JP2518376B2 - Flaw detector - Google Patents

Flaw detector

Info

Publication number
JP2518376B2
JP2518376B2 JP1028492A JP2849289A JP2518376B2 JP 2518376 B2 JP2518376 B2 JP 2518376B2 JP 1028492 A JP1028492 A JP 1028492A JP 2849289 A JP2849289 A JP 2849289A JP 2518376 B2 JP2518376 B2 JP 2518376B2
Authority
JP
Japan
Prior art keywords
signal
flaw detection
flaw
output
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1028492A
Other languages
Japanese (ja)
Other versions
JPH02208552A (en
Inventor
繁俊 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1028492A priority Critical patent/JP2518376B2/en
Publication of JPH02208552A publication Critical patent/JPH02208552A/en
Application granted granted Critical
Publication of JP2518376B2 publication Critical patent/JP2518376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコイル貫通型自動渦流探傷装置等、被探傷物
の搬送経路に設ける探傷装置に関する。
Description: TECHNICAL FIELD The present invention relates to a flaw detection device provided in a conveyance path of a flaw detection object, such as a coil penetration type automatic eddy current flaw detection device.

〔従来技術〕[Prior art]

第5図は従来のコイル貫通型自動渦流探傷装置の構成
を示す模式図であり、図に示す如く1は被探傷物の鋼
管、2は搬送ロールであり、搬送ロール2によって搬送
される鋼管1の通過域にはフォトセンサ3が配され、該
フォトセンサ3の出力でタイマー5を起動させる。フォ
トセンサ3の下流側には探傷コイル4が配され、鋼管1
がこれを貫通通過する。探傷コイル4には探傷装置本体
6が接続されている。探傷コイル4は欠陥通過時のみな
らず鋼管1の先,後端の通過時にも同様の信号(管端信
号)を出力するので、これを除去する等、無効化する必
要がある。タイマー5は探傷コイル4からの入力信号を
有効とする時間を規定するためのものである。
FIG. 5 is a schematic diagram showing the structure of a conventional coil-through type automatic eddy current flaw detector. As shown in the figure, 1 is a steel pipe of the flaw-detected object, 2 is a conveying roll, and a steel pipe 1 conveyed by the conveying roll 2. The photosensor 3 is arranged in the pass area of the, and the timer 5 is started by the output of the photosensor 3. A flaw detection coil 4 is arranged on the downstream side of the photo sensor 3, and the steel pipe 1
Passes through it. A flaw detection device body 6 is connected to the flaw detection coil 4. Since the flaw detection coil 4 outputs the same signal (pipe end signal) not only when the defect passes, but also when the front and rear ends of the steel pipe 1 pass, it is necessary to invalidate it by removing it. The timer 5 is for defining the time during which the input signal from the flaw detection coil 4 is valid.

