JPH02208827A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH02208827A
JPH02208827A JP2922789A JP2922789A JPH02208827A JP H02208827 A JPH02208827 A JP H02208827A JP 2922789 A JP2922789 A JP 2922789A JP 2922789 A JP2922789 A JP 2922789A JP H02208827 A JPH02208827 A JP H02208827A
Authority
JP
Japan
Prior art keywords
magnetic recording
layer
protective layer
bias voltage
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2922789A
Other languages
Japanese (ja)
Inventor
Takao Takahashi
高橋 岳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2922789A priority Critical patent/JPH02208827A/en
Publication of JPH02208827A publication Critical patent/JPH02208827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To reduce variation in surface roughness of a protective film and to constantly control the surface by roughening the surface of a magnetic recording layer by dry etching in an inert gas atmosphere with applying DC bias voltage on the surface. CONSTITUTION:The magnetic recording layer with specified DC bias voltage applied is subjected to dry etching in an inert gas atmosphere to roughen the surface, on which the protective layer is formed by sputtering. Further, a liquid lubricant is applied thereon to a specified thickness to form the lubricating layer. By determining the proper DC bias voltage, the surface roughness of the carbon protective layer can be controlled to desired roughness. Thereby, the medium with excellent wear resistance can be constantly massproduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固定磁気ディスク装置などに用いられる磁
気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic recording medium used in fixed magnetic disk drives and the like.

〔従来の技術〕[Conventional technology]

近年、コンピュータなどの情報処理装置の外部記憶装置
として固定磁気ディスク装置が多用されてきているが、
この装置に用いられる磁気記録媒体(以下、単に媒体と
も称する)としては、一般に、非磁性基板1例えばA1
合金基板上にN1−P層を形成した基体上に、例えば、
Crからなる非磁性金属薄膜下地層、 Co−Ni合金
からなる強磁性合金薄膜磁気記録層、カーボン薄膜保護
層を連続スパッタ法で順次成膜し、さらにその上に液体
潤滑剤からなる潤滑層を形成した構成のものが知られて
いる。このような媒体に要望される特性の一つとして媒
体表面を磁気ヘッドが摺動するときの耐摩擦特性がある
。、この媒体の耐摩擦特性は保護層の表面粗さ(表面の
微細形状)および潤滑層を形成する液体潤滑剤の膜厚に
左右されることは知られている。カーボン保護層表面を
所要の一定の表面粗さとし、ばらつきの少ない良好な耐
摩擦特性の媒体を得るために、従来、基体のN1−P層
表面を鏡面仕上げした後にテクスチャ加工を施して所要
の表面粗さとし、その上にCr下地層、 Co−Ni合
金磁気記録層、カーボン保護層を順次積層して、カーボ
ン保護層の表面粗さを基体のN1−P層の表面粗さに対
応した一定の粗さとし、その上に液体潤滑剤を所要の一
定の膜厚に塗布して潤滑層を形成する製造方法が採られ
ている。
In recent years, fixed magnetic disk drives have been widely used as external storage devices for information processing devices such as computers.
A magnetic recording medium (hereinafter also simply referred to as a medium) used in this device generally includes a non-magnetic substrate 1, for example, A1.
For example, on a base body with an N1-P layer formed on an alloy substrate,
A nonmagnetic metal thin film underlayer made of Cr, a ferromagnetic alloy thin film magnetic recording layer made of Co-Ni alloy, and a carbon thin film protective layer are sequentially formed by a continuous sputtering method, and then a lubricating layer made of a liquid lubricant is further formed on top of them. There are known configurations that have been formed. One of the characteristics required of such a medium is friction resistance when a magnetic head slides on the surface of the medium. It is known that the anti-friction properties of this medium depend on the surface roughness (microscopic shape of the surface) of the protective layer and the film thickness of the liquid lubricant forming the lubricating layer. In order to make the surface of the carbon protective layer have the required constant surface roughness and obtain a medium with good friction resistance properties with little variation, conventionally, the surface of the N1-P layer on the base was mirror-finished and then textured to obtain the desired surface roughness. A Cr underlayer, a Co-Ni alloy magnetic recording layer, and a carbon protective layer were sequentially laminated on top of the roughness, and the surface roughness of the carbon protective layer was adjusted to a certain level corresponding to the surface roughness of the N1-P layer of the substrate. A manufacturing method is adopted in which a lubricant layer is formed by roughening the surface and coating the surface with a liquid lubricant to a predetermined thickness.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、このような下地層であるN1−P層の表面粗
さによりカーボン保護層の表面粗さを制御しようとする
従来の製造方法では、介在するCr層。
However, in the conventional manufacturing method in which the surface roughness of the carbon protective layer is controlled by the surface roughness of the N1-P layer, which is the underlying layer, the intervening Cr layer.

