JPH02206687A - Cooling type blowing burner - Google Patents

Cooling type blowing burner

Info

Publication number
JPH02206687A
JPH02206687A JP2579289A JP2579289A JPH02206687A JP H02206687 A JPH02206687 A JP H02206687A JP 2579289 A JP2579289 A JP 2579289A JP 2579289 A JP2579289 A JP 2579289A JP H02206687 A JPH02206687 A JP H02206687A
Authority
JP
Japan
Prior art keywords
cooling water
burner
tip
wall
solid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2579289A
Other languages
Japanese (ja)
Other versions
JPH0545638B2 (en
Inventor
Shinji Tanaka
真二 田中
Shuntaro Koyama
俊太郎 小山
Akio Ueda
昭雄 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP2579289A priority Critical patent/JPH02206687A/en
Publication of JPH02206687A publication Critical patent/JPH02206687A/en
Publication of JPH0545638B2 publication Critical patent/JPH0545638B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the wear and temperature raising of portions near the tip of a burner by superimposing a plurality of inner tubes on the same axis and disposing such a passage as bringing a cooling water into contact with the outer wall near the tip of an inner tube and with the inner wall of the tip of a burner at a high speed. CONSTITUTION:A cooling water 3 is supplied to a raw-material-blowing nozzle 11 of the tip 19 of a burner through a cooling water-supplying passageway 7 of a cooling water-supplying tube 17 to cool the outer wall of an inner tube near the exit of the inner tube through an outer wall cooling water passageway 12 near the exit of the inner tube. The cooling water is subsequently returned into an existing apparatus-cooling water-returning line through a burner tip inner wall, a tapered inner wall-cooling passageway 18, a cooling water-returning passageway 6 in an outer tube 9 and a burner-cooling water line.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、噴流層粉末固体燃料ガス化装置に使用する冷
却型噴出バーナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooled jet burner for use in a spouted bed powder solid fuel gasifier.

〔従来の技術〕[Conventional technology]

石炭は、化石燃料資源の中でその埋蔵量が最大であり1
石油代替エネルギーとして注目されている。
Coal has the largest reserves of all fossil fuel resources and is
It is attracting attention as an energy alternative to oil.

石炭は、固体で取り扱いが不便な上、灰分、硫黄および
窒素等が含有しており、これを有効利用するためには、
液化、ガス化等によりクリーンなエネルギー源に変換し
、利用することが望まわる。
Coal is solid and inconvenient to handle, and it also contains ash, sulfur, nitrogen, etc. In order to use it effectively, it is necessary to
It is desirable to convert it into a clean energy source by liquefaction, gasification, etc. and use it.

現在石炭のクリーン燃料化の有力な方法として石炭ガス
化が注目されている。その中でも、石炭からのクリーン
ガスを発電に用いる石炭ガス化複合発電方式が注目され
ている。石炭ガス化複合発電方式を支える重要技術の一
つは石炭ガス化技術であり、発電用ガス化炉としては高
いガス化効率、電力需要に対応できる運転性および信頼
性、幅広い炭種に対する適応性等が要求される。これら
の条件を満足させるガス化炉として、微粉炭を見流中で
反応させる噴流層ガス化炉が有望視されている。
Coal gasification is currently attracting attention as a promising method for turning coal into a clean fuel. Among these, the coal gasification combined cycle system, which uses clean gas from coal for power generation, is attracting attention. One of the key technologies supporting the coal gasification combined cycle system is coal gasification technology, and as a gasifier for power generation, it has high gasification efficiency, operability and reliability that can meet electricity demand, and adaptability to a wide range of coal types. etc. are required. As a gasifier that satisfies these conditions, a spouted bed gasifier in which pulverized coal is reacted in a stream is considered to be promising.

第12図は、この噴流槽ガス化炉を用いたガス化装置の
概略図である。この装置は1石炭供給系、ガス化剤供給
系、ガス化炉30、集塵系34および脱硫系35等から
成る。
FIG. 12 is a schematic diagram of a gasifier using this jet tank gasifier. This apparatus consists of a coal supply system, a gasification agent supply system, a gasification furnace 30, a dust collection system 34, a desulfurization system 35, and the like.