第6図は、探傷器本体6によって検出された鋼管1の
先端側及び後端側の管端信号のタイミングを示す模式図
であり、鋼管1の先端がフォトセンサ3を通過し、フォ
トセンサ3の出力がオンとなってから探傷コイル4内に
到達するまでの時間t11に経験により定めた時間Δt11
加算した時間(t11+Δt11)を、探傷を開始するまでの
時間とする。また鋼管1の後端がフォトセンサ3を通過
し、フォトセンサ3の出力がオフとなってから探傷コイ
ル4内に到達するまでの時間t12から経験により定めた
時間Δt12を減算した時間(t12−Δt12)を、探傷を終
了するまでの時間とする。すなわち、タイマー5により
鋼管1の先端がフォトセンサ3を通過してから(t11
Δt11)〜(t12−Δt12)の時間範囲内の探傷コイル4
の出力を有効なものとする。
FIG. 6 is a schematic diagram showing the timing of the pipe end signals on the front end side and the rear end side of the steel pipe 1 detected by the flaw detector main body 6, the front end of the steel pipe 1 passing through the photo sensor 3, and the photo sensor 3 The time (t 11 + Δt 11 ) obtained by adding the time Δt 11 determined by experience to the time t 11 from when the output of is turned on until it reaches the inside of the flaw detection coil 4 is the time until the flaw detection is started. Further, the time obtained by subtracting the time Δt 12 determined by experience from the time t 12 from when the rear end of the steel pipe 1 passes through the photosensor 3 and the output of the photosensor 3 is turned off until it reaches the flaw detection coil 4 ( Let t 12 −Δt 12 ) be the time to complete the flaw detection. That is, after the tip of the steel pipe 1 passes the photo sensor 3 by the timer 5, (t 11
The flaw detection coil 4 within the time range from Δt 11 ) to (t 12 −Δt 12 ).
Validate the output of.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述したΔt11,Δt12をブランキング時間、これに相
当する管長をブランキング長さと言うが検出管端信号を
傷による信号と誤認するのを防ぐため、ブランキング長
さを200〜400mmにとらざるを得ず、その部分が未探傷部
となり、該未探傷部は内面鏡等の検出器によって目視探
傷を行うため、人為誤差が生じるという問題があった。
このような問題を解消するためには探傷速度を一定に
し、また被検材と同等な材料を事前に探傷して探傷開始
及び終了までの時間を正しくタイマー5に設定すること
が必要であるが、材料の形状面では、管端部に口絞り形
状が存在する場合には正確な設定は困難となり、また探
傷速度は、搬送ロールと鋼管とのスリップ、鋼管の寸法
(外径,肉厚)及び搬送ロールの駆動装置(モータ,チ
ェーン等)の精度に依存しており、これらの要因を考慮
して探傷速度を一定に保持することは非常に困難であ
る。また同等材によるタイマーの条件設定を探傷処理毎
に行うという事は実操業上不可能であるという問題があ
った。一方、フォトセンサ及びタイマーの精度もブラン
キング長さ設定に考慮する必要がある。
The above Δt 11 and Δt 12 are called blanking time, and the pipe length corresponding to this is called blanking length.However, in order to prevent the detection pipe end signal from being mistaken for a signal due to scratches, the blanking length is set to 200 to 400 mm. Inevitably, that portion becomes an undetected flaw portion, and since the undetected flaw portion is subjected to visual flaw detection by a detector such as an internal mirror, there is a problem that human error occurs.
In order to solve such a problem, it is necessary to make the flaw detection speed constant, and to preliminarily perform flaw detection on a material equivalent to the material to be inspected and set the time until the start and end of flaw detection to the timer 5 correctly. In terms of material shape, it is difficult to set accurately if there is a mouth-drawing shape at the end of the pipe, and the flaw detection speed is the slip between the transport roll and the steel pipe, the dimensions of the steel pipe (outer diameter, wall thickness). Also, it depends on the accuracy of the drive device (motor, chain, etc.) of the transport roll, and it is very difficult to keep the flaw detection speed constant in consideration of these factors. In addition, there is a problem that it is impossible in actual operation to set the condition of the timer with the same material for each flaw detection process. On the other hand, it is necessary to consider the accuracy of the photo sensor and the timer in setting the blanking length.

