JPH02209443A - Corrosion-resistant zirconium alloy - Google Patents

Corrosion-resistant zirconium alloy

Info

Publication number
JPH02209443A
JPH02209443A JP3065789A JP3065789A JPH02209443A JP H02209443 A JPH02209443 A JP H02209443A JP 3065789 A JP3065789 A JP 3065789A JP 3065789 A JP3065789 A JP 3065789A JP H02209443 A JPH02209443 A JP H02209443A
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
corrosion
deterioration
zirconium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3065789A
Other languages
Japanese (ja)
Inventor
Hiroyuki Anada
博之 穴田
Yoshiaki Shida
志田 善明
Tsuyoshi Kodama
小玉 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3065789A priority Critical patent/JPH02209443A/en
Publication of JPH02209443A publication Critical patent/JPH02209443A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To effectively improve the deterioration of corrosion resistance in the Zr alloy caused by N by adding specified trace amt. of Ni to a Zr alloy contg. the elements for improving corrosion resistance such as Sn, Fe and Cr. CONSTITUTION:As the stock for parts of a fuel clad pipe, a channel box or the like of a light-water cooled reactor used in high temp.-high pressure water or steam, a Zr alloy contg., by weight, 0.2 to 1.7% Sn, 0.03 to 0.50% Fe, 0.03 to 0.30% Cr and 0.0080 to 0.030% Ni is used. The deterioration of corrosion resistance caused by N contained as impurities is prevented by the addition of Sn, Fe and Cr as the elements for improving general corrosion resistance are furthermore incorporated thereto and the deterioration of corrosion resistance caused by Sn itself is moreover prevented by the addition of Ni, by which the Zr alloy having wholly improved corrosion resistance can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軽水冷却原子炉の燃料被覆管やチャンネルボ
ックスの如く、高温高圧の水中や水蒸気中での使用に適
した高耐食性ジルコニウム合金に関する。なお、本明細
書において耐食性とは、特にことわりのない限り、耐均
一腐食性を指す。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a highly corrosion-resistant zirconium alloy suitable for use in high-temperature, high-pressure water or steam, such as fuel cladding tubes and channel boxes for light water-cooled nuclear reactors. . Note that in this specification, corrosion resistance refers to uniform corrosion resistance unless otherwise specified.

〔従来の技術〕[Conventional technology]

ジルコニウムは、周知の如く、熱中性子吸収断面積が小
さく、その合金は、高温強度等の機械的性質に優れ、且
つ耐食性にも著しく優れている。
As is well known, zirconium has a small thermal neutron absorption cross section, and its alloys have excellent mechanical properties such as high-temperature strength and extremely excellent corrosion resistance.

このことから、ジルコニウム合金は、熱中性子を利用す
る原子炉の炉心構造部材に多く使用されており、最も代
表的な使用例としては、軽水冷却原子炉の燃料被覆管や
チャンネルボックスがある。
For this reason, zirconium alloys are often used in core structural members of nuclear reactors that utilize thermal neutrons, and the most typical examples of their use are fuel cladding tubes and channel boxes in light water-cooled nuclear reactors.

すなわち、軽水冷却原子炉、特に沸騰水型原子炉の燃料
被覆管には、ジルカロイ−2(JISH4751ZrT
N802D)が使用されており、同原子炉のチャンネル
ボックスおよび加圧水型原子炉の燃料舖覆管には、ジル
カロイ−4(JISH4751ZrTN804D)が使
用されている。
That is, Zircaloy-2 (JISH4751ZrT
Zircaloy-4 (JISH4751ZrTN804D) is used for the channel box of the reactor and the fuel cladding of the pressurized water reactor.

