JPH02208552A - Flaw detector - Google Patents

Flaw detector

Info

Publication number
JPH02208552A
JPH02208552A JP1028492A JP2849289A JPH02208552A JP H02208552 A JPH02208552 A JP H02208552A JP 1028492 A JP1028492 A JP 1028492A JP 2849289 A JP2849289 A JP 2849289A JP H02208552 A JPH02208552 A JP H02208552A
Authority
JP
Japan
Prior art keywords
signal
flaw
detection
steel pipe
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1028492A
Other languages
Japanese (ja)
Other versions
JP2518376B2 (en
Inventor
Shigetoshi Hyodo
繁俊 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1028492A priority Critical patent/JP2518376B2/en
Publication of JPH02208552A publication Critical patent/JPH02208552A/en
Application granted granted Critical
Publication of JP2518376B2 publication Critical patent/JP2518376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable the shortening of a blanking time as much as possible by detecting a pipe end by a flaw detection signal itself to eliminate effect of disturbing factors of conveying speed or the like. CONSTITUTION:In a conveying path for a steel pipe 1 being carried by a conveying roll 2, a photo sensor 3 to detect the passage of the front and rear ends of the steel pipe 1 and a through coil 4 to detect flaws are disposed in this order from the upstream side. Component coils 4a and 4b of a coil 4 are connected so as to be opposite arms of a bridge circuit 7 respectively and the coils 4a and 4b are energized by a high frequency current outputted from an oscillator 19. Under such a condition, the tip of the steel pipe 1 is detected and in addition, when a signal generated from a flaw detector meets specified requirement, this signals used as detection signal for the tip to start the detection of flaws in the steel pipe 1. The rear end is detected and in addition, when the signal emitted from the flaw detector meet specified requirements, this signal is used as detection signal for the rear end to end the detection of flaws in the steel pipe 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコイル貫通型自動渦流探傷装置等、被探傷物の
搬送経路に設ける探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a flaw detection device, such as a coil-through-type automatic eddy current flaw detection device, which is installed on a conveyance path of an object to be flaw-tested.

〔従来技術〕[Prior art]

第5図は従来のコイル貫通型自動渦流探傷装置の構成を
示す模式図であり、図に示す如(1は被探傷物の鋼管、
2は搬送ロールであり、搬送ロール2によって搬送され
る鋼管1の通過域にはフォトセンサ3が配され、該フォ
トセンサ3の出力でタイマー5を起動させる。フォトセ
ンサ3の下流側には探傷コイル4が配され、鋼管1がこ
れを貫通通過する。探傷コイル4には探傷装置本体6が
接続されている。探傷コイル4は欠陥通過時のみならず
鋼管1の先、後端の通過時にも同様の信号(管端信号)
を出力するので、これを除去する等、無効化する必要が
ある。タイマー5は探傷コイル4からの入力信号を有効
とする時間を規定するためのものである。
FIG. 5 is a schematic diagram showing the configuration of a conventional coil-penetrating automatic eddy current flaw detection device, as shown in the figure (1 is a steel pipe to be tested;
Reference numeral 2 denotes a conveyor roll, and a photosensor 3 is disposed in a passage area of the steel pipe 1 conveyed by the conveyor roll 2, and a timer 5 is activated by the output of the photosensor 3. A flaw detection coil 4 is arranged downstream of the photosensor 3, and the steel pipe 1 passes through it. A flaw detection device body 6 is connected to the flaw detection coil 4 . The flaw detection coil 4 generates a similar signal (tube end signal) not only when passing a defect but also when passing the tip and rear end of the steel pipe 1.
, so it is necessary to remove or invalidate it. The timer 5 is used to define the time during which the input signal from the flaw detection coil 4 is valid.