本発明は斯かる事情に鑑みてなされたものであり、そ
の目的とすることろは、探傷コイル等、探傷器から得ら
れる信号それ自体によって探傷器出力の有効範囲を決定
するようにして搬送速度等の外乱因子の影響を受けずに
被探傷物の端末の信号を正確に検出でき、ブランキング
長さを可及的に短くできる探傷装置を提供することにあ
る。
The present invention has been made in view of such circumstances, and its purpose is to determine the effective range of the flaw detector output by the signal itself obtained from the flaw detector, such as the flaw detection coil, so as to determine the transport speed. An object of the present invention is to provide a flaw detection device capable of accurately detecting a signal from a terminal of a flaw detection object without being affected by a disturbance factor such as the above, and shortening the blanking length as much as possible.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る探傷装置は、被探傷物の搬送経路に探傷
器を臨ませてあり、被探傷物の先,後端が探傷器を通過
する際に出力する信号を無効化すべくなしてある探傷装
置において、前記探傷器よりも前記搬送経路の上流側に
配された被探傷物の先,後端通過を検出する管端検知器
と、管端検知器による被探傷物の先,後端検知後、探傷
器から入力された信号が一旦所定値を越えた後所定値未
満に下降し、且つこの下降後の信号の変化量が一定範囲
内である場合に該信号を先端通過に起因する、また信号
の変化量が一定範囲を越える場合は、該信号を後端通過
に起因する端末信号であると夫々判定する端末信号検出
手段と、該端末信号検出手段の先端の端末信号の終了の
検出から後端の端末信号の開始の検出までの探傷器出力
を有効とする探傷信号処理手段とを具備することを特徴
とする。
The flaw detection apparatus according to the present invention has a flaw detector facing the conveyance path of the flaw detection object, and is designed to invalidate the signal output when the front and rear ends of the flaw detection object pass through the flaw detection device. In the device, a pipe end detector arranged upstream of the flaw detector for detecting the passage of the front and rear ends of the flaw detection object, and a tip and rear end detection of the flaw detection object by the pipe end detector After that, when the signal input from the flaw detector once exceeds a predetermined value and then falls below a predetermined value, and when the amount of change in the signal after this fall is within a certain range, the signal is caused by the tip passage, Further, when the amount of change of the signal exceeds a certain range, the terminal signal detecting means for respectively judging the signal as a terminal signal due to the passage of the rear end, and the detection of the end of the terminal signal at the tip of the terminal signal detecting means. Flaw detection that validates the flaw detector output from the start to the detection of the start of the terminal signal at the rear end Characterized by comprising a processing unit.

〔作用〕[Action]

被探傷物の先端が検知され、これに加えて探傷器が発
する信号の変化量が一定範囲以内である場合、この信号
を先端の検出信号とし、これにより被探傷物の探傷を開
始する。
When the tip of the flaw detection object is detected and the amount of change in the signal emitted by the flaw detector is within a certain range in addition to this, this signal is used as the tip detection signal, and flaw detection of the flaw detection object is started by this.

一方、後端が検知され、これに加えて探傷器が発する
信号の変化量が一定範囲を越える場合、この信号を後端
の検出信号とし、被探傷物の探傷を終了する。
On the other hand, when the trailing edge is detected and the amount of change in the signal emitted by the flaw detector exceeds a certain range in addition to this, this signal is used as the trailing edge detection signal, and flaw detection of the flaw detection object is completed.

〔実施例〕〔Example〕

以下、本発明を貫通コイル型渦流探傷装置の実施例を
示す図面に基づき具体的に説明する。第1図はその全体
の構成を示すブロック図である。
Hereinafter, the present invention will be specifically described with reference to the drawings showing an embodiment of a through-coil type eddy current flaw detector. FIG. 1 is a block diagram showing the overall structure.

図中1は鋼管であり、搬送ロール2によって搬送され
る鋼管1の搬送経路には、鋼管1の先,後端の通過を検
知する管端検知器であるフォトセンサ3と探傷を行う貫
通コイル4とが上流側より順に配置されている。貫通コ
イル4の各コイル4a,4bは夫々ブリッジ回路7の対辺を
なすよう結線してあり、これらのコイル4a,4bには発振
器19より出力される高周波電流が通電される。この状態
で、どちらかのコイルが欠陥及び管端を検出すると、両
コイル4a,4bのインピーダンスに差が生じ、ブリッジ回
路7のバランスが崩れ、疵信号としてブリッジ回路7よ
り出力され、同期検波回路8へ入力される。
In the figure, 1 is a steel pipe, and in the conveying path of the steel pipe 1 conveyed by a conveying roll 2, a photo sensor 3 which is a pipe end detector for detecting passage of the front end and the rear end of the steel pipe 1 and a through coil for flaw detection 4 are arranged in order from the upstream side. The coils 4a and 4b of the through coil 4 are connected so as to form opposite sides of the bridge circuit 7, and high-frequency current output from the oscillator 19 is supplied to these coils 4a and 4b. In this state, when one of the coils detects a defect and a tube end, a difference occurs in impedance between the coils 4a and 4b, the bridge circuit 7 loses balance, and is output as a flaw signal from the bridge circuit 7. The synchronous detection circuit 8 is input.