Co−Ni合金磁気記録層が薄膜であっても、カーボン
保護層の表面を常に所要の一定の表面粗さに形成するこ
とは難しく、表面粗さにばらつきが生じ、媒体の耐摩擦
特性にばらつきが発生するという問題があった。
Even if the Co-Ni alloy magnetic recording layer is a thin film, it is difficult to always form the surface of the carbon protective layer to the required constant surface roughness, resulting in variations in surface roughness and variations in the friction resistance properties of the medium. There was a problem that occurred.

この発明は、上述の問題点を解消して、磁気記録層上に
所要の一定の表面粗さのカーボン保護層をばらつき少な
く形成することができ、優れた耐摩擦特性を有する媒体
をばらつき少なく量産することのできる製造方法を提供
することを目的とする。
This invention solves the above-mentioned problems, makes it possible to form a carbon protective layer with a required constant surface roughness on a magnetic recording layer with less variation, and mass-produces media with excellent friction resistance properties with less variation. The purpose is to provide a manufacturing method that can.

〔課題を解決するための手段〕 上記の目的は、この発明によれば、非磁性基体上に非磁
性金属下地層、磁気記録層、保護層をスパッタ法で順次
成膜する磁気記録媒体の製造方法にふいて、磁気記録層
を成膜後前記基体に所要のDCバイアス電圧を印加し不
活性ガス雰囲気中で前記磁気記録層表面をドライエツチ
ングしてあらしたのち、その上に保護層を成膜して所要
の表面粗さの保護層を形成する製造方法によって達成さ
れる。
[Means for Solving the Problems] According to the present invention, the above object is to manufacture a magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic recording layer, and a protective layer are sequentially formed on a nonmagnetic substrate by a sputtering method. According to the method, after forming a magnetic recording layer, a required DC bias voltage is applied to the substrate, the surface of the magnetic recording layer is dry-etched in an inert gas atmosphere, and then a protective layer is formed thereon. This is achieved by a manufacturing method that forms a protective layer with the desired surface roughness.

〔作用〕[Effect]

上述のように、保護層の直接の下地となる磁気記録層表
面を所要のDCバイアス電圧を印加して不活性ガス雰囲
気中でドライエツチングしてあらし、その上に保護層を
スパッタ法で成膜することにより、保護層の表面粗さは
従来の基体の表面粗さで制御する方法に比べてばらつき
の少ない所要の一定の表面粗さとなり、その上に液体潤
滑剤を所要の膜厚に塗布して潤滑層を形成することによ
り、一定の優れた耐摩擦特性の媒体をばらつき少なく量
産することが可能となる。
As mentioned above, the surface of the magnetic recording layer, which is the direct underlayer of the protective layer, is dry-etched in an inert gas atmosphere by applying the required DC bias voltage, and the protective layer is deposited thereon by sputtering. By doing this, the surface roughness of the protective layer becomes the required constant surface roughness with less variation compared to the conventional method of controlling the surface roughness of the substrate, and the liquid lubricant is applied on top of it to the required thickness. By forming a lubricating layer using the same method, it becomes possible to mass-produce a medium with uniform and excellent anti-friction characteristics with little variation.

