JPH02206742A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH02206742A
JPH02206742A JP2793689A JP2793689A JPH02206742A JP H02206742 A JPH02206742 A JP H02206742A JP 2793689 A JP2793689 A JP 2793689A JP 2793689 A JP2793689 A JP 2793689A JP H02206742 A JPH02206742 A JP H02206742A
Authority
JP
Japan
Prior art keywords
gas
gas sensor
frequency
adsorbed
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2793689A
Other languages
Japanese (ja)
Inventor
Shinichi Ishimoto
石本 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2793689A priority Critical patent/JPH02206742A/en
Publication of JPH02206742A publication Critical patent/JPH02206742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain the gas sensor which is less affected by noises, facilitates amplification and is suitable for detection of a slight change by providing a crystal resonating plate inserted between electrodes and a means for detecting the change in the frequency of the crystal resonating plate on the sensor. CONSTITUTION:The crystal resonating plate 1 of the gas sensor body 3 for gas adsorption generates the oscillation of the frequency fx corresponding to the adsorbed amt. of the gas. On the other hand, the crystal resonating plate 1 of the gas sensor body 4 for reference generates the oscillation having the intrinsic reference frequency f0. The two oscillations are inputted to a frequency converting circuit 5 where the signal of the frequency (f0-fx) to be the difference in the frequencies of the two oscillations is outputted. The outputted signal is amplified in an amplifier circuit 5. The (f0-fx) which is the difference in the frequencies of the oscillations of the gas sensor bodies 3, 4 is proportional to the adsorbed amt. of the gas in the body 3 and, therefore, the adsorbed amt. of the gas is detected from the value of (f0-fx).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガス検出に用いられるガスセンサに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a gas sensor used for gas detection.

〔従来の技術及び発明が解決しようとする課題〕従来、
接触燃焼式ガスセンサと半導体式ガスセンサが公知され
ている。
[Problems to be solved by conventional techniques and inventions] Conventionally,
Catalytic combustion gas sensors and semiconductor gas sensors are known.

接触燃焼式ガスセンサは、活性触媒を表面に塗布焼結し
た白金線ヒーターと抵抗値が既知の抵抗体とのブリッジ
回路で構成されていて、可燃性ガスが触媒に触れると燃
焼して白金線ヒーターの温度が上昇するため白金線の抵
抗値が上昇する。白金線の抵抗値の増加分がブリッジ回
路がらの出力電流によって求められ、抵抗値増加分と比
例関係にあるガス濃度が検出される。以上の様な接触燃
焼式ガスセンサの場合、ガスが燃焼することによって検
出されるのでセンサとしての動作温度が高いという問題
点がある。
A catalytic combustion gas sensor consists of a bridge circuit between a platinum wire heater whose surface is coated with an active catalyst and sintered, and a resistor with a known resistance value.When flammable gas touches the catalyst, it burns and the platinum wire heater As the temperature of the platinum wire increases, the resistance value of the platinum wire increases. The increase in resistance of the platinum wire is determined by the output current of the bridge circuit, and the gas concentration, which is proportional to the increase in resistance, is detected. In the case of the above-mentioned catalytic combustion type gas sensor, there is a problem that the operating temperature as a sensor is high because detection is performed by burning gas.

一方半導体式ガスセンサは金属酸化物半導体の焼結体を
用いたものであって、焼結体のまわりのガス濃度によっ
て前記焼結体の抵抗値が変化することを利用しているも
のである。このような半導体式ガスセンサでは、比較的
低温で動作させているときでも金属酸化物の結晶成長が
おきているため素子の経時変化が大きく、経時変化にし
たがってセンサ感度が低下するという問題点がある。
On the other hand, a semiconductor type gas sensor uses a sintered body of a metal oxide semiconductor, and utilizes the fact that the resistance value of the sintered body changes depending on the gas concentration around the sintered body. In such semiconductor-type gas sensors, crystal growth of metal oxide occurs even when operating at relatively low temperatures, so the element changes significantly over time, causing a problem in that sensor sensitivity decreases as the sensor changes over time. .

本発明はこのような問題点を解決するためになされたも
のであって、金属電極に挟着した水晶振動板を用いて低
温で動作し、且つ経時変化が少ないガスセンサを得るこ
とを目的とする。
The present invention has been made to solve these problems, and aims to provide a gas sensor that uses a crystal diaphragm sandwiched between metal electrodes, operates at low temperatures, and exhibits little change over time. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明のガスセンサは金属電極に挟着された水晶振動板
を用いたものであって、水晶振動板の発搬面波数を測定
することによってガスを検出することを特徴とする。
The gas sensor of the present invention uses a quartz diaphragm sandwiched between metal electrodes, and is characterized in that gas is detected by measuring the wave number of the oscillating surface of the quartz diaphragm.

