 (en) 1993-05-06

Family

ID=18010449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310876A Granted JPH02210217A (en) 1989-12-01 1989-12-01 Driving circuit for magnetism sensing element

Country Status (1)

Country Link
JP (1) JPH02210217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968403A (en) * 1995-08-31 1997-03-11 Denso Corp Opening sensor for throttle valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835876A (en) * 1971-09-08 1973-05-26
JPS56142315U (en) * 1980-03-24 1981-10-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835876A (en) * 1971-09-08 1973-05-26
JPS56142315U (en) * 1980-03-24 1981-10-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968403A (en) * 1995-08-31 1997-03-11 Denso Corp Opening sensor for throttle valve

Also Published As

Publication number Publication date
JPH0529849B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
US7053600B2 (en) Current sensor
US5550469A (en) Hall-effect device driver with temperature-dependent sensitivity compensation
JP2570654B2 (en) Displacement detector
US5402064A (en) Magnetoresistive sensor circuit with high output voltage swing and temperature compensation
US5218279A (en) Method and apparatus for detection of physical quantities, servomotor system utilizing the method and apparatus and power steering apparatus using the servomotor system
US20120013327A1 (en) Two-terminal linear sensor
EP1403648A1 (en) Magnetic sensor
JPH10332722A (en) Rotational speed detector
EP0419041A1 (en) Speed/position sensor based upon magnetoresistive effect
CN113740787A (en) Method for monitoring a magnetic sensor
US9778067B2 (en) Sensing a physical quantity in relation to a sensor
JP2023084140A (en) Magnetic sensor device, inverter apparatus, battery apparatus, electric motor and vehicle
JPH02210217A (en) Driving circuit for magnetism sensing element
JP3153729B2 (en) Non-contact sensor device
JPH03234927A (en) Current control device of electromagnetic clutch for automobile
US7013725B1 (en) System and method for regulating bridge voltage in a discontinuous-time hot-wire anemometer
JP3684691B2 (en) Temperature characteristic compensation circuit and magnetoelectric conversion element driving device using the temperature characteristic compensation circuit
US20010005134A1 (en) Circuit configuration compensating for disturbance variables for a measurement pickup
JPH08193862A (en) Thermosensitive flow-velocity measuring apparatus
JP3428205B2 (en) Hall element drive circuit
US20230408604A1 (en) Sensor output compensation circuit
JPH04191685A (en) Magnetic field sensor
JPH0642223Y2 (en) Magnetic detection circuit
JPS6361961A (en) Current detector
JPS5826215A (en) Rotating angle detector