第6図は、探傷器本体6によって検出された鋼管1の先
端側及び後端側の管端信号のタイミングを示す模式図で
あり、鋼管1の先端がフォトセンサ3を通過し、フォト
センサ3の出力がオンとなってから探傷コイル4内に到
達するまでの時間t11に経験により定めた時間Δt1
1を加算した時間(1+++Δt1.)を、探傷を開始
するまでの時間とする。また鋼管1の後端がフォトセン
サ3を通過し、フォトセンサ3の出力がオフとなってか
ら探傷コイル4内に到達するまでの時間1.□から経験
により定めた時間ΔtI!を減算した時間Dr□−Δム
、りを、探傷を終了するまでの時間とする。
FIG. 6 is a schematic diagram showing the timing of pipe end signals on the front end and rear end sides of the steel pipe 1 detected by the flaw detector main body 6. The time t11 from when the output is turned on until it reaches the inside of the flaw detection coil 4 is a time Δt1 determined based on experience.
The time obtained by adding 1 (1+++Δt1.) is the time until the start of flaw detection. Also, the time from when the rear end of the steel pipe 1 passes the photosensor 3 and the output of the photosensor 3 is turned off until it reaches the inside of the flaw detection coil 4 is 1. Time ΔtI determined from □ based on experience! The time Dr □ - Δm, ri obtained by subtracting is the time required to complete the flaw detection.

すなわち、タイマー5により鋼管1の先端がフォトセン
サ3を通過してから(tlI+Δt++)〜(tI!−
Δt1□)の時間範囲内の探傷コイル4の出力を有効な
ものとする。
That is, after the tip of the steel pipe 1 passes the photosensor 3 by the timer 5, (tlI+Δt++) to (tI!-
The output of the flaw detection coil 4 within the time range of Δt1□) is considered valid.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したΔL Il+ Δtltをブランキング時間、
これに相当する管長をブランキング長さと言うが検出管
端信号を傷による信号と誤認するのを防ぐため、ブラン
キング長さを200〜400 mmにとらざるを得す、
その部分が未探傷部となり、該未探傷部は内面鏡等の検
出器によって目視探傷を行うため、人為誤差が生じると
いう問題があった。このような問題を解消するためには
探傷速度を一定にし、また被検材と同等な材料を事前に
探傷して探傷開始及び終了までの時間を正しくタイマー
5に設定することが必要であるが、材料の形状面では、
管端部に口絞り形状が存在する場合には正確な設定は困
難であり、また探傷速度は、搬送ロールと鋼管とのスリ
ップ、鋼管の寸法(外径、肉厚)及び搬送ロールの駆動
装置(モータ、チェーン等)の精度に依存しており、こ
れらの要因を考慮して探傷速度を一定に保持することは
非常に困難である。また同等材によるタイマーの条件設
定を探傷処理毎に行うという事は実操業上不可能である
という問題があった。一方、フォトセンサ及びタイマー
の精度もブランキング長さ設定に考慮する必要がある。
The above-mentioned ΔL Il+ Δtlt is the blanking time,
The tube length equivalent to this is called the blanking length, but in order to prevent the detected tube end signal from being mistaken for a signal caused by a flaw, the blanking length must be set at 200 to 400 mm.
This part becomes an undetected part, and since the undetected part is visually inspected using a detector such as an internal mirror, there is a problem that human error occurs. In order to solve these problems, it is necessary to keep the flaw detection speed constant, to test a material equivalent to the material to be tested in advance, and to set the timer 5 correctly for the start and end of the flaw detection. , in terms of the shape of the material,
Accurate setting is difficult if there is a constricted shape at the pipe end, and the flaw detection speed depends on the slip between the transport roll and the steel pipe, the dimensions of the steel pipe (outer diameter, wall thickness), and the transport roll drive device. (motor, chain, etc.), and it is extremely difficult to keep the flaw detection speed constant considering these factors. In addition, there is a problem in that it is impossible in actual operation to set the timer conditions using the same material for each flaw detection process. On the other hand, the accuracy of the photosensor and timer also needs to be taken into account when setting the blanking length.