〔実施例〕〔Example〕

内外径加工および面切削を施したA1合金ディスク基板
の表面に無電解めっきでN1−P合金層を約15μmの
厚さに形成し、その表面を2μm〜3μm鏡面研磨して
表面粗さを中心線平均粗さRaで10人〜20人とし、
テクスチャ加工を施さずにそのまま超精密洗浄を行って
媒体の基体とする。次に、第3図の部分平面図に示すよ
うに、金属材料1例えばへ1合金板からなるパレット1
に上述のように処理された基体2を複数個セットし、こ
のパレットをインライン方式スパッタ成膜装置の仕込み
室に送り込み、5 Xl0−’Torr以下の真空に排
気し、基体温度が200℃になるように加熱する。次に
、パレットを成膜室へ搬送し、圧力10mTorrのA
rガス雰囲気中で低速で移動させながら、基体上に媒体
を構成する各層を順次スパッタ成膜する。第4図は成膜
室内を移動するパレットの状態を示す要部縦断面図で、
紙面に垂直な方向を長手方向とする成膜室内にレール7
が敷かれており、このレール7上を動く車輪4上に絶縁
板3を介してパレット1が、それにセットされている基
体の表面が成膜室壁6に面するように立てて保持されて
いる。
An N1-P alloy layer with a thickness of approximately 15 μm is formed by electroless plating on the surface of an A1 alloy disk substrate that has undergone internal and external diameter processing and surface cutting, and the surface is mirror-polished by 2 μm to 3 μm to improve the surface roughness. Line average roughness Ra: 10 to 20 people,
Ultra-precision cleaning is performed as it is without any texture processing, and it is used as a media base. Next, as shown in the partial plan view of FIG. 3, a pallet 1 made of a metal material 1, for example, an alloy plate
A plurality of substrates 2 treated as described above are set in the chamber, and this pallet is sent into the preparation chamber of an in-line sputtering film forming apparatus, and is evacuated to a vacuum of 5 Xl0-'Torr or less, so that the substrate temperature becomes 200°C. Heat as shown. Next, the pallet is transported to the film forming chamber, and A
Each layer constituting the medium is sequentially deposited on the substrate by sputtering while moving at low speed in an r gas atmosphere. Figure 4 is a longitudinal cross-sectional view of the main parts showing the state of the pallet moving inside the deposition chamber.
There is a rail 7 in the film forming chamber whose longitudinal direction is perpendicular to the plane of the paper.
A pallet 1 is held upright on wheels 4 that move on these rails 7 via an insulating plate 3 so that the surface of the substrate set thereon faces the film forming chamber wall 6. There is.

5はパレット1を介して基体にバイアス電圧を印加する
ための銅板電極である。このような状態でパレット1を
移動させながら、圧力10mTorrのArガス雰囲気
中で、まず、基体上に下地層としてCrを1500 A
の厚さに成膜し、続いてその上にCo −Ni合金を4
50人の厚さに成膜して磁気記録層とする。
Reference numeral 5 denotes a copper plate electrode for applying a bias voltage to the substrate via the pallet 1. While moving the pallet 1 in this state, Cr was first applied as a base layer on the substrate at 1500 A in an Ar gas atmosphere at a pressure of 10 mTorr.
Co-Ni alloy was then deposited on top of the Co-Ni alloy to a thickness of
A film is formed to a thickness of 50 mm to form a magnetic recording layer.

次に、銅板電極5.パレット1を介して基体にDCバイ
アス電圧を印加して磁気記録層の表面をドライエツチン
グしてあらす。ドライエツチング終了後、磁気記録層表
面にカーボンを400人の厚さに成膜して保護層とする
。その後、パレット1を取り出し室に搬送し、大気圧に
してパレットを取り出し、基体をパレットよりはずし、
保護層表面に液体潤滑剤を塗布して膜厚約20人の潤滑
層を形成して媒体とする。
Next, copper plate electrode 5. A DC bias voltage is applied to the substrate via the pallet 1 to dry-etch the surface of the magnetic recording layer. After the dry etching is completed, a carbon film is formed to a thickness of 400 mm on the surface of the magnetic recording layer to form a protective layer. After that, the pallet 1 is transported to the unloading chamber, the pallet is brought to atmospheric pressure, the pallet is taken out, the base is removed from the pallet,
A liquid lubricant is applied to the surface of the protective layer to form a lubricant layer with a thickness of about 20 mm, which is used as a medium.

上述の製造方法において、磁気記録層の表面をドライエ
ツチングするときに印加するDCバイアス電圧と、ドラ
イエツチング後にその表面に形成されるカーボン保護層
の表面粗さとの関係を調べたところ、第1図の線図に示
す結果が得られた。
In the above manufacturing method, the relationship between the DC bias voltage applied when dry etching the surface of the magnetic recording layer and the surface roughness of the carbon protective layer formed on the surface after dry etching was investigated, and the results are shown in Figure 1. The results shown in the diagram were obtained.

表面粗さtplG−1はアボットの負荷曲線で用いられ
る粗さの指標で、表面のアボットの負荷曲線において相
対負荷長さ10%のカッティング深さから相対負荷長さ
1%のカッティング深さを差し引いた値で示される。第
1図よりDCバイアス電圧を適切に選ぶことによってカ
ーボン保護層の表面を所要の表面粗さとすることが可能
であることが判る。
The surface roughness tplG-1 is an index of roughness used in the Abbott load curve, and is calculated by subtracting the cutting depth at a relative load length of 1% from the cutting depth at a relative load length of 10% in the Abbott load curve of the surface. It is shown as a value. It can be seen from FIG. 1 that the surface of the carbon protective layer can be made to have the required surface roughness by appropriately selecting the DC bias voltage.