これらのジルコニウム合金は、現在稼働している軽水冷
却原子炉の運転条件下では、優れた耐食性を示し、健全
な状態を保ち続けることが確認されている。このような
状況を背景として、最近では、発電コスト低減のために
、燃料使用期間の延長も計画されている。しかし、燃料
使用期間の延長に対しては、ジルカロイ−2やジルカロ
イ−4といった現行のジルコニウム合金は、十分な耐食
性を示すとは言えないことが判明してきた。
It has been confirmed that these zirconium alloys exhibit excellent corrosion resistance and remain in good condition under the operating conditions of light water-cooled nuclear reactors currently in operation. Against this background, recently there are plans to extend the period of fuel use in order to reduce power generation costs. However, it has been found that current zirconium alloys such as Zircaloy-2 and Zircaloy-4 do not exhibit sufficient corrosion resistance for extended fuel usage periods.

ジルコニウム合金の耐食性を現行レベルより高めたもの
としては、ジルカロイ−4においてそのSnを規格より
減らして0.2〜1.15%とし、他の合金成分はその
ままで不純物窒素を60ppm以下に制限したジルコニ
ウム合金が、特開昭63−35749号公報に開示され
ている。また、特開昭62−287029号公報ニハ、
Feを0.1〜1.0%、Niを0.01〜1.0%含
有させたジルコニウム合金も開示されている。
In order to improve the corrosion resistance of zirconium alloys compared to the current level, we reduced the Sn content of Zircaloy-4 from the standard to 0.2 to 1.15%, and limited the impurity nitrogen to 60 ppm or less while keeping the other alloy components unchanged. A zirconium alloy is disclosed in JP-A-63-35749. Also, Japanese Patent Application Laid-Open No. 62-287029,
A zirconium alloy containing 0.1 to 1.0% of Fe and 0.01 to 1.0% of Ni is also disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前者のジルコニウム合金では、Snは耐食性を劣化させ
るとの観点からジルカロイ−4における規格値よりも低
く抑えている。しかし、Snは元来、耐食性改善を・目
的として添加されてきた元素で、その作用は、耐食性劣
化を引き起こす不純物窒素の働きを相殺する点にあり、
Snの減量は必ずしも好結果をもたらすとは限らない。
In the former zirconium alloy, Sn is kept lower than the standard value for Zircaloy-4 from the viewpoint of deteriorating corrosion resistance. However, Sn is an element originally added for the purpose of improving corrosion resistance, and its action is to offset the action of impurity nitrogen, which causes deterioration of corrosion resistance.
Reducing the amount of Sn does not necessarily lead to favorable results.

すなわち、不純物窒素を含まない理想的な状態では、確
かにSnは不必要で、むしろ耐食性を悪化させる原因に
なる。前者のジルコニウム合金では、この観点から、不
純物窒素を厳しく制限した状態でSn量を低下させて耐
食性の改善を図ろうとしているのである。しかるに、Z
rは窒素ガスとの反応性が高く、軽水冷却原子炉の燃料
被覆管やヂャンネルボックスでは、加工工程で焼鈍が繰
り返されるために、不純物窒素レベルが増加する可能性
があり、これに依存した前者のジルコニウム合金は、現
実的な対策とは言えない。
That is, in an ideal state that does not contain impurity nitrogen, Sn is certainly unnecessary, and rather causes deterioration of corrosion resistance. From this point of view, in the former zirconium alloy, attempts are being made to improve the corrosion resistance by reducing the amount of Sn while strictly limiting the nitrogen impurity. However, Z
r is highly reactive with nitrogen gas, and in the fuel cladding and channel boxes of light water-cooled nuclear reactors, the level of impurity nitrogen may increase due to repeated annealing during the processing process, and The former, zirconium alloy, cannot be said to be a realistic countermeasure.

さらにこの合金に添加されているFe、 Crは、いず
れも耐食性向上に寄与する合金元素である。しかし両者
の添加量は現行ジルカロイ−4レヘルであり、今後の使
用期間延長により要求される耐食性向上に対して不十分
である。
Furthermore, Fe and Cr added to this alloy are alloying elements that contribute to improving corrosion resistance. However, the amount of both added is currently 4 levels of Zircaloy, which is insufficient to improve the corrosion resistance required for the extended period of use in the future.