石炭供給系では、粉砕機で粉砕、分級した粉末固体燃料
49を原料搬送ライン47から常圧ホッパ48へ供給し
た後、加圧ホッパ22へ充填し、その後供給ホッパ23
へ供給する。この後、粉末固体燃料49をフィーダ45
で定量した後、搬送ガス(窒素または不活性ガス)24
を用いて原料輸送ライン25を流通させ、ガス化炉30
に供給する。途中、数本の原料噴出バーナ27に均等に
分配供給できる分配器26を有する。
In the coal supply system, powdered solid fuel 49 that has been crushed and classified by a crusher is supplied from a raw material conveyance line 47 to a normal pressure hopper 48 , and then charged into a pressurized hopper 22 , and then transferred to a supply hopper 23 .
supply to After that, the powdered solid fuel 49 is fed to the feeder 45.
After quantification with a carrier gas (nitrogen or inert gas) 24
The raw material transport line 25 is circulated using the gasifier 30.
supply to. On the way, there is a distributor 26 that can evenly distribute and supply the raw material to several jetting burners 27 .

ガス化剤供給系では、酸素または空気調節弁28、水蒸
気調節弁29、上、下段ガス他剤供給系ライン40.4
1を介してガス化剤を流通させ、さらに原料噴出バーナ
27を介してガス化炉3゜に供給する。粉末固体燃料(
石炭または液化残渣等)49とガス化剤は、ガス化炉3
0内の原料噴出バーナ27の出口で接触させる。
In the gasification agent supply system, an oxygen or air control valve 28, a steam control valve 29, upper and lower gas and other agent supply system lines 40.4
The gasifying agent is passed through the gasifier 1 and is further supplied to the gasifier 3 through the raw material injection burner 27. Powdered solid fuel (
(coal or liquefaction residue, etc.) 49 and the gasification agent are transferred to the gasification furnace 3.
Contact is made at the outlet of the raw material jetting burner 27 in the 0.

ガス化炉30は、耐火レンガ等で内張すされた構造であ
る。炉内は1400℃以上の高温であるため1石炭中の
灰分が溶融したスラブ状となる。
The gasifier 30 has a structure lined with fireproof bricks or the like. Since the inside of the furnace is at a high temperature of 1,400°C or higher, the ash in each coal becomes molten into a slab.

この人ラグは、自由落下し、水を充填したスラグホッパ
32内に入り、急冷固化されて外部に抜き出される。
This human lag falls freely, enters the slag hopper 32 filled with water, is rapidly cooled and solidified, and is extracted to the outside.

ガス化炉30から生成されたガスは、ガス化炉出口ライ
ン33から集塵装置34、脱硫装置3Sを経て、生成ガ
スと一緒に飛散してくる不燃カーボンを含有したチャー
およびダストや生成ガス中の硫化水素を除去した後、ク
リーンなガスとしてライン36を経てタービン等に供給
される。
The gas generated from the gasifier 30 passes through the gasifier outlet line 33, the dust collector 34, and the desulfurizer 3S, and the char and dust containing incombustible carbon, which are scattered together with the generated gas, are collected in the generated gas. After removing the hydrogen sulfide, the gas is supplied to a turbine or the like through a line 36 as a clean gas.

これらの反応装置に設置しているガス化炉30には、前
記のように粉末固体燃料(石炭または液化残渣等)49
の供給系があり、そのガス化炉30側には必ず原料噴出
バーナ27を有している。
The gasifier 30 installed in these reactors is filled with powdered solid fuel (coal, liquefied residue, etc.) 49 as described above.
There is a supply system, and a raw material injection burner 27 is always provided on the gasifier 30 side.

この原料噴出バーナ27は、粉末固体燃料49とガス化
剤とをバーナの内外で接触させ反応せしめることにより
、H2、C○等の富んだガスを発生させうる重要な機器
の一つである。
This raw material injection burner 27 is one of the important devices that can generate gas rich in H2, C₂, etc. by bringing the powdered solid fuel 49 and the gasifying agent into contact with each other inside and outside the burner to cause a reaction.

この場合、バーナ構造によっては、粉末固体燃料が内筒
管(粉末固体燃料供給管内)出口付近。
In this case, depending on the burner structure, the powdered solid fuel may be near the outlet of the inner cylinder pipe (inside the powdered solid fuel supply pipe).