また、DCバイアス電圧と得られた媒体の動摩擦係数と
の関係を調べたところ、第2図の線図に示す結果が得ら
れた。この結果は保護層表面に膜厚18人の液体の潤滑
層を形成した媒体についてのものである。第2図におい
て、動摩擦係数μに60m1nはスライディングコンタ
クトテストロ0分後の動摩擦係数を示す。第2図よりD
Cバイアス電圧が負で大きくなる程動摩擦係数が低下し
、媒体の耐摩擦特性が向上するが一150v程度以上で
はほぼ一定となることが判る。
Further, when the relationship between the DC bias voltage and the coefficient of dynamic friction of the obtained medium was investigated, the results shown in the diagram in FIG. 2 were obtained. These results are for a medium in which a liquid lubricant layer with a thickness of 18 mm was formed on the surface of the protective layer. In FIG. 2, 60 m1n for the dynamic friction coefficient μ indicates the dynamic friction coefficient after 0 minutes of sliding contact testing. From Figure 2, D
It can be seen that as the C bias voltage becomes negative and becomes larger, the dynamic friction coefficient decreases and the friction resistance of the medium improves, but it becomes almost constant above about 150 V.

以上の結果より、磁気記録層表面をドライエツチングす
るときに印加するDCバイアス電圧を適切に選択するこ
とにより、所要の耐摩擦特性を有する媒体を製造できる
ことになる。
From the above results, it is possible to manufacture a medium having the desired friction resistance by appropriately selecting the DC bias voltage applied when dry etching the surface of the magnetic recording layer.

この実施例ではドライエツチングはA「ガス雰囲気中で
行ったが、Arガスに限られることはなく、他の不活性
ガスを用いてもよい。また、基体の加熱温度は130℃
〜270℃の範囲内であればよく、^rガス圧もlOm
Torrに限られるものではない。
In this example, dry etching was performed in a gas atmosphere of A, but it is not limited to Ar gas, and other inert gases may be used. Also, the heating temperature of the substrate was 130°C.
It is sufficient as long as it is within the range of ~270℃, and the gas pressure is also lOm
It is not limited to Torr.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、磁気記録層表面をDCバイアス電圧
を印加して不活性ガス雰囲気中でドライエツチングして
あらし、その上に保護層を形成する。このときのDCバ
イアス電圧と保護層の表面粗さとの間には密接な関係が
あり、DCバイアス電圧を制御することによって、保護
層の表面粗さは従来の基体の表面粗さで制御する方法に
比べてばらつき少なく一定に制御することが可能となる
According to this invention, the surface of the magnetic recording layer is dry-etched in an inert gas atmosphere by applying a DC bias voltage, and a protective layer is formed thereon. There is a close relationship between the DC bias voltage and the surface roughness of the protective layer, and by controlling the DC bias voltage, the surface roughness of the protective layer can be controlled using the conventional method of controlling the surface roughness of the substrate. It is possible to perform constant control with less variation compared to .