また、後者のジルコニウム合金では、Fe、 Niのみ
で耐食性を改善しようとしている。しかし、上述したと
おり、不純物窒素レベルを抑えることが困難な状態でS
nを除いてしまうと、不純物窒素による耐食性低下が懸
念され、且つFe、 Niの多量添加による冷間加工性
の低下や、Niの多量添加にともなう水素吸収等も問題
になる。したがって、後者のジルコニウム合金も、現実
に則した対策とは言えない。
In the latter zirconium alloy, efforts are being made to improve corrosion resistance using only Fe and Ni. However, as mentioned above, S
If n is removed, there is a concern that corrosion resistance will be lowered due to impurity nitrogen, and problems such as lower cold workability due to the addition of large amounts of Fe and Ni and hydrogen absorption due to the addition of large amounts of Ni may also arise. Therefore, the latter zirconium alloy cannot be said to be a realistic countermeasure.

本発明は、斯かる現状に鑑みなされたもので、不純物窒
素が通常レベルで含有されても、現状のジルコニウム合
金によりも優れた耐食性を有し、しかも冷間加工性の低
下や水素吸収の問題を生じない高耐食性ジルコニウム合
金を提供することを目的とする。
The present invention was developed in view of the current situation, and has superior corrosion resistance than current zirconium alloys even if the impurity nitrogen is contained at a normal level, and has problems such as decreased cold workability and hydrogen absorption. The purpose of the present invention is to provide a highly corrosion-resistant zirconium alloy that does not cause corrosion.

〔課題を解決するための手段] ジルコニウム合金の原料であるジルコニウムスポンジの
不純物窒素レベルを20〜30ppm以下に抑えること
は難しい。したがって、不純物窒素による耐食性低下の
改善に有効なSnは、不可欠な元素と考えられる。しか
し、このSnは、不純物窒素による耐食性低下が改善で
きる一方で、それ自体は耐食性の低下原因になるのもま
た事実である。
[Means for Solving the Problems] It is difficult to suppress the impurity nitrogen level of zirconium sponge, which is a raw material for zirconium alloy, to 20 to 30 ppm or less. Therefore, Sn is considered to be an essential element since it is effective in improving the corrosion resistance deterioration caused by impurity nitrogen. However, while this Sn can improve the reduction in corrosion resistance caused by impurity nitrogen, it is also true that it itself causes a reduction in corrosion resistance.

本発明者らは、現行のジルコニウム合金より優れた耐食
性を得るには、Snによる窒素の悪影響防止効果を確保
しつつ、Sn自体の耐食性に対する悪影響を抑えるのが
、現実的には最も得策であると考え、鋭意実験研究を繰
り返した結果、Niの微量添加が有効なことを知見した
The present inventors believe that in order to obtain corrosion resistance superior to that of current zirconium alloys, it is realistically best to suppress the negative effects of Sn itself on corrosion resistance while ensuring the effect of Sn in preventing the negative effects of nitrogen. As a result of intensive experimental research, we discovered that adding a small amount of Ni is effective.

すなわち、Snに対して微量のNiを共存させると、通
常レヘルで不純物窒素が含有された場合にも、不純物窒
素に起因する耐食性低下がSnで改善され、なおかつS
n自体が原因で生じる耐食性低下を補う以上にNiで耐
食性を改善することができるのである。しかも、Ni添
加がSnの耐食性劣化を抑えることにより、要求される
強度保持に必要なだけのSnを添加することができ、機
械的性質も満足する。
In other words, when a trace amount of Ni coexists with Sn, even when impurity nitrogen is contained in the normal level, Sn improves the corrosion resistance deterioration caused by impurity nitrogen, and
Ni can improve corrosion resistance more than compensating for the decrease in corrosion resistance caused by n itself. Moreover, since the addition of Ni suppresses the deterioration of the corrosion resistance of Sn, it is possible to add just enough Sn to maintain the required strength, and the mechanical properties are also satisfied.