〔作用〕[Effect]

本発明のガスセンサは水晶振動板にガスが吸着すると水
晶振動板の発振周波数が変化する。この周波数の変化を
信号の変化として捉えて分析してガスの吸着量を検出す
る。
In the gas sensor of the present invention, when gas is adsorbed to the crystal diaphragm, the oscillation frequency of the crystal diaphragm changes. This frequency change is interpreted as a signal change and analyzed to detect the amount of gas adsorbed.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて説明す
る。
Hereinafter, the present invention will be explained based on drawings showing embodiments thereof.

はじめに水晶振動板の発振周波数変化の原理について説
明する。水晶の振動には縦振動、厚みすべり振動、屈伸
振動等があるが、本発明のガスセンサは水晶振動板の厚
みすべり振動を利用している。第3図は水晶振動板の模
式的斜視図を示しており、1は水晶振動板であって、厚
みtQの方向に直角な2つの平面上に金属電極が水晶振
動板1を挟むように着けられる。すなわち電界方向は厚
みtQの方向となる。水晶振動板lの厚みすべり振動は
、金属電極が接着した2つの平面が腹になるような、す
なわち図中の矢印方向であられされる横波の定常波を有
する振動である。前記厚みすべり振動の周波数をfとす
ると一般的に(1)式に示される関係が成立する。
First, the principle of changing the oscillation frequency of a crystal diaphragm will be explained. Crystal vibrations include longitudinal vibration, thickness shear vibration, bending vibration, etc., and the gas sensor of the present invention utilizes thickness shear vibration of a crystal diaphragm. FIG. 3 shows a schematic perspective view of a quartz diaphragm, in which 1 is a quartz diaphragm, and metal electrodes are mounted on two planes perpendicular to the direction of thickness tQ so as to sandwich the quartz diaphragm 1. It will be done. That is, the direction of the electric field is the direction of the thickness tQ. The thickness shear vibration of the crystal diaphragm 1 is a vibration having a standing transverse wave in which the two planes to which the metal electrodes are bonded are antinodes, that is, in the direction of the arrow in the figure. When the frequency of the thickness shear vibration is f, the relationship shown in equation (1) generally holds true.

2  LQ     Lq 但し、V:定常波の伝播速度 N:周波数定数 (11弐を以下の様に変形すると(2)式が得られる。2 LQ Lq However, V: propagation velocity of standing wave N: Frequency constant (By transforming 112 as follows, equation (2) is obtained.

f −t9=N df−t、+f・dt、=Q df=−f−dtQ/1Q =−f2 ・dt、/N ・・・(2)今、水晶振動板
lの表面にガスが吸着して、その厚みをdtとすると、
ある微少な変化の範囲内では水晶振動板1の平面上に吸
着したガスによって変化したガス吸着層を含むみかけ上
の水晶振動板1の厚さtqの変化に基づいて、(2)式
に示す様に水晶振動板1の発振周波数が変化する。ガス
吸着ff1dtを水晶に換算した場合の厚さは(3)式
で表される。
f −t9=N df−t, +f・dt, =Q df=−f−dtQ/1Q =−f2・dt,/N (2) Now, gas is adsorbed on the surface of the crystal plate l. If the thickness is dt, then
Within a certain slight change range, based on the change in the apparent thickness tq of the crystal diaphragm 1 including the gas adsorption layer changed by the gas adsorbed on the plane of the crystal diaphragm 1, as shown in equation (2). The oscillation frequency of the crystal diaphragm 1 changes accordingly. The thickness when gas adsorption ff1dt is converted into crystal is expressed by equation (3).

ρ9 ・A−dtQ =ρ ・A−titdtq =ρ
/ρ9 ・ dt   ・・・(3)但し、tq :水
晶の密度 ρ :水晶振動板に吸着したガス層の密度 A :ガス吸着層すなわち水晶振動板上おガス吸着面の
面積 水晶振動板1に厚さdtのガスが吸着した場合、(21
,(3)式より水晶振動板の発振周波数は(4)式で示
される。
ρ9 ・A-dtQ = ρ ・A-titdtq = ρ
/ρ9・dt...(3) However, tq: Density of the crystal ρ: Density of the gas layer adsorbed on the crystal diaphragm A: Area of the gas adsorption layer, that is, the gas adsorption surface on the quartz diaphragm 1 When a gas of thickness dt is adsorbed, (21
, (3), the oscillation frequency of the crystal diaphragm is expressed by equation (4).