本発明は斯かる事情に鑑みてなされたものであり、その
目的とすることろは、探傷コイル等、探傷器から得られ
る信号それ自体によって探傷器出力の有効範囲を決定す
るようにして搬送速度等の外乱因子の影響を受けずに被
探傷物の端末の信号を正確に検出でき、ブランキング長
さを可及的に短くできる探傷装置を提供することにある
The present invention has been made in view of the above circumstances, and its purpose is to determine the effective range of the output of the flaw detector by the signal itself obtained from the flaw detector, such as a flaw detection coil, thereby increasing the conveyance speed. It is an object of the present invention to provide a flaw detection device that can accurately detect signals at the terminals of an object to be flaw-detected without being affected by disturbance factors such as flaw detection, and can shorten the blanking length as much as possible.

[課題を解決するための手段〕 本発明に係る探傷装置は、被探傷物の搬送経路に探傷器
を臨ませてあり、被探傷物の先、後端が探傷器を通過す
る際に出力する信号を無効化すべくなしてある探傷器r
において、前記探傷器よりも前記搬送経路の上流側に配
された被探傷物の先。
[Means for Solving the Problems] The flaw detection device according to the present invention has a flaw detector facing the transport route of the object to be tested, and outputs an output when the leading and trailing ends of the object to be tested pass through the flaw detector. A flaw detector designed to nullify the signal
, the tip of the object to be tested is placed upstream of the transport path from the flaw detector.

後端通過を検出する管端検知器と、管端検知器による被
探傷物の先、後端検知後、探傷器から入力された信号が
所定条件を満足する場合に該信号を先、後端通過に起因
する端末信号であると判定する端末信号検出手段と、該
端末信号検出手段の先端の端末信号の終了の検出から後
端の端末信号の開始の検出までの探傷器出力をを効とす
る探傷信号処理手段とを具備することを特徴とする。
A tube end detector detects passage of the rear end, and after the tube end detector detects the leading and trailing ends of the object to be tested, if the signal input from the flaw detector satisfies a predetermined condition, the signal is transmitted to the leading and trailing ends. A terminal signal detecting means that determines that the terminal signal is caused by passage, and a flaw detector output from detecting the end of the terminal signal at the leading end of the terminal signal detecting means to detecting the start of the terminal signal at the trailing end. It is characterized by comprising a flaw detection signal processing means.

〔作用〕[Effect]

被探傷物の先端が検知され、これに加えて探傷器が発す
る信号が所定の条件を満たした場合、この信号を先端の
検出信号とし、これより被探傷物の探傷を開始する。
When the tip of the object to be tested is detected and, in addition, the signal emitted by the flaw detector satisfies a predetermined condition, this signal is used as the tip detection signal, and flaw detection of the object to be tested is started.

一方、後端が検知され、これに加えて探傷器が発する信
号が所定の条件を満たした場合、この信号を後端の検出
信号とし、被探傷物の探傷を終了する。。
On the other hand, if the rear end is detected and in addition to this the signal emitted by the flaw detector satisfies a predetermined condition, this signal is used as the rear end detection signal and the flaw detection of the object to be tested is terminated. .

〔実施例] 以下、本発明を貫通コイル型渦流探傷装置の実施例を示
す図面に基づき具体的に説明する。第1図はその全体の
構成を示すブロック図である。
[Example] Hereinafter, the present invention will be specifically explained based on drawings showing an example of a through-coil type eddy current flaw detection device. FIG. 1 is a block diagram showing the overall configuration.

図中1は鋼管であり、搬送ロール2によって搬送される
鋼管1の搬送経路には、鋼管1の先、後端の通過を検知
する管端検知器であるフォトセンサ3と探傷を行う貫通
コイル4とが上流側より順に配置されてい名。貫通コイ
ル4の各コイル4a、4bは夫々ブリッジ回路7の対辺
をなすよう結線してあり、これらのコイル4a、4bに
は発振器19より出力される高周波電流が通電される。
In the figure, reference numeral 1 denotes a steel pipe, and the transport path of the steel pipe 1 transported by transport rolls 2 includes a photo sensor 3 that is a pipe end detector that detects passage of the tip and rear end of the steel pipe 1, and a through coil that performs flaw detection. 4 are arranged in order from the upstream side. The coils 4a and 4b of the through-hole coil 4 are connected to form opposite sides of the bridge circuit 7, respectively, and a high frequency current output from an oscillator 19 is applied to these coils 4a and 4b.