バーナ先端部で堆積し、閉塞するため連続供給が困難に
なる。また、バーナ先端部冷却構造およびガス化炉内か
らの副射熱によりバーナ先端部や内筒管内出口付近の温
度が上昇し、粉末固体燃料の種類によっては、粉末固体
燃料中の炭素分が燃焼して固化状態となり、先端部や内
筒管内出口付近に堆積し、粉末固体燃料の供給が困難に
なること等があり、バーナ先端部の冷却構造が非常に重
要になってくる。
It accumulates at the tip of the burner and becomes clogged, making continuous supply difficult. In addition, the temperature near the burner tip and the outlet of the inner tube increases due to the burner tip cooling structure and secondary radiation heat from inside the gasifier, and depending on the type of powdered solid fuel, the carbon content in the powdered solid fuel is combusted. This solidifies and accumulates near the tip and the outlet of the inner tube, making it difficult to supply powdered solid fuel, making the cooling structure of the burner tip extremely important.

従来、バーナ先端部内の冷却方法として、下記に示す方
法が代表的である。
Conventionally, the following method is typical as a method for cooling the inside of a burner tip.

(1)粉末固体燃料搬送用ガス(窒素および不活性ガス
等)を多量に流通させることにより、内筒管内出口付近
の温度上昇を抑制する方法。
(1) A method of suppressing the temperature rise near the outlet of the inner tube by circulating a large amount of powdered solid fuel conveying gas (nitrogen, inert gas, etc.).

(2)バーナの外筒管先端部内部まで冷却水を循環させ
、バーナを冷却する方法(特開昭59−180207号
、特開昭60−36810号)等がある。
(2) There is a method of cooling the burner by circulating cooling water to the inside of the tip of the outer cylindrical tube of the burner (Japanese Patent Laid-Open Nos. 59-180207 and 60-36810).

(1)の方法は、冷却水量が少量でも内筒管内出口付近
の温度上昇を防止できる利点があり、また(2)の方法
は、構造が簡単になるという利点がある。
The method (1) has the advantage of being able to prevent a rise in temperature near the outlet of the inner tube even if the amount of cooling water is small, and the method (2) has the advantage of simplifying the structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

粉末固体燃料のガス化時では、粉末固体燃料をガス化炉
まで搬送するガス量をできるだけ低減する必要がある。
When gasifying powdered solid fuel, it is necessary to reduce the amount of gas that transports the powdered solid fuel to the gasifier as much as possible.

その理由は、粉末固体燃料搬送用ガスとして、一般に不
活性ガス(窒素または二酸化炭素等)を用いており、そ
の量が多いとガス化炉内の温度上昇を抑制することから
反応面に影響を及ぼすためである。従って、前記(1)
の方法を用いた場合、炉内の温度上昇が抑制され、反応
速度が遅くなって効率が低下するという問題がある。
The reason for this is that inert gas (nitrogen or carbon dioxide, etc.) is generally used as the gas for transporting powdered solid fuel, and if the amount is large, it will suppress the temperature rise in the gasifier, which will affect the reaction surface. This is for the sake of influence. Therefore, the above (1)
When this method is used, there is a problem in that the temperature rise in the furnace is suppressed, the reaction rate is slowed, and the efficiency is reduced.

また、内筒管内での流速が速くなるため、出口付近の摩
耗が激しくなる問題がある。
Furthermore, since the flow velocity within the inner tube increases, there is a problem in that wear near the outlet increases.

一方(2)の方法では、構造は簡単であるが、内筒管出
口付近の外壁部まで冷却水が接触していないため、ガス
化炉からの副射熱を強く受けるバーナ先端部および内筒
管内出口付近での冷却能力が低下し、特にバーナ内部で
粉末固体燃料とガス化剤が接触して高熱を発生する内部
混合式バーナにおいては、ある温度までしか冷却できな
いことが考えられる。これは1石炭等の原料に対しては
影響はないが、液化残渣等の低い温度で燃える原料に対
しては、内筒管内(粉末固体燃料供給管内)先端部で原
料が燃焼し、固化、堆積し、その結果として原料の供給
が不可能になることが予想される。
On the other hand, in method (2), the structure is simple, but because the cooling water does not come into contact with the outer wall near the outlet of the inner tube, the tip of the burner and the inner tube are subject to strong side radiation heat from the gasifier. The cooling capacity near the outlet of the tube decreases, and especially in internal mixing burners where the powdered solid fuel and gasifying agent come into contact with each other inside the burner and generate high heat, it is conceivable that the tube can only be cooled to a certain temperature. This has no effect on raw materials such as 1 coal, but for raw materials that burn at low temperatures such as liquefaction residue, the raw materials burn at the tip of the inner tube (inside the powder solid fuel supply tube), solidify, and It is expected that the material will accumulate, resulting in an inability to supply the raw material.