さらにNi添加量はFe、 Cr量に比べて少なく、N
iによる冷間加工性の低下や水素吸収の問題を発生させ
るおそれもない。
Furthermore, the amount of Ni added is smaller than the amount of Fe and Cr;
There is no risk of deterioration in cold workability or problems with hydrogen absorption due to i.

本発明は、斯かる知見に基づきなされたもので、重量%
でSn:0.2〜1.7%、Fe:0.03〜0.50
%、Cr:0.03〜0.30%、Ni :0.008
0〜0゜030%を含有し、残部Zrおよび不可避的不
純物からなることを特徴とする高耐食性ジルコニウム合
金を要旨とする。
The present invention was made based on this knowledge, and the weight %
Sn: 0.2-1.7%, Fe: 0.03-0.50
%, Cr: 0.03-0.30%, Ni: 0.008
The gist of the invention is a highly corrosion-resistant zirconium alloy characterized by containing 0 to 0.030% Zr and the remainder consisting of Zr and unavoidable impurities.

〔作  用〕[For production]

本発明のジルコニウム合金における各添加元素の含有量
限定理由は次のとおりである。
The reason for limiting the content of each additive element in the zirconium alloy of the present invention is as follows.

Sn:不純物として混入してZrの耐食性を劣化させる
窒素の悪影響を抑えるのに有効な元素であり、その含有
量は、通常は不純物窒素の含有量によって変化させるこ
とになる。不純物窒素の含有量は、一般の原料スポンジ
においては20〜30ppmである。また、その後の製
造工程中における吸収量も最小限となるように管理がな
されている。したがって、本発明のジルコニウム合金で
は、ジルカロイ(Sn: 1.20〜1.7%)のよう
に下限を1.2%に制限する必要はなく、不純物窒素に
よる耐食性低下に対して改善効果を発揮し得る0、2%
を下限とする。ただし、Snは強度確保の点からも重要
元素であるので、0.5%以上が望ましい。一方、Sn
の窒素悪影響防止効果は1.7%まで認められるので、
これを上限とするが、Snは単独では耐食性劣化元素で
あるので、1.2%以下とするのが望ましい。
Sn: An element effective in suppressing the adverse effects of nitrogen, which is mixed as an impurity and degrades the corrosion resistance of Zr, and its content is usually changed depending on the content of the nitrogen impurity. The content of impurity nitrogen is 20 to 30 ppm in a general raw material sponge. In addition, the amount absorbed during the subsequent manufacturing process is also managed to be kept to a minimum. Therefore, in the zirconium alloy of the present invention, there is no need to limit the lower limit to 1.2% as in Zircaloy (Sn: 1.20 to 1.7%), and it exhibits an improvement effect on corrosion resistance deterioration due to impurity nitrogen. Possible 0.2%
is the lower limit. However, since Sn is an important element from the viewpoint of ensuring strength, it is desirable that it be 0.5% or more. On the other hand, Sn
The effect of preventing negative nitrogen effects is recognized up to 1.7%, so
This is the upper limit, but since Sn alone is an element that deteriorates corrosion resistance, it is desirable to keep it at 1.2% or less.

Fe:耐食性向上に有効な元素で、有効性は0.05%
以上で現われる。しかし、Feの多量の含有は冷間加工
製を損なう。以上のことがらFeは0.03〜0.50
%の含有量とする。
Fe: An element effective in improving corrosion resistance, effectiveness is 0.05%
The above appears. However, a large amount of Fe impairs cold working properties. Based on the above, Fe is 0.03 to 0.50
% content.

Cr : Crも耐食性向上に有効な元素であり、その
効果が発現する0、03%を下限とする。Crは又、Z
rとの間に金属間化合物を形成し、その析出状況は熱処
理により複雑に変化し、この金属間化合物の析出は基本
的には耐食性を劣化させる。Crの多量添加は、この析
出物を増加させるために、Cr量の上限は0.30%と
する。
Cr: Cr is also an effective element for improving corrosion resistance, and the lower limit is set at 0.03%, at which the effect is manifested. Cr is also Z
An intermetallic compound is formed between the metal and the metal, and the state of its precipitation changes in a complicated manner due to heat treatment, and the precipitation of this intermetallic compound basically deteriorates the corrosion resistance. Addition of a large amount of Cr increases this precipitate, so the upper limit of the amount of Cr is set to 0.30%.