この状態で、どちらかのコイルが欠陥及び管端を検出す
ると、両コイル4a、4bのインピーダンスに差が生じ
、ブリッジ回路7のバランスが崩れ、疵信号としてブリ
ッジ回路7より出力され、同期検波回路8へ入力される
In this state, if either coil detects a defect or a tube end, a difference occurs in the impedance of both coils 4a and 4b, the balance of the bridge circuit 7 is lost, a defect signal is output from the bridge circuit 7, and the synchronous detection circuit 8.

フォトセンサ3はその検出方向に鋼管1が存在する場合
に管検知信号を出力し、この出力信号は後述する管端処
理部18に入力される。
The photosensor 3 outputs a pipe detection signal when the steel pipe 1 is present in its detection direction, and this output signal is input to a pipe end processing section 18, which will be described later.

前記同期検波回路8ではブリッジ回路7より入力される
探傷信号を前記発振器19からの発振周波数に基づいて
同期検波し、この結果を増幅器9と、増幅器9より増幅
度が小さい増幅器15とへ出力する。
The synchronous detection circuit 8 performs synchronous detection on the flaw detection signal input from the bridge circuit 7 based on the oscillation frequency from the oscillator 19, and outputs the result to an amplifier 9 and an amplifier 15 whose amplification is smaller than that of the amplifier 9. .

増幅器9に入力された探傷信号は、増幅されて位相調整
器10へ出力される。位相調整器10では入力された信
号の位相調整を行い、これを帯域通過フィルタ11及び
バランス回路14へ出力する。
The flaw detection signal input to the amplifier 9 is amplified and output to the phase adjuster 10. The phase adjuster 10 adjusts the phase of the input signal and outputs it to the band pass filter 11 and balance circuit 14.

前記バランス回路14は同期検波回路8の出力を常時零
とする制御を行う回路であり、コイル4a、4bの温度
変動に伴うインピーダンス変化に起因するブリッジ回路
7の非平衡信号を同期検波回路8の出力側にて消去すべ
く、後述する管端処理部18から出力される出力許可信
号が入力されている間のみ、位相調整器IOの出力信号
を同期検波回路8の出力側へフィードバックさせる。
The balance circuit 14 is a circuit that controls the output of the synchronous detection circuit 8 to be zero at all times. In order to erase it on the output side, the output signal of the phase adjuster IO is fed back to the output side of the synchronous detection circuit 8 only while an output permission signal output from a tube end processing section 18, which will be described later, is being input.

また、前記帯域通過フィルタ11に入力された探傷信号
は、所定周波数帯域の成分を抽出され、遅延回路12を
経て疵判定回路13へ入力される。
Further, the flaw detection signal input to the band pass filter 11 has components in a predetermined frequency band extracted, and is input to the flaw determination circuit 13 via the delay circuit 12 .

一方、増幅器15に入力された前記探傷信号は増幅され
て振幅演算器1・6へ入力される。振幅演算器16では
入力信号の振幅をアナログ演算し、この演算結果をA/
D変換器17を通じてディジタル量に変換してマイクロ
プロセッサよりなる管端処理部18へ出力する。
On the other hand, the flaw detection signal input to the amplifier 15 is amplified and input to the amplitude calculators 1 and 6. The amplitude calculator 16 performs analog calculations on the amplitude of the input signal, and sends the results of this calculation to the A/
It is converted into a digital quantity through a D converter 17 and output to a tube end processing section 18 consisting of a microprocessor.