フォトセンサ3はその検出方向に鋼管1が存在する場
合に管検知信号を出力し、この出力信号は後述する管端
処理部18に入力される。
The photo sensor 3 outputs a pipe detection signal when the steel pipe 1 exists in the detection direction, and this output signal is input to the pipe end processing unit 18 described later.

前記同期検波回路8ではブリッジ回路7より入力され
る探傷信号を前記発振器19からの発振周波数に基づいて
同期検波し、この結果を増幅器9と、増幅器9より増幅
度が小さい増幅器15とへ出力する。
The synchronous detection circuit 8 synchronously detects the flaw detection signal input from the bridge circuit 7 based on the oscillation frequency from the oscillator 19, and outputs the result to the amplifier 9 and the amplifier 15 having a smaller amplification degree than the amplifier 9. .

増幅器9に入力された探傷信号は、増幅されて位相調
整器10へ出力される。位相調整器10では入力された信号
の位相調整を行い、これを帯域通過フィルタ11及びバラ
ンス回路14へ出力する。
The flaw detection signal input to the amplifier 9 is amplified and output to the phase adjuster 10. The phase adjuster 10 adjusts the phase of the input signal and outputs it to the bandpass filter 11 and the balance circuit 14.

前記バランス回路14は同期検波回路8の出力を常時零
とする制御を行う回路であり、コイル4a,4bの温度変動
に伴うインピーダンス変化に起因するブリッジ回路7の
非平衡信号を同期検波回路8の出力側にて消去すべく、
後述する管端処理部18から出力される出力許可信号が入
力されている間のみ、位相調整器10の出力信号を同期検
波回路8の出力側へフィードバックさせる。
The balance circuit 14 is a circuit for controlling the output of the synchronous detection circuit 8 to be always zero, and detects the unbalanced signal of the bridge circuit 7 caused by the impedance change due to the temperature fluctuation of the coils 4a and 4b. To erase on the output side,
The output signal of the phase adjuster 10 is fed back to the output side of the synchronous detection circuit 8 only while the output permission signal output from the tube end processing unit 18 described later is input.

また、前記帯域通過フィルタ11に入力された探傷信号
は、所定周波数帯域の成分を抽出され、遅延回路12を経
て疵判定回路13へ入力される。
Further, the flaw detection signal input to the band pass filter 11 is extracted as a component of a predetermined frequency band, and is input to the flaw determination circuit 13 via the delay circuit 12.

一方、増幅器15に入力された前記探傷信号は増幅され
て振幅演算器16へ入力される。振幅演算器16では入力信
号の振幅をアナログ演算し、この演算結果をA/D変換器1
7を通じてディジタル量に変換してマイクロプロセッサ
よりなる管端処理部18へ出力する。
On the other hand, the flaw detection signal input to the amplifier 15 is amplified and input to the amplitude calculator 16. The amplitude calculator 16 performs analog calculation on the amplitude of the input signal, and the calculated result is converted to the A / D converter 1
It is converted into a digital value through 7 and output to a pipe end processing unit 18 including a microprocessor.

管端処理部18には前記A/D変換器17及びフォトセンサ
3の出力信号が入力されており、該管端処理部18は、こ
れらの入力される信号に基づいて管の先,後端を判別
し、前記バランス回路14及び疵判定回路13の出力を許可
する出力許可信号を疵判定回路13へ出力する。
The output signals of the A / D converter 17 and the photosensor 3 are input to the pipe end processing unit 18, and the pipe end processing unit 18 uses the input signals to output the front and rear ends of the pipe. And outputs an output permission signal for permitting the outputs of the balance circuit 14 and the flaw determination circuit 13 to the flaw determination circuit 13.