Ni:本発明のジルコニウム合金では、Snとともに重
要な元素である。このNiは微量で耐食性改善効果を示
し、窒素悪影響防止のために添加されたSnそれ自体の
耐食性に対する悪影響を抑える。Snで窒素による耐食
性低下が効果的に抑えられているので、多く含有する必
要はなく、また上述したとおり微量でも優れた耐食性改
善効果を示す。むしろNiの多量含有は水素吸収による
脆化促進し、長期使用を考えた場合はこの脆化が大きな
問題になる。このようなことから、Ni量は0.008
0〜0゜030%とする。
Ni: In the zirconium alloy of the present invention, Ni is an important element along with Sn. This Ni exhibits the effect of improving corrosion resistance even in a small amount, and suppresses the negative effects on corrosion resistance of Sn itself, which is added to prevent the negative effects of nitrogen. Since the decrease in corrosion resistance caused by nitrogen is effectively suppressed by Sn, it is not necessary to contain a large amount of Sn, and as mentioned above, even a small amount exhibits an excellent corrosion resistance improving effect. In fact, the large content of Ni promotes embrittlement due to hydrogen absorption, and this embrittlement becomes a major problem when long-term use is considered. From this, the amount of Ni is 0.008
0~0°030%.

〔実施例〕〔Example〕

以下に本発明をその実施例について具体的に説明する。 The present invention will be specifically described below with reference to examples thereof.

非消耗型アルゴンアーク溶解法により第1表に示ス組成
のジルコニウム合金からなる小型インゴット(約500
 g)を溶製した。次に、各小型インゴットをlXl0
−’Torr以下の真空中で1050°CX2時間加熱
し、水焼入れの後、溶体化処理を行った。しかる後、各
小型インゴットを下記条件で加工処理して厚み約2mm
の板材となし、各板材より長さ50m×幅30mmX厚
み2mmの腐食試験片を採取した。腐食試験片中の不純
物窒素量は第1表に示すように約80ppmである。
A small ingot (approximately 500
g) was dissolved. Next, each small ingot is
It was heated at 1050° C. for 2 hours in a vacuum of -' Torr or less, and after water quenching, solution treatment was performed. After that, each small ingot was processed under the following conditions to a thickness of approximately 2 mm.
Corrosion test pieces with a length of 50 m x width of 30 mm x thickness of 2 mm were taken from each plate. The amount of impurity nitrogen in the corrosion test piece is about 80 ppm as shown in Table 1.

(i)熱間圧延 700°CX2hr加熱(Ar中)圧
下率60% (11)中間焼鈍 650°CX2hr(真空中)(j
i)冷間圧延 圧下率72% (iv)最終焼鈍 450°cx2hr(真空中)そし
て、各試験片を(#600SiC)により湿式で表面研
磨した後、硝沸酸(5%HF/45%HNO3150%
H,0)にて酸洗し、更に水で洗浄して腐食試験に供し
た。腐食試験は、水蒸気中での380°CX 105k
gf 7cm2X3000時間のオートクレーブ処理と
し、耐食性は試験前後での重量変化から求めた腐食増量
(mg/dm2)にて評価した。結果を第1表に示す。
(i) Hot rolling 700°CX2hr heating (in Ar) reduction rate 60% (11) Intermediate annealing 650°CX2hr (in vacuum) (j
i) Cold rolling rolling reduction 72% (iv) Final annealing 450°cx2hr (in vacuum) Then, after wet surface polishing of each test piece with (#600SiC), nitric acid (5%HF/45%HNO3150) %
The sample was pickled with H.O.), further washed with water, and subjected to a corrosion test. Corrosion test: 380°C x 105k in steam
Autoclave treatment was performed for gf 7cm2 x 3000 hours, and corrosion resistance was evaluated by corrosion weight increase (mg/dm2) determined from the weight change before and after the test. The results are shown in Table 1.