管端処理部18には前記^/D変換器17及びフォトセ
ンサ3の出力信号が入力されており、該管端処理部18
は、これらの入力される信号に基づいて管の先、後端を
判別し、前記バランス回路14及び疵判定回路13の出
力を許可する出力許可信号を疵判定回路13へ出力する
The output signals of the ^/D converter 17 and the photosensor 3 are input to the tube end processing section 18.
determines the tip and rear end of the tube based on these input signals, and outputs an output permission signal to the flaw judgment circuit 13 for permitting the output of the balance circuit 14 and the flaw judgment circuit 13 .

次に、第2図のタイムチャート及び第3図のフローチャ
ートに基づき鋼管1がプレーンエンド(管端に特別な変
形加工を施していない)である場合につき本発明装置の
動作及び管端処理部18の演算内容について説明する。
Next, based on the time chart of FIG. 2 and the flowchart of FIG. The contents of the calculation will be explained.

鋼管1の先端がフォトセンサ3にさしかかると第2図の
フォトセンサ出力(イ)に示すようにフォトセンサ3は
その出力をオンにする。フォトセンサ3の出力がオンに
なると(ステップ1)、管端処理部18は内部クロック
信号に基づくタイミングによりA/D変換器17の出力
をD+、Dz・・・DT−1+D7・・・とサンプリン
グする(ステップ2)。そして鋼管lの先端が探傷コイ
ル4を通過すると、帯域通過フィルタ11の出力信号で
ある探傷信号(ロ)に示す管先端検出信号F及び振幅演
算器出力(ハ)に示す管先端振幅信号Wlが得られる。
When the tip of the steel pipe 1 reaches the photosensor 3, the photosensor 3 turns on its output as shown in photosensor output (a) in FIG. When the output of the photosensor 3 is turned on (step 1), the tube end processing unit 18 samples the output of the A/D converter 17 as D+, Dz...DT-1+D7... with timing based on the internal clock signal. (Step 2). When the tip of the steel pipe l passes through the flaw detection coil 4, the tube tip detection signal F shown in the flaw detection signal (b), which is the output signal of the bandpass filter 11, and the tube tip amplitude signal Wl shown in the amplitude calculator output (c) are generated. can get.

管端処理部18においては、DTが所定値Aを超え(ス
テップ3)、次いでり、が減少しくステップ4)、Di
がAより小さくなったという条件下にてDアーDt−+
≦α(αは経験的に定められた定数)となった場合(ス
テップ5)、管端処理部18より疵判定回路13へ管端
処理部出力(ニ)に示す如く前記出力許可信号を出力す
る(ステップ6)。
In the tube end processing section 18, DT exceeds a predetermined value A (step 3), then decreases (step 4), and Di
Under the condition that becomes smaller than A, D ar Dt-+
When ≦α (α is a constant determined empirically) (step 5), the pipe end processing unit 18 outputs the output permission signal to the flaw determination circuit 13 as shown in the pipe end processing unit output (d). (Step 6).

このように疵判定回路13の出力が許可された状態にお
いて、鋼管1に欠陥が存在すれば、探傷信号(ロ)にお
いて疵信号P7.Pgが現れ、これらは疵判定回路出力
(ホ)に示す如く疵判定回路13より出力される。
In this state where the output of the flaw determination circuit 13 is permitted, if a flaw exists in the steel pipe 1, a flaw signal P7. Pg appears, and these are output from the flaw judgment circuit 13 as shown in the flaw judgment circuit output (e).

次に鋼管1の後端がフォトセンサ3にさしかかるとフォ
トセンサ出力(イ)に示すようにフォトセンサ出力がオ
フとなる。フォトセンサ3の出力がオフになると(ステ
ップ7)、管端処理部18はその内部クロック信号に基
づくタイミングにより前記^/D変換器17の出力をD
+、Dz・・・DT−ItD、・・・とサンプリングす
る(ステップ8)。探傷信号(ロ)に示す前後端検出信
号R及び振幅演算器出力(ハ)に示す管先端振幅信号W
2が得られる。管端処理部18においては、DT  D
t−I≧β(βは経験的に定められた定数)となった場
合(ステップ9)、既に疵判定回路13に対して出力中
である前記出力許可信号の出力を解除する(ステップ1
0)。
Next, when the rear end of the steel pipe 1 approaches the photosensor 3, the photosensor output is turned off as shown in photosensor output (a). When the output of the photosensor 3 is turned off (step 7), the tube end processing section 18 changes the output of the ^/D converter 17 to D according to the timing based on its internal clock signal.
+, Dz...DT-ItD,... (Step 8). Front and rear end detection signal R shown in flaw detection signal (b) and tube tip amplitude signal W shown in amplitude calculator output (c)
2 is obtained. In the tube end processing section 18, DT D
When t-I≧β (β is an empirically determined constant) (step 9), the output of the output permission signal that is already being output to the flaw determination circuit 13 is canceled (step 1).
0).