次に、第2図のタイムチャート及び第3図のフローチ
ャートに基づき鋼管1がプレーンエンド(管端に特別な
変形加工を施していない)である場合につき本発明装置
の動作及び管端処理部18の演算内容について説明する。
Next, based on the time chart of FIG. 2 and the flowchart of FIG. 3, the operation of the device of the present invention and the pipe end processing unit 18 when the steel pipe 1 is a plain end (the pipe end is not subjected to any special deformation processing) The calculation contents of will be described.

鋼管1の先端がフォトセンサ3にさしかかると第2図
のフォトセンサ出力(イ)に示すようにフォトセンサ3
はその出力をオンにする。フォトセンサ3の出力がオン
になると(ステップ1)、管端処理部18は内部クロック
信号に基づくタイミングによりA/D変換器17の出力をD1,
D2…DT-1,DT…とサンプリングする(ステップ2)。そ
して鋼管1の先端が探傷コイル4を通過すると、、帯域
通過フィルタ11の出力信号である探傷信号(ロ)に示す
管先端検出信号F及び振幅演算器出力(ハ)に示す管先
端振幅信号W1が得られる。管端処理部18においては、DT
が所定値Aを超え(ステップ3)、次いでDTが減少し
(ステップ4)、DTがAより小さくなったという条件下
にてDT−DT-1≦α(αは経験的に定められた定数)とな
った場合(ステップ5)、管端処理部18より疵判定回路
13へ管端処理部出力(ニ)に示す如く前記出力許可信号
を出力する(ステップ6)。
When the tip of the steel pipe 1 reaches the photo sensor 3, as shown in the photo sensor output (a) of FIG.
Turns on its output. When the output of the photo sensor 3 is turned on (step 1), the tube end processing unit 18 changes the output of the A / D converter 17 to D 1 , by the timing based on the internal clock signal.
D 2 ... D T-1 , D T ... are sampled (step 2). When the tip of the steel pipe 1 passes through the flaw detection coil 4, the pipe tip detection signal F shown in the flaw detection signal (b) which is the output signal of the bandpass filter 11 and the pipe tip amplitude signal W shown in the amplitude calculator output (c). You get 1 . In the pipe end processing unit 18, D T
Exceeds a predetermined value A (step 3), then D T decreases (step 4), and D T becomes smaller than A, D T −D T-1 ≤α (α is empirically When it becomes (determined constant) (step 5), the pipe end processing unit 18 causes a flaw determination circuit.
The output permission signal is output to the pipe end processing unit output 13 to D (step 6).

このように疵判定回路13の出力が許可された状態にお
いて、鋼管1に欠陥が存在すれば、探傷信号(ロ)にお
いて疵信号P1,P2が現れ、これらは疵判定回路出力
(ホ)に示す如く疵判定回路13より出力される。
In this manner, if the steel pipe 1 has a defect in the state where the output of the flaw determination circuit 13 is permitted, the flaw signals P 1 and P 2 appear in the flaw detection signal (b), and these are output from the flaw determination circuit (e). It is output from the defect determination circuit 13 as shown in.