第 ■ 表 本発明範囲外 第1表から明らかなように、本発明のジルコニウム合金
No、 1〜8では、いずれも腐食増量が100mg/
dm”未満に抑制されている。
Table 1: Outside the scope of the present invention As is clear from Table 1, in zirconium alloys Nos. 1 to 8 of the present invention, the corrosion weight increase was 100 mg/
dm".

これに対し、比較合金No、 9はジルカロイ−4相当
のジルコニウム合金で、Snを比較的多く含むもののN
iが事実上台まれていないために、上記腐食試験は腐食
増量は126mg/dm2に達し腐食が著しい。N01
0〜16ではNiを含むものの、他の成分が本発明条件
を満足していないため、腐食増量が100mg/dm”
まで低下していない。このうち、No、 15はSnと
して現状レベル(ジルカロイレベル)よりも低下させた
合金であるが、不純物窒素が約soppm含まれる状態
では、Ni添加が行われていないために、十分な耐食性
改善効果を現わしていない。また、No、 16はFe
、 Niの大量添加で耐食性改善を図った合金であるが
、Sn添加が行われていないため腐食増量は145mg
/dm”と高い価を示している。
On the other hand, comparative alloy No. 9 is a zirconium alloy equivalent to Zircaloy-4, and although it contains a relatively large amount of Sn, it
Since i was not actually crushed, the corrosion increase in the above corrosion test reached 126 mg/dm2, resulting in significant corrosion. N01
0 to 16 contain Ni, but the other components do not satisfy the conditions of the present invention, so the corrosion weight increase is 100 mg/dm.
It has not decreased to Among these, No. 15 is an alloy in which the Sn content is lower than the current level (Zircaloy level), but in a state where about soppm of impurity nitrogen is included, since Ni is not added, it does not have a sufficient corrosion resistance improvement effect. does not appear. Also, No. 16 is Fe
This alloy has improved corrosion resistance by adding a large amount of Ni, but since no Sn is added, the corrosion increase is only 145 mg.
/dm”, indicating a high value.

このように本発明のジルカロイ合金では、上記腐食試験
で腐食増量が100 m g /dm2未満に抑制され
る。上記腐食試験で現行のジルカロイ−4(No、9)
が腐食増量126 m g /dm”であることを考慮
すると、本発明のジルカロイ合金は、軽水冷却原子炉で
今後予測される燃料使用期間延長に対しても十分な対応
が期待できる。
As described above, in the Zircaloy alloy of the present invention, the corrosion weight increase is suppressed to less than 100 mg/dm2 in the above corrosion test. Current Zircaloy-4 (No. 9) in the above corrosion test
Considering that the corrosion weight increase is 126 mg/dm, the Zircaloy alloy of the present invention can be expected to sufficiently cope with the expected future extension of the fuel usage period in light water-cooled nuclear reactors.

〔発明の効果〕 以上の説明から明らかなように、本発明のジルカロイ合
金は、不純物窒素を特に低減させなくても現行の合金よ
りも優れた耐食性を示す。したがって、耐久性に優れ、
なおかつ、その製造ならびに加工処理が容易である。ま
た、Ni、 Feの多量添加に依存することなく、耐食
性改善を図っているので、冷間加工性の低下がなく、更
に水素吸収による脆化促進の懸念もなく、この点からも
十分な耐久性が保証される。
[Effects of the Invention] As is clear from the above description, the Zircaloy alloy of the present invention exhibits better corrosion resistance than current alloys even without particularly reducing impurity nitrogen. Therefore, it is highly durable and
Moreover, its manufacture and processing are easy. In addition, since corrosion resistance is improved without relying on the addition of large amounts of Ni and Fe, there is no reduction in cold workability, and there is no concern about accelerated embrittlement due to hydrogen absorption, and from this point of view, it has sufficient durability. gender is guaranteed.