このようにして得られた探傷信号においては、探傷信号
より先、後端検出信号を除去するため、疵信号のみが得
られる。
In the flaw detection signal obtained in this way, since the trailing edge detection signal is removed before the flaw detection signal, only the flaw signal is obtained.

次に管の先端が口絞り形状をなしている鋼管を探傷する
場合の探傷方法について説明する。
Next, a description will be given of a flaw detection method for flaw detection of a steel pipe whose tip has a constricted shape.

第4図は口絞り管の探傷方法を示す模式図である。FIG. 4 is a schematic diagram showing a flaw detection method for the orifice tube.

さて、管の先端が第4図の口絞り管40の如く口絞り形
状をなしている場合、前述の如き探傷装置にて探傷を行
えば口絞り部41及び肩部42が探傷されると管先端を
検出した如き口絞り部検出信号F+及び肩部検出信号F
2が得られる。このため前記口絞り部検出信号F、が管
先端信号として認識され、次に現れる肩部検出信号Fz
が疵信号として誤認される不都合がある。
Now, when the tip of the tube has a constricted shape like the constricted tube 40 shown in FIG. Mouth diaphragm detection signal F+ and shoulder detection signal F as if the tip was detected
2 is obtained. Therefore, the mouth constriction detection signal F is recognized as the tube tip signal, and the shoulder detection signal Fz that appears next
There is an inconvenience that the signal may be mistakenly recognized as a defect signal.

前述の如き不都合を防ぐため、口絞り管40を探傷する
場合、2個のフォトセンサ31 、32を口絞り管40
の搬送経路に適長熱して設けると共にパルス発振器20
を新たに探傷装置に設ける。このような口絞り管用の探
傷装置においては、フォトセンサ31.32の出力を前
記パルス発振器20へ入力させる。
In order to prevent the above-mentioned inconvenience, when testing the orifice tube 40, the two photosensors 31 and 32 are connected to the orifice tube 40.
A pulse oscillator 20
will be newly installed in the flaw detection equipment. In such a flaw detection device for a diaphragm tube, the outputs of the photosensors 31 and 32 are input to the pulse oscillator 20.

パルス発振器20では、その演算部において口絞り管4
0の通過により2個のフォトセンサ31.32から入力
される夫々の管端検出信号の時間差を計測し、該時間差
より口絞り管40の搬送速度を求める。そして、求めら
れた搬送速度に基づき口絞り管40の単位長さに対して
1つのパルス信号を発振するように前記パルス発振器2
0より前記管端処理部18ヘパルス信号を出力する。
In the pulse oscillator 20, the aperture tube 4 is
The time difference between the tube end detection signals inputted from the two photosensors 31 and 32 upon passage of 0 is measured, and the transport speed of the orifice tube 40 is determined from the time difference. Then, the pulse oscillator 2 is configured to oscillate one pulse signal for the unit length of the orifice tube 40 based on the determined conveyance speed.
0, a pulse signal is output to the tube end processing section 18.