(4)式より水晶振動板1の厚みすべり振動の共振周波
数変化dfはガス吸着層の微少な厚み変化dtに比例す
ることがわかる。
From equation (4), it can be seen that the resonance frequency change df of the thickness shear vibration of the crystal diaphragm 1 is proportional to the minute thickness change dt of the gas adsorption layer.

以上が本発明のガスセンサの動作原理である。The above is the operating principle of the gas sensor of the present invention.

次に上記動作原理を利用したガスセンサの実施例につい
て図面に基づいて説明する。
Next, an example of a gas sensor using the above operating principle will be described based on the drawings.

第1図はガスセンサ本体の断面図である。図において1
は水晶振動板であって、その両面に白金。
FIG. 1 is a sectional view of the gas sensor main body. In the figure 1
is a crystal diaphragm with platinum on both sides.

パラジウム等の貴金属を付着した電極2,2が備えられ
ている。電極2.2に挟着された水晶振動板1からなる
ガスセンサ本体において電極2の表面にガスが吸着する
と上述したように発振周波数が変化する。第2図は2つ
のガスセンサ本体3゜4を用いてなるガスセンサのブロ
ック図である。
Electrodes 2, 2 to which noble metal such as palladium is attached are provided. When gas is adsorbed to the surface of the electrode 2 in the gas sensor main body consisting of the crystal diaphragm 1 sandwiched between the electrodes 2.2, the oscillation frequency changes as described above. FIG. 2 is a block diagram of a gas sensor using two gas sensor bodies 3.4.

一方のガスセンサ本体3はガス雰囲気中にあってガスを
吸着し、他方のガスセンサ本体4はガス吸着による発振
周波数の変化をガスセンサ本体3と比較するための参照
用であってガス雰囲気から隔離されている。本発明のガ
スセンサにおいて、前記2つのガスセンサ本体3,4か
ら発生した振動は周波数変換回路5へ入力される。周波
数変換回路5は前記2つのガスセンサ本体3,4の発生
振動周波数の差に相当する周波数を有する信号を出力す
るものであって、その信号は増幅回路6で増幅される。
One gas sensor body 3 is in a gas atmosphere and adsorbs gas, and the other gas sensor body 4 is isolated from the gas atmosphere and is used for reference to compare changes in oscillation frequency due to gas adsorption with the gas sensor body 3. There is. In the gas sensor of the present invention, vibrations generated from the two gas sensor bodies 3 and 4 are input to the frequency conversion circuit 5. The frequency conversion circuit 5 outputs a signal having a frequency corresponding to the difference in the vibration frequencies generated by the two gas sensor bodies 3 and 4, and this signal is amplified by the amplifier circuit 6.

次に以上の様な構成を有するガスセンサにおける動作に
ついて説明する。
Next, the operation of the gas sensor having the above configuration will be explained.

ガス吸着用のガスセンサ本体3における水晶振動板1が
ガス吸着量に対応した周波数fxの振動が発生する。一
方参照用ガスセンサ本体4は水晶振動板l固有の基準周
波数f。をもった振動が発生する。前記2つの振動が周
波゛数変換回路5へ入力され、そこで前記2つの振動の
周波数の差となるfo−fXの周波数の信号を出力して
、出力された信号は増幅回路6で増幅される。ガスセン
サ本体3と参照用ガスセンサ本体4の振動の周波数の差
であるfo−f、はガスセンサ本体3におけるガス吸着
量に比例しているのでfo−fxの値からガス吸着量が
検出できる。
The crystal diaphragm 1 in the gas sensor main body 3 for gas adsorption generates vibrations at a frequency fx corresponding to the amount of gas adsorption. On the other hand, the reference gas sensor main body 4 has a reference frequency f specific to the crystal diaphragm l. Vibration occurs. The two vibrations are input to a frequency conversion circuit 5, which outputs a signal with a frequency of fo-fX, which is the difference between the frequencies of the two vibrations, and the output signal is amplified by an amplifier circuit 6. . Since fo-f, which is the difference in frequency of vibration between the gas sensor body 3 and the reference gas sensor body 4, is proportional to the amount of gas adsorbed in the gas sensor body 3, the amount of gas adsorption can be detected from the value of fo-fx.

なお、上記実施例では電極材料として貴金属を用いてい
るが、検出すべきガスの選択性をもたすために他の金属
または他の導電性材料を用いてもよい。
Although noble metals are used as electrode materials in the above embodiments, other metals or other conductive materials may be used to provide selectivity to the gas to be detected.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明のガスセンサは水晶振動板を利
用しているので経時変化が少なく、またガスの吸着量の
変化を水晶振動板の発振周波数の変化として検出してい
るので低温で動作できる。
As explained above, since the gas sensor of the present invention uses a quartz diaphragm, there is little change over time, and since changes in the amount of gas adsorption are detected as changes in the oscillation frequency of the quartz diaphragm, it can operate at low temperatures.