本発明の目的は、バーナ先端部付近の摩耗が少なく、か
つ効果的にバーナ先端部付近の温度上昇を防止できる冷
却型噴出バーナを提供することにある。
An object of the present invention is to provide a cooling type jet burner that has less wear near the burner tip and can effectively prevent a temperature rise near the burner tip.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、同軸上に径の異なる複数個の円筒管を重ね
合わせ、一番内側の内筒管を粉末固体燃料およびその搬
送気体を供給する中心流路、その外側の円筒管の内筒お
よび円筒管相互間の空間を冷却水を循環させうる流通路
、ガス化剤を供給する流通路として構成したうえ、一番
内側の内筒管先端付近外壁およびバーナ先端部内壁に前
記冷却水が高速で接触するような流路を配設することに
より、達成される。
The above purpose is to overlap multiple cylindrical tubes with different diameters on the same axis, and use the innermost inner tube as a central flow path for supplying powdered solid fuel and its carrier gas, and The space between the cylindrical tubes is configured as a flow path for circulating cooling water and a flow path for supplying the gasifying agent, and the cooling water flows at high speed onto the outer wall near the tip of the innermost inner cylindrical tube and the inner wall of the burner tip. This is achieved by arranging a flow path such that the

〔作用〕[Effect]

バーナ先端部に設置した原料噴出ノズル内および内筒管
先端外壁部に設けた流通路内に高速で冷却水を流通させ
る。これにより、炉内温度が1400℃以上の高温でも
バーナ先端部および内筒管内の温度上昇は抑制され、ど
のような粉末固体燃料でも連続的に供給できるようにな
る。
Cooling water is caused to flow at high speed into the raw material jetting nozzle installed at the tip of the burner and into the flow passage provided at the outer wall at the tip of the inner tube. As a result, even if the temperature inside the furnace is as high as 1400° C. or higher, the temperature rise in the burner tip and inside the inner tube is suppressed, and any kind of powdered solid fuel can be continuously supplied.

〔実施例〕〔Example〕

第1図は、本発明による冷却型噴出バーナの一実施例を
示す先端部断面図であり、第2図は第1図の径方向の断
面図である。また、第3図は第1図のバーナを適用した
ガス化炉の概略構成図であす、第4図は第3図のA−A
断面図である。
FIG. 1 is a sectional view of the tip of an embodiment of a cooled jet burner according to the present invention, and FIG. 2 is a radial sectional view of FIG. 1. In addition, Fig. 3 is a schematic configuration diagram of a gasifier to which the burner shown in Fig. 1 is applied, and Fig. 4 is a diagram showing A-A in Fig. 3.
FIG.

まず、第3図および第4図のガス化炉について説明する
First, the gasifier shown in FIGS. 3 and 4 will be explained.

第3図において、ガス化炉41は噴流層型のガス化炉構
造であり、内部は耐火レンガ等の耐火物で内張すされて
おり、スラグ冷却部44.ガス化反応部31、生成ガス
流通部46から成る。
In FIG. 3, the gasifier 41 has a spouted bed type gasifier structure, and the inside is lined with a refractory material such as firebrick, and the slag cooling section 44. It consists of a gasification reaction section 31 and a produced gas distribution section 46.

本発明によるバーナ27はガス化炉内で旋回流が形成さ
れるように、第4図に示すようにガス化炉反応部31の
下部の内壁に対して接線方向に4本設置されている。
Four burners 27 according to the present invention are installed tangentially to the lower inner wall of the gasifier reaction section 31, as shown in FIG. 4, so as to form a swirling flow within the gasifier.