次に鋼管1の後端がフォトセンサ3にさしかかるとフ
ォトセンサ出力(イ)に示すようにフォトセンサ出力が
オフとなる。フォトセンサ3の出力がオフになると(ス
テップ7)、管端処理部18はその内部クロック信号に基
づくタイミングにより前記A/D変換器17の出力をD1,D2
DT-1,DT…とサンプリングする(ステップ8)。探傷信
号(ロ)に示す管後端検出信号R及び振幅演算器出力
(ハ)に示す管先端振幅信号W2が得られる。管端処理部
18においては、DT−DT-1≧β(β経験的に定められた定
数)となった場合(ステップ9)、既に疵判定回路13に
対して出力中である前記出力許可信号の出力を解除する
(ステップ10)。
Next, when the rear end of the steel pipe 1 reaches the photo sensor 3, the photo sensor output is turned off as shown in photo sensor output (a). When the output of the photo sensor 3 is turned off (step 7), the tube end processing unit 18 outputs the output of the A / D converter 17 by D 1 , D 2, ... At the timing based on the internal clock signal.
Sampling is performed as DT-1 , DT ... (Step 8). The pipe rear end detection signal R shown in the flaw detection signal (b) and the pipe tip amplitude signal W 2 shown in the amplitude calculator output (c) are obtained. Pipe end processing part
In 18, when D T −D T−1 ≧ β (β is an empirically determined constant) (step 9), the output of the output permission signal already being output to the defect determination circuit 13 Is canceled (step 10).

このようにして得られた探傷信号においては、探傷信
号より先,後端検出信号を除去するため、疵信号のみが
得られる。
In the flaw detection signal thus obtained, the flaw detection signal is removed because the leading and trailing edge detection signals are removed from the flaw detection signal.

次に管の先端が口絞り形状をなしている鋼管を探傷す
る場合の探傷方法について説明する。
Next, a flaw detection method for flaw detection of a steel pipe whose tip has a mouth-drawing shape will be described.

第4図は口絞り管の探傷方法を示す模式図である。 FIG. 4 is a schematic diagram showing a flaw detection method for the aperture stop tube.

さて、管の先端が第4図の口絞り管40の如く口絞り形
状をなしている場合、前述の如き探傷装置にて探傷を行
えば口絞り部41及び肩部42が探傷されると管先端を検出
した如き口絞り部検出信号F1及び肩部検出信号F2が得ら
れる。このため前記口絞り部検出信号F1が管先端信号と
して認識され、次に現れる肩部検出信号F2が疵信号とし
て誤認される不都合がある。
Now, when the tip of the pipe has a mouth-opening shape like the mouth-blowing pipe 40 in FIG. 4, if the flaw detection device as described above is used for flaw detection, the mouth-constricted portion 41 and the shoulder portion 42 are flaw-detected. A mouth stop detection signal F 1 and a shoulder detection signal F 2 as if the tip was detected are obtained. Therefore, there is a disadvantage that the mouth detection signal F 1 is recognized as a pipe tip signal and the shoulder detection signal F 2 appearing next is erroneously recognized as a flaw signal.

前述の如き不都合を防ぐため、口絞り管40を探傷する
場合、2個のフォトセンサ31,32を口絞り管40の搬送経
路に適長離して設けると共にパルス発振器20を新たに探
傷装置に設ける。このような口絞り管用の探傷装置にお
いては、フォトセンサ31,32の出力を前記パルス発振器2
0へ入力させる。パルス発振器20では、その演算部にお
いて口絞り管40の通過により2個のフォトセンサ31,32
から入力される夫々の管端検出信号の時間差を計測し、
該時間差より口絞り管40の搬送速度を求める。そして、
求められた搬送速度に基づき口絞り管40の単位長さに対
して1つのパルス信号を発振するように前記パルス発振
器20より前記管端処理部18へパルス信号を出力する。
In order to prevent the above-mentioned inconvenience, when performing flaw detection on the aperture stop tube 40, two photosensors 31 and 32 are provided in the conveyance path of the aperture stop tube 40 at appropriate distances and a pulse oscillator 20 is newly provided in the flaw detection device. . In such a flaw detector for a mouthpiece tube, the outputs of the photosensors 31 and 32 are set to the pulse oscillator 2
Input to 0. In the pulse oscillator 20, the two photosensors 31, 32 are passed through the aperture stop tube 40 in the calculation unit.
Measure the time difference of each pipe end detection signal input from
The transport speed of the throttle pipe 40 is obtained from the time difference. And
The pulse signal is output from the pulse oscillator 20 to the tube end processing unit 18 so as to oscillate one pulse signal for the unit length of the aperture stop tube 40 based on the obtained transport speed.