管端処理部18には、口絞り管40の口絞り長さLlを
予め記憶させておき、管端処理部18は、口絞り管40
の搬送経路の下流側のフォトセンサ32と探傷コイル4
との間の距離に相当するパルス数に、予め記憶している
前記口絞り長さり、の例えば1/2に相当するパルス数
を加えたパルス数が入力されるまで前述の如きデータの
サンプリングを行わないようにする。
The tube end processing section 18 stores in advance the orifice length Ll of the orifice tube 40.
The photosensor 32 and the flaw detection coil 4 on the downstream side of the conveyance path
Sampling the data as described above until the number of pulses obtained by adding the number of pulses corresponding to the distance between the two and the number of pulses corresponding to, for example, half of the aperture length stored in advance Avoid doing so.

このようにすれば、口絞り管40の口絞り部検出信号F
、が無効となるため、管端処理部18に入力される口絞
り管40の先端検出は肩部検出信号F2のみとなり、管
端処理部18が該肩部検出信号F2を前述の如きプレー
ンエンドの場合の管先端信号Fと同様に処理するため前
述の如き不都合がなく探傷が行える。
In this way, the orifice constriction portion detection signal F of the orifice constriction tube 40
, becomes invalid, the tip detection of the orifice tube 40 that is input to the tube end processing section 18 is only the shoulder detection signal F2, and the tube end processing section 18 converts the shoulder detection signal F2 into the plain end as described above. Since it is processed in the same way as the tube tip signal F in the case of , flaw detection can be performed without the above-mentioned inconvenience.

〔効果〕〔effect〕

以上、詳述した如く本発明においては探傷信号それ自体
で管端を検出するので搬送速度により影響されることが
ない。従ってブランキング長さを可及的に短くすること
が可能になる。
As described in detail above, in the present invention, the pipe end is detected using the flaw detection signal itself, so it is not affected by the conveying speed. Therefore, it becomes possible to shorten the blanking length as much as possible.

なお、本発明は鋼管に限らず、他のものにも適用可能で
あり、また貫通型渦流探傷装置に限らず、他のセンサを
用いた渦流探傷装置にも適用できる。
Note that the present invention is applicable not only to steel pipes but also to other materials, and is not limited to penetrating eddy current flaw detection devices but can also be applied to eddy current flaw detection devices using other sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置全体の構成を示すブロック図、第2
図は本発明装置の動作説明のためのタイムチャート、第
3図は管端処理部の処理手順を示すフローチャート、第
4図は口絞り管の探傷方法を示す模式図、第5図は従来
装置の模式図、第6図は従来装置の動作説明のためのタ
イムチャートである。 3・・・フォトセンサ 4・・・探傷コイル13・・・
疵判定回路 18・・・管端処理部時 許 出願人  
住友金属工業株式会社代理人 弁理士  河  野  
登  夫ネ ■ F2
FIG. 1 is a block diagram showing the overall configuration of the device of the present invention, and FIG.
Fig. 3 is a time chart for explaining the operation of the device of the present invention, Fig. 3 is a flowchart showing the processing procedure of the tube end treatment section, Fig. 4 is a schematic diagram showing the flaw detection method for a choke tube, and Fig. 5 is a conventional device. FIG. 6 is a time chart for explaining the operation of the conventional device. 3...Photo sensor 4...Flaw detection coil 13...
Flaw determination circuit 18... At the time of pipe end treatment section Applicant
Sumitomo Metal Industries Co., Ltd. Representative Patent Attorney Kono
Noboru F2

Claims (1)