これら各バーナ27には、冷却水入口ライン42、出口
ライン43、ガス他剤供給ライン(酸素または空気)4
0および石炭分岐管ライン39が接続されている。ガス
化炉41内は、14. OO℃以−Eの高温になるため
、水を充填したスラグ冷却部44にスラグを自由落下さ
せ、急冷固化せしめ回収するように構成されている。
Each of these burners 27 includes a cooling water inlet line 42, an outlet line 43, a gas and other agent supply line (oxygen or air) 4
0 and a coal branch pipe line 39 are connected. Inside the gasifier 41, 14. Since the temperature reaches a temperature of OO° C. or higher, the slag is configured to freely fall into a slag cooling section 44 filled with water, where it is rapidly cooled and solidified and recovered.

次に、バーナ27の詳細な構成を第1図、第2図に従っ
て説明する。
Next, the detailed structure of the burner 27 will be explained according to FIGS. 1 and 2.

第1図において、バーナ27は外筒管(または冷却管)
9、ガス他剤供給管(酸素、空気および水蒸気)15.
内筒管(・粉末固体燃料供給管)16、冷却水供給管1
7より成る。バーナ27全体は4重管構造となっており
、バーナ内は冷却水供給流通路6,7を通る冷却水3,
4によって冷却される。
In Fig. 1, the burner 27 is an outer tube (or cooling tube).
9. Gas and other agent supply pipes (oxygen, air and water vapor) 15.
Inner cylinder pipe (powdered solid fuel supply pipe) 16, cooling water supply pipe 1
Consists of 7. The entire burner 27 has a quadruple pipe structure, and inside the burner, cooling water 3, which passes through cooling water supply flow passages 6, 7,
4.

粉末固体燃料1は、中心流路8を有する内筒管(粉末固
体燃料供給管)】6を通り、粉末固体燃料供給管出口1
4より噴出される。
The powdered solid fuel 1 passes through an inner cylindrical pipe (powdered solid fuel supply pipe) 6 having a central flow path 8, and passes through the powdered solid fuel supply pipe outlet 1.
It is ejected from 4.

ガス化剤(酸素、空気および水蒸気)2は、ガス他剤供
給管15内の流通路5を通り、原料噴出ノズル11内の
流通路10で所定の流速になり、ガス他剤噴出口13よ
り噴出する。この13の噴出孔は第2図の断面図に示す
ように円周方向に8個設けられており、答礼は同じ径で
、かつ内筒管(粉末固体燃料供給管)16に対して中心
よりにある角度を有する傾きであけられている。
The gasifying agent (oxygen, air, and water vapor) 2 passes through the flow path 5 in the gas and other agent supply pipe 15, reaches a predetermined flow velocity in the flow path 10 in the raw material jetting nozzle 11, and is released from the gas and other agent jetting port 13. gush. As shown in the cross-sectional view of Fig. 2, these 13 nozzle holes are provided in 8 circumferential directions, and they have the same diameter and are located from the center with respect to the inner cylinder pipe (powdered solid fuel supply pipe) 16. The opening is tilted at an angle.

この実施例のバーナ27は、粉末固体燃料1とガス化剤
(酸素、空気および水蒸気)2がバーナ出口で接触する
外部混合型のバーナである。外筒管先端部19は、一部
テーパ構造とし、ガス化炉の副射熱を受ける先端部面積
を小さくした構造とされている。
The burner 27 of this embodiment is an external mixing type burner in which the powdered solid fuel 1 and the gasifying agent (oxygen, air, and water vapor) 2 come into contact at the burner outlet. The outer cylindrical tube tip 19 has a partially tapered structure to reduce the area of the tip that receives side radiation heat from the gasifier.

以下、バーナ先端部の冷却水循環系について詳細に説明
する。
The cooling water circulation system at the tip of the burner will be described in detail below.