管端処理部18には、口絞り管40の口絞り長さLKを予め
記憶させておき、管端処理部18は、口絞り管40の搬送経
路の下流側のフォトセンサ32と探傷コイル4との間の距
離に相当するパルス数に、予め記憶している前記口絞り
長さLKの例えば1/2に相当するパルス数を加えたパルス
数が入力されるまで前述の如きデータのサンプリングを
行わないようにする。
The pipe end processing unit 18 stores the mouth stop length L K of the mouth stop pipe 40 in advance, and the pipe end process unit 18 uses the photosensor 32 and the flaw detection coil on the downstream side of the conveyance path of the mouth stop pipe 40. 4 is added to the number of pulses corresponding to the distance between 4 and the number of pulses corresponding to, for example, 1/2 of the previously stored aperture length L K , until the number of pulses is input. Do not sample.

このようにすれば、口絞り管40の口絞り部検出信号F1
が無効となるため、管端処理部18に入力される口絞り管
40の先端検出は肩部検出信号F2のみとなり、管端処理部
18が該肩部検出信号F2を前述の如きプレーンエンドの場
合の管先端信号Fと同様に処理するため前述の如き不都
合がなく探傷が行える。
In this way, the aperture detection signal F 1 of the aperture stop tube 40 is detected.
Is invalid, so the throttle pipe that is input to the pipe end processing unit 18
40 tip detection is only shoulder detection signal F 2
Since 18 processes the shoulder detection signal F 2 in the same manner as the pipe tip signal F in the case of the plane end as described above, flaw detection can be performed without the above-mentioned inconvenience.

なお、本発明は鋼管に限らず、他のものにも適用可能
であり、また貫通型渦流探傷装置に限らず、他のセンサ
を用いた渦流探傷装置にも適用できる。
The present invention can be applied not only to the steel pipe but also to other ones, and is not limited to the penetration type eddy current flaw detector, and can be applied to the eddy current flaw detector using another sensor.

〔効果〕〔effect〕

以上、詳述した如く本発明においては探傷信号それ自
体で管端を検出するので被探傷物の搬送速度、測定機器
の精度等により影響されることがなく、ブランキング長
さを大幅に短縮することが可能になる。
As described above in detail, in the present invention, since the pipe end is detected by the flaw detection signal itself, it is not affected by the conveyance speed of the flaw detection object, the accuracy of the measuring instrument, etc., and the blanking length is greatly shortened. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明装置全体の構成を示すブロック図、第2
図は本発明装置の動作説明のためのタイムチャート、第
3図は管端処理部の処理手順を示すフローチャート、第
4図は口絞り管の探傷方法を示す模式図、第5図は従来
装置の模式図、第6図は従来装置の動作説明のためのタ
イムチャートである。 3……フォトセンサ、4……探傷コイル 13……疵判定回路、18……管端処理部
FIG. 1 is a block diagram showing the overall configuration of the device of the present invention, and FIG.
FIG. 3 is a time chart for explaining the operation of the device of the present invention, FIG. 3 is a flow chart showing the processing procedure of the pipe end processing portion, FIG. 4 is a schematic diagram showing a flaw detection method for a mouthpiece, and FIG. FIG. 6 is a time chart for explaining the operation of the conventional device. 3 ... Photo sensor, 4 ... Flaw detection coil 13 ... Defect determination circuit, 18 ... Pipe end processing unit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被探傷物の搬送経路に探傷器を臨ませてあ
り、被探傷物の先,後端が探傷器を通過する際に出力す
る信号を無効化すべくなしてある探傷装置において、 前記探傷器よりも前記搬送経路の上流側に配された被探
傷物の先,後端通過を検出する管端検知器と、 管端検知器による被探傷物の先,後端検知後、探傷器か
ら入力された信号が一旦所定値を越えた後所定値未満に
下降し、且つこの下降後の信号の変化量が一定範囲内で
ある場合に該信号を先端通過に起因する、また信号の変
化量が一定範囲を越える場合は、該信号を後端通過に起
因する端末信号であると夫々判定する端末信号検出手段
と、 該端末信号検出手段の先端の端末信号の終了の検出から
後端の端末信号の開始の検出までの探傷器出力を有効と
する探傷信号処理手段と を具備することを特徴とする探傷装置。
1. A flaw detection device in which a flaw detector is faced to a conveyance path of a flaw detection object, and a signal output when a front end and a rear end of the flaw detection object pass through the flaw detection device is invalidated. A pipe end detector arranged upstream of the flaw detection device in the conveyance path for detecting passage of the front and rear ends of the flaw detection object, and a flaw detection after detection of the front and rear ends of the flaw detection object by the pipe end detector. If the signal input from the instrument once exceeds a predetermined value and then falls below a predetermined value, and the amount of change in the signal after this fall is within a certain range, the signal is caused by the passage of the tip, and the signal When the amount of change exceeds a certain range, the terminal signal detecting means determines each of the signals as a terminal signal caused by the passage of the trailing edge, and the trailing edge from the detection of the end of the terminal signal at the leading edge of the terminal signal detecting means. Signal processing means for validating the flaw detector output until the start of the terminal signal of the terminal is detected Flaw detection apparatus characterized by comprising a.
JP1028492A 1989-02-07 1989-02-07 Flaw detector Expired - Lifetime JP2518376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028492A JP2518376B2 (en) 1989-02-07 1989-02-07 Flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028492A JP2518376B2 (en) 1989-02-07 1989-02-07 Flaw detector