従って、このDCバイアス電圧を適切な所要の値に制御
して磁気記録層表面をドライエツチングであらすことに
より、その上に所要の一定の表面粗さの保護層をばらつ
きなく形成することができ、この保護層上に液体潤滑剤
を所要の膜厚に塗布して潤滑層を形成して、一定の優れ
た耐摩擦特性を有する媒体をばらつき少なく量産するこ
とができる。従来のように、基体表面にテクスチャ加工
を施す必要はなくなる。
Therefore, by controlling this DC bias voltage to an appropriate required value and roughening the surface of the magnetic recording layer by dry etching, it is possible to form a protective layer with a desired constant surface roughness thereon without variation. By applying a liquid lubricant to a desired thickness on this protective layer to form a lubricating layer, it is possible to mass-produce a medium having a certain excellent anti-friction property with little variation. It is no longer necessary to texture the surface of the substrate as in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気記録層表面のドライエツチングに際して印
加されるDCバイアス電圧と保護層の表面粗さとの関係
を示す線図、第2図は磁気記録層表面のドライエツチン
グに際して印加されるDCバイアス電圧と媒体表面の動
摩擦係数との関係を示す線図、第3図は基体のセットさ
れたパレットの部分平面図、第4図は成膜室内を移動す
るパレットの状態を示す要部縦断面図である。 DCバイアス電圧(V) 第1図 DCバイアス電圧(V) 第 図 第 図 第 図
Figure 1 is a diagram showing the relationship between the DC bias voltage applied during dry etching of the surface of the magnetic recording layer and the surface roughness of the protective layer, and Figure 2 is a diagram showing the DC bias voltage applied during dry etching of the surface of the magnetic recording layer. Figure 3 is a partial plan view of a pallet with substrates set, and Figure 4 is a vertical cross-sectional view of main parts showing the state of the pallet moving inside the film forming chamber. be. DC bias voltage (V) Figure 1 DC bias voltage (V) Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 1)非磁性基体上に非磁性金属下地層、磁気記録層、保
護層をスパッタ法で順次成膜する磁気記録媒体の製造方
法において、磁気記録層を成膜後前記基体に所要のDC
バイアス電圧を印加し不活性ガス雰囲気中で前記磁気記
録層表面をドライエッチングしてあらしたのち、その上
に保護層を成膜して所要の表面粗さの保護層を形成する
ことを特徴とする磁気記録媒体の製造方法。
1) In a method for manufacturing a magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic recording layer, and a protective layer are sequentially formed on a nonmagnetic substrate by sputtering, the substrate is coated with a required DC after forming the magnetic recording layer.
The magnetic recording layer surface is dry-etched and roughened in an inert gas atmosphere by applying a bias voltage, and then a protective layer is formed thereon to form a protective layer with a desired surface roughness. A method for manufacturing a magnetic recording medium.
JP2922789A 1989-02-08 1989-02-08 Production of magnetic recording medium Pending JPH02208827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2922789A JPH02208827A (en) 1989-02-08 1989-02-08 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2922789A JPH02208827A (en) 1989-02-08 1989-02-08 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH02208827A true JPH02208827A (en) 1990-08-20

Family

ID=12270335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2922789A Pending JPH02208827A (en) 1989-02-08 1989-02-08 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH02208827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165582A (en) * 1992-11-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6805941B1 (en) 1992-11-19 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US9159353B2 (en) 2012-05-16 2015-10-13 HGST Netherlands B.V. Plasma polish for magnetic recording media
US9940963B1 (en) 2016-11-17 2018-04-10 Western Digital Technologies, Inc. Magnetic media with atom implanted magnetic layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165582A (en) * 1992-11-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6194047B1 (en) 1992-11-19 2001-02-27 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6258434B1 (en) 1992-11-19 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6623836B1 (en) 1992-11-19 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6805941B1 (en) 1992-11-19 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US7083873B2 (en) 1992-11-19 2006-08-01 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium including a diamond-like carbon protective film with hydrogen and at least two additional elements
US7391592B2 (en) 1992-11-19 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium including a diamond-like carbon protective film and at least two additional elements
US9159353B2 (en) 2012-05-16 2015-10-13 HGST Netherlands B.V. Plasma polish for magnetic recording media
US9940963B1 (en) 2016-11-17 2018-04-10 Western Digital Technologies, Inc. Magnetic media with atom implanted magnetic layer

Similar Documents

Publication Publication Date Title
JP3018762B2 (en) Magnetic recording medium and method of manufacturing the same
JPH02208827A (en) Production of magnetic recording medium
JPH0520658A (en) Substrate for magnetic recording medium and production thereof
JPH05143972A (en) Metal thin film magnetic recording medium and its production
JP2002123932A (en) Method for manufacturing thin-film magnetic device
JP3657344B2 (en) Method for manufacturing magnetic recording medium
JP2847567B2 (en) Magnetic recording media
JPH08329442A (en) Magnetic recording medium
JP2546383B2 (en) Magnetic disk
JPS61208620A (en) Magnetic disk
JPH05120663A (en) Magnetic recording medium, production of the same and its device
JPH09147357A (en) Production of magnetic recording medium
JP2581232B2 (en) Manufacturing method of magnetic recording medium
JP2593590B2 (en) Manufacturing method of magnetic recording media
JPH01251313A (en) Magnetic recording medium
JPS6288131A (en) Magnetic disk
JPH0268715A (en) Production of thin film magnetic recording medium
JPS63231724A (en) Magnetic disk and its production
JPS63231721A (en) Magnetic recording medium
JPH02214020A (en) Production of magnetic recording medium
JPH07176046A (en) Magnetic recording medium and its production
JPH02149924A (en) Production of magnetic recording medium
JPH02214021A (en) Production of magnetic recording medium
NODA et al. Recording Characteristics and Magnetic Properties of Rigid Disks with Co-Based Alloy Films Using Silicon Disk Substrates
JPH03237613A (en) Magnetic recording medium and its production