冷却水3は、冷却水供給管17の冷却水供給流通路7を
通り、バーナ先端部の原料噴出ノズル11まで供給され
、内筒管出口付近の外壁冷却水通路12を通り、内筒管
出口付近の外壁部を冷却した後、バーナ先端部内壁およ
びテーパ内壁冷却水流通路18を経て外筒管9内の冷却
水戻り流通路6を流通し、バーナ冷却水ラインから既設
の装置冷却水戻りラインに戻される。
The cooling water 3 passes through the cooling water supply passage 7 of the cooling water supply pipe 17, is supplied to the raw material jetting nozzle 11 at the tip of the burner, passes through the outer wall cooling water passage 12 near the outlet of the inner cylinder pipe, and passes through the outlet of the inner cylinder pipe. After cooling the nearby outer wall, the water flows through the coolant return flow path 6 in the outer tube 9 via the burner tip inner wall and the tapered inner wall cooling water flow path 18, and then flows from the burner cooling water line to the existing equipment cooling water return line. will be returned to.

第5図はバーナ27の第2の実施例を示す先端部断面図
であり、第6図は第5図の径方向の断面図である。また
、第7図はバーナ27の第3の実施例を示す先端部断面
図であり、第8図は第7図の径方向の断面図であるゆさ
らに、第9図はバーナ27の第4の実施例を示す先端部
断面図であり、第10図は第9図の径方向の断面図であ
り、いずれもバーナ冷却水供給管17を内筒管16の外
側に変え、またガス他剤流通路5を冷却水供給管17の
外側に設置することによって、内筒管先端部付近の内部
の温度上昇を抑制しようとしたものであり、第1図の実
施例と同等の効果を有するものである。
FIG. 5 is a sectional view of the tip of the second embodiment of the burner 27, and FIG. 6 is a radial sectional view of FIG. 5. 7 is a cross-sectional view of the tip of the burner 27 according to a third embodiment, FIG. 8 is a radial cross-sectional view of FIG. 7, and FIG. FIG. 10 is a radial cross-sectional view of FIG. By installing the flow passage 5 on the outside of the cooling water supply pipe 17, an attempt is made to suppress the rise in temperature inside the vicinity of the tip of the inner cylinder pipe, and it has the same effect as the embodiment shown in Fig. 1. It is.