Publications (2)

Publication Number Publication Date
JPH02208552A JPH02208552A (en) 1990-08-20
JP2518376B2 true JP2518376B2 (en) 1996-07-24

Family

ID=12250166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028492A Expired - Lifetime JP2518376B2 (en) 1989-02-07 1989-02-07 Flaw detector

Country Status (1)

Country Link
JP (1) JP2518376B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233978B2 (en) * 2009-12-15 2013-07-10 新日鐵住金株式会社 Eddy current flaw detection method and gap forming member used therefor
JP5847005B2 (en) * 2012-04-16 2016-01-20 日立交通テクノロジー株式会社 Eddy current flaw detection system and eddy current flaw detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062486A (en) * 1973-10-03 1975-05-28
JPS5651071U (en) * 1979-09-25 1981-05-07

Also Published As

Publication number Publication date
JPH02208552A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
JP2518376B2 (en) Flaw detector
EP0906729A2 (en) Method of and system for cigarette tipping glue skip detection and rejection
US11885615B2 (en) Method for thickness measurements of a work item in a rolling mill
JPH02173561A (en) Eddy current flaw detector
JPH06123606A (en) Detection of overlap part of striplike materials
JP2577456B2 (en) Thickness measuring device
JP2564558Y2 (en) Ultrasonic flaw detector
JP3549059B2 (en) Metal tube longitudinal scratch detector
JPH01141462U (en)
JPH1179411A (en) Fixed quantity picking control method for powder
JPH05240815A (en) Method and device for induction heating flaw detecting
JPH0648097U (en) Vehicle type identification device
JPH01306097A (en) Detection of weld zone in steel hoop
JPH0531571Y2 (en)
JP2814640B2 (en) Bill validator
JPS6342463A (en) Detection system for incidence angle variation of probe rotation type tube ultrasonic flaw detection device
SU1026042A1 (en) Method of checking strength of article reinforced by metal ropes
JP2710728B2 (en) Heating object position detection device
JPH02268210A (en) Method for measuring width and length of slab
JPH04359147A (en) Eddy current flaw detecting device for tapered wire
JPH0674998A (en) Partial discharge measurement method
JPH0396858A (en) Ultrasonic flaw detecting device
JP2004294302A (en) Wall thickness measuring method and steel pipe manufacturing method using this method
JPH07311073A (en) Weighing device
JPS62255863A (en) Eddy current flaw detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13