更に水晶振動板の発振周波数の変化は直接信号の周波数
変化としてとられることができるので、従来のセンサ自
身の抵抗値を電流値として検出して信号に変換するより
も信号処理においてノイズの影響が少なく、増幅が容易
であり、微少変化の検出にも適している。
Furthermore, since changes in the oscillation frequency of the crystal diaphragm can be taken directly as changes in the frequency of the signal, the influence of noise in signal processing is reduced compared to the conventional sensor that detects the resistance value of the sensor itself as a current value and converts it into a signal. It is easy to amplify and is suitable for detecting minute changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るガスセンサ本体の断面図、第2図
は第1図のガスセンサ本体を用いてガスセンサの構成を
示すブロック図、第3図は本発明のガスセンサ本体に用
いられる水晶振動板の模式的斜視図である。 ■・・・水晶振動板 2・・・電極 3・・・ガスセンサ本体 4・・・参照用ガスセンサ本
体5・・・周波数変換回路 6・・・増幅回路なお、図
中、同一符号は同一、又は相当部分を示す。 代理人  大  岩  増  雄
FIG. 1 is a sectional view of a gas sensor body according to the present invention, FIG. 2 is a block diagram showing the configuration of a gas sensor using the gas sensor body of FIG. 1, and FIG. 3 is a crystal diaphragm used in the gas sensor body of the present invention. FIG. ■...Crystal diaphragm 2...Electrode 3...Gas sensor body 4...Reference gas sensor body 5...Frequency conversion circuit 6...Amplification circuit Note that in the figures, the same symbols are the same or A considerable portion is shown. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] (1)電極に挟着された水晶振動板と、 該水晶振動板の発振周波数の変化を検知す る手段とを 備えたことを特徴とするガスセンサ。(1) A crystal diaphragm sandwiched between electrodes, Detects changes in the oscillation frequency of the crystal diaphragm. means to A gas sensor characterized by:
JP2793689A 1989-02-07 1989-02-07 Gas sensor Pending JPH02206742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2793689A JPH02206742A (en) 1989-02-07 1989-02-07 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2793689A JPH02206742A (en) 1989-02-07 1989-02-07 Gas sensor

Publications (1)

Publication Number Publication Date
JPH02206742A true JPH02206742A (en) 1990-08-16

Family

ID=12234783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2793689A Pending JPH02206742A (en) 1989-02-07 1989-02-07 Gas sensor

Country Status (1)

Country Link
JP (1) JPH02206742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573560U (en) * 1992-03-09 1993-10-08 日本電信電話株式会社 Portable odor sensor
JP2009509172A (en) * 2005-09-22 2009-03-05 アプライド・ナノテック・ホールディングス・インコーポレーテッド Hydrogen sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573560U (en) * 1992-03-09 1993-10-08 日本電信電話株式会社 Portable odor sensor
JP2009509172A (en) * 2005-09-22 2009-03-05 アプライド・ナノテック・ホールディングス・インコーポレーテッド Hydrogen sensor

Similar Documents

Publication Publication Date Title
Wenzel et al. A multisensor employing an ultrasonic Lamb-wave oscillator
CA1286392C (en) Surface acoustic wave gas flow rate sensor with self- heating feature
JP5862046B2 (en) Hydrogen gas sensor
JP2006220508A (en) Gas sensor
JPH02206742A (en) Gas sensor
JP2019090742A (en) Solid particles mass measurement device
JP4714885B2 (en) Elastic wave sensor
JP4852283B2 (en) Gas sensor
JP3627665B2 (en) Angular velocity sensor
JP5061287B2 (en) Gas sensor and hydrogen concentration detection system
JP2014010146A (en) Soot sensing system of diesel engine
CA2549837A1 (en) Sensor, sensor arrangement, and measuring method
JP2014025741A (en) Surface acoustic wave sensor for detecting gas
JP2000214140A (en) Sensor
Fan et al. Theoretical optimizations of acoustic wave gas sensors with high conductivity sensitivities
JP2622991B2 (en) Hydrogen gas sensor
US7373838B2 (en) Acoustic wave flow sensor for high-condensation applications
JPS62190905A (en) Surface acoustic wave device
JP2012189537A (en) Gas sensor
US20110133599A1 (en) Surface acoustic wave sensor
JP2755766B2 (en) Gas sensor
JP2010048696A (en) Surface elastic wave type gas sensor
US9410862B2 (en) Device for measuring a pressure with at least one pressure sensor having at least one active sensor surface
JP2005265423A (en) Surface elastic wave device
JPS60159632A (en) Hydrogen sensor