第11図はバーナ先端内部温度に及ぼす冷却水流速の影
響を示したグラフであり1図のように冷却水の流速が1
0m/sまでは先端内部の温度は徐々に低下しているが
、それ以降ではあまり変化していない。このことから、
バーナ先端内壁流通路内流速を10m/s以上にすれば
温度上昇を効果的に抑制できることがわかる。
Figure 11 is a graph showing the influence of the cooling water flow rate on the internal temperature of the burner tip.
The temperature inside the tip gradually decreases up to 0 m/s, but does not change much after that. From this,
It can be seen that temperature rise can be effectively suppressed by setting the flow velocity in the inner wall flow passage at the burner tip to 10 m/s or more.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、バーナ先端部付近
を摩耗を少なくしてバーナ先端部および内筒管内出口付
近の温度上昇を効果的に抑制することができるようにな
り、その結果として、どのような粉末固体燃料でも連続
的に供給できる効果を有する。
As explained above, according to the present invention, it becomes possible to reduce wear near the burner tip and effectively suppress the temperature rise near the burner tip and the inner tube outlet, and as a result, It has the effect of continuously supplying any kind of powdered solid fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による冷却型噴出バーナ第1の実施例を
示す先端部断面図、第2図は第1図の径方向の断面図、
第3図は本発明のバーナを適用したガス化炉の概略構成
図、第4図は第3図のA−A断面図、第5図は本発明に
よる冷却型噴出バーナの第2の実施例を示す先端部断面
図、第6図は第5図の径方向の断面図、第7図は本発明
による冷却型噴出バーナの第3の実施例を示す先端部断
面図、第8図は第7図の径方向の断面図、第9図は本発
明による冷却型噴出バーナの第4の実施例を示す先端部
断面図、第10図は第9図の径方向の断面図、第11図
は冷却水流速とバーナ先端冷却水温度との関係を示すグ
ラフ、第12図は噴流層ガス化装置の概略構成図である
。 1・・・粉末固体燃料、2・・・ガス化剤、3・・・冷
却水(供給)、4・・・冷却水(戻り)、5・・・ガス
化剤、6・・・冷却水戻り流通路、7・・・冷却水供給
流通路、8・・・中心流路、9・・・外筒管、1o・・
・原料噴出ノズル内流通路、11・・・原料噴出ノズル
、12・・・内筒管、13・・・ガス他剤噴出口、14
・・・粉末固体燃料噴出口、15・・ガス他剤供給管、
16・・・内筒管。 17・・・冷却水供給管、18・・・テーパ内壁冷却水
流通路、19・・・バーナ先端部、22・・・加圧ホッ
パ、23・・・供給ホッパ、24・・・搬送ガス、25
・・・原料輸送ライン、26・・・分配器、27・・・
原料噴出バーナ、28・・・ガス他剤調節弁、29・・
・水蒸気調節弁、30・・・噴流層ガス化炉、31・・
ガス化炉反応部、32・・・スラグホッパ、33・・・
ガス化炉出口ライン、34・・・集塵系、35・・・脱
硫系、36・・・うIン、37・・・スラグライン、3
8・・・上段分岐管ライン、39・・・下段分岐管ライ
ン、40・・・下段ガス他剤ライン、41・・・上段ガ
ス他剤ライン、42・・・冷却水入口ライン、43・・
・冷却水出口ライン、44・・・水充填層、45・・・
フィーダ、46・・・ガス生成流通部、47・・・原料
搬送ライン、48・・・常圧ホッパ、49亮 凹 率2区 第6日 1うカス孔 粥 牟 凹 i′1 図 第8図 第9図 第10 凹 /シ、fP木シ荷七セ−(Tl/s)
FIG. 1 is a sectional view of the tip of a first embodiment of a cooling type jet burner according to the present invention, FIG. 2 is a radial sectional view of FIG. 1,
FIG. 3 is a schematic configuration diagram of a gasifier to which the burner of the present invention is applied, FIG. 4 is a sectional view taken along line A-A in FIG. 3, and FIG. 5 is a second embodiment of the cooling type jet burner according to the present invention. FIG. 6 is a radial cross-sectional view of FIG. 5, FIG. 7 is a cross-sectional view of the tip showing the third embodiment of the cooling type jet burner according to the present invention, and FIG. 7 is a radial sectional view, FIG. 9 is a sectional view of the tip of the fourth embodiment of the cooling type jet burner according to the present invention, FIG. 10 is a radial sectional view of FIG. 9, and FIG. 11 is a radial sectional view of FIG. 12 is a graph showing the relationship between cooling water flow rate and burner tip cooling water temperature, and FIG. 12 is a schematic configuration diagram of the spouted bed gasifier. 1...Powdered solid fuel, 2...Gasifying agent, 3...Cooling water (supply), 4...Cooling water (return), 5...Gasifying agent, 6...Cooling water Return flow path, 7... Cooling water supply flow path, 8... Center flow path, 9... Outer cylinder pipe, 1o...
- Raw material spouting nozzle internal flow passage, 11... Raw material spouting nozzle, 12... Inner cylindrical pipe, 13... Gas and other agent spouting port, 14
... Powdered solid fuel spout, 15... Gas and other agent supply pipe,
16...Inner tube. 17... Cooling water supply pipe, 18... Tapered inner wall cooling water flow passage, 19... Burner tip, 22... Pressurizing hopper, 23... Supply hopper, 24... Carrier gas, 25
...Raw material transport line, 26...Distributor, 27...
Raw material injection burner, 28...Gas and other agent control valve, 29...
・Steam control valve, 30... Entrained bed gasifier, 31...
Gasifier reaction section, 32...Slag hopper, 33...
Gasifier outlet line, 34... Dust collection system, 35... Desulfurization system, 36... Inner, 37... Slag line, 3
8... Upper branch pipe line, 39... Lower branch pipe line, 40... Lower gas/other agent line, 41... Upper gas/other agent line, 42... Cooling water inlet line, 43...
・Cooling water outlet line, 44...Water filling layer, 45...
Feeder, 46...Gas generation/distribution section, 47...Material conveyance line, 48...Normal pressure hopper, 49 Liang concavity rate 2 section 6th day 1 cass hole porridge i'1 Fig.8 Figure 9 Figure 10 Concave/C, fP Wood Cage Seven Se-(Tl/s)

Claims (1)

【特許請求の範囲】 1、同軸上に径の異なる複数個の円管を重ね合わせ、一
番内側の内筒管を粉末固体燃料およびその搬送気体を供
給する中心流路、その外側の円筒管の内筒および円筒管
相互間の空間を冷却水を循環