Claims (1)

【特許請求の範囲】[Claims] 1、重量%でSn:0.2〜1.7%、Fe:0.03
〜0.50%、Cr:0.03〜0.30%、Ni:0
.0080〜0.030%を含有し、残部Zrおよび不
可避的不純物からなることを特徴とする高耐食性ジルコ
ニウム合金。
1. Sn: 0.2-1.7%, Fe: 0.03 in weight%
~0.50%, Cr:0.03~0.30%, Ni:0
.. A highly corrosion-resistant zirconium alloy characterized by containing 0.080 to 0.030%, with the remainder consisting of Zr and inevitable impurities.
JP3065789A 1989-02-08 1989-02-08 Corrosion-resistant zirconium alloy Pending JPH02209443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3065789A JPH02209443A (en) 1989-02-08 1989-02-08 Corrosion-resistant zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3065789A JPH02209443A (en) 1989-02-08 1989-02-08 Corrosion-resistant zirconium alloy

Publications (1)

Publication Number Publication Date
JPH02209443A true JPH02209443A (en) 1990-08-20

Family

ID=12309839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3065789A Pending JPH02209443A (en) 1989-02-08 1989-02-08 Corrosion-resistant zirconium alloy

Country Status (1)

Country Link
JP (1) JPH02209443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712938A1 (en) * 1994-11-21 1996-05-22 General Electric Company Zirconium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712938A1 (en) * 1994-11-21 1996-05-22 General Electric Company Zirconium alloy
US5699396A (en) * 1994-11-21 1997-12-16 General Electric Company Corrosion resistant zirconium alloy for extended-life fuel cladding

Similar Documents

Publication Publication Date Title
KR100334252B1 (en) Niobium-containing zirconium alloys for nuclear fuel cladding
JP4455603B2 (en) Zirconium alloy composition for nuclear power and manufacturing method thereof
EP0227989B1 (en) Zirconium-based alloy with high corrosion resistance
US7364631B2 (en) Zirconium-based alloy having a high resistance to corrosion and to hydriding by water and steam and process for the thermomechanical transformation of the alloy
KR100261666B1 (en) Composition of zirconium alloy having low corrosion rate and high strength
JP5704553B2 (en) Zirconium alloy resistant to shadow corrosion for components in boiling water reactor nuclear fuel assemblies
KR100261665B1 (en) Composition of zirconium alloy having high corrosion resistance and high strength
JP3057074B2 (en) Zirconium alloy composition for nuclear fuel cladding
CN105296803B (en) A kind of nuclear reactor fuel can zirconium-niobium alloy and preparation method thereof
JPH02209443A (en) Corrosion-resistant zirconium alloy
JPH01301830A (en) High corrosion-resistant zirconium alloy
JPH08253828A (en) Highly corrosion resistant zirconium alloy
US7292671B1 (en) Zirconium based alloy and component in a nuclear energy plant
JPH0867954A (en) Production of high corrosion resistant zirconium alloy
KR20080065749A (en) Zirconium alloys having excellent resistance property in both water and steam reaction
JP3692006B2 (en) High corrosion resistance zirconium alloy, structural material for reactor core, and method for producing the same
JP3389018B2 (en) Zirconium alloy with excellent hydrogen absorption resistance
CN114703397B (en) Zirconium-based alloy with corrosion resistance and creep resistance for nuclear reactor fuel cladding and method for preparing zirconium-based alloy pipe by using zirconium-based alloy
JP3336561B2 (en) High corrosion resistant zirconium alloy
JPH09111413A (en) Heat resistant steel for nuclear fusion reactor, excellent in toughness, and its production
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
JPS6126738A (en) Zirconium alloy
JP2000212663A (en) High corrosion resistance zirconium alloy
KR101088111B1 (en) Zirconium alloy compositions having excellent corrosion resistance and creep resistance
KR20080097380A (en) Zirconium alloys having excellent resistance property in both water and steam reaction