【特許請求の範囲】 1、被探傷物の搬送経路に探傷器を臨ませてあり、被探
傷物の先、後端が探傷器を通過する際に出力する信号を
無効化すべくなしてある探傷装置において、 前記探傷器よりも前記搬送経路の上流側に 配された被探傷物の先、後端通過を検出する管端検知器
と、 管端検知器による被探傷物の先、後端検知 後、探傷器から入力された信号が所定条件を満足する場
合に該信号を先、後端通過に起因する端末信号であると
判定する端末信号検出手段と、 該端末信号検出手段の先端の端末信号の終 了の検出から後端の端末信号の開始の検出までの探傷器
出力を有効とする探傷信号処理手段と を具備することを特徴とする探傷装置。
[Scope of Claims] 1. A flaw detection device in which a flaw detector is placed facing the transport path of the object to be tested, and the signals output when the front and rear ends of the object to be tested pass through the flaw detector are nullified. The apparatus includes: a tube end detector arranged upstream of the transport route than the flaw detector for detecting passage of the leading and trailing ends of the object to be tested; and a tube end detector detecting the leading and trailing ends of the object to be tested. a terminal signal detection means for determining that the signal input from the flaw detector satisfies a predetermined condition as a terminal signal caused by passing the first and rear ends; and a terminal at the tip of the terminal signal detection means. 1. A flaw detection apparatus comprising flaw detection signal processing means for validating flaw detector output from detection of the end of a signal to detection of the start of a terminal signal at the rear end.
JP1028492A 1989-02-07 1989-02-07 Flaw detector Expired - Lifetime JP2518376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028492A JP2518376B2 (en) 1989-02-07 1989-02-07 Flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028492A JP2518376B2 (en) 1989-02-07 1989-02-07 Flaw detector

Publications (2)

Publication Number Publication Date
JPH02208552A true JPH02208552A (en) 1990-08-20
JP2518376B2 JP2518376B2 (en) 1996-07-24

Family

ID=12250166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028492A Expired - Lifetime JP2518376B2 (en) 1989-02-07 1989-02-07 Flaw detector

Country Status (1)

Country Link
JP (1) JP2518376B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127922A (en) * 2009-12-15 2011-06-30 Sumitomo Metal Ind Ltd Method of eddy current flaw inspection, and gap forming member used for the same
JP2013221840A (en) * 2012-04-16 2013-10-28 Hitachi Transportation Technologies Ltd Eddy current flaw detection system and eddy current flaw detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062486A (en) * 1973-10-03 1975-05-28
JPS5651071U (en) * 1979-09-25 1981-05-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062486A (en) * 1973-10-03 1975-05-28
JPS5651071U (en) * 1979-09-25 1981-05-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127922A (en) * 2009-12-15 2011-06-30 Sumitomo Metal Ind Ltd Method of eddy current flaw inspection, and gap forming member used for the same
JP2013221840A (en) * 2012-04-16 2013-10-28 Hitachi Transportation Technologies Ltd Eddy current flaw detection system and eddy current flaw detection method

Also Published As

Publication number Publication date
JP2518376B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JPH02208552A (en) Flaw detector
JPH02173561A (en) Eddy current flaw detector
EP0507957B1 (en) Check weighers considering length
JP3584819B2 (en) Dissimilar material determination method and apparatus
JPH0229997B2 (en)
JP3549059B2 (en) Metal tube longitudinal scratch detector
JP2564558Y2 (en) Ultrasonic flaw detector
US5493221A (en) Method and apparatus for detecting weld junctions in steel sheets using an inductive sensor to detect thickness variations in the sheet
JPH02227662A (en) Ultrasonic automatic test equipment for steel plate
JPH06102254A (en) Eddy current flaw detection method and apparatus
SU1026042A1 (en) Method of checking strength of article reinforced by metal ropes
JPH1179411A (en) Fixed quantity picking control method for powder
JPH0634360A (en) Steel plate shape measuring method
JPH06160542A (en) Metal detector
KR19980037893A (en) High precision length measuring device and measuring method using the same
JP2577456B2 (en) Thickness measuring device
SU868563A1 (en) Method of non-destructive testing of ferromagnetic articles
JPH0531571Y2 (en)
JPH084611Y2 (en) Ultrasonic flaw detection control device
JPH0361889A (en) System for detecting exposure of reinforcing bar in alc
JPS608743A (en) Method and apparatus for detecting flaw by eddy current at end part of long-sized steel
NO960367D0 (en) Method and apparatus for detecting and / or measuring at least one geophysical parameter from a core sample
JPH0565820B2 (en)
SU1262354A1 (en) Device for flaw detection of articles made of ferromagnetic conducting materials
JPH01306097A (en) Detection of weld zone in steel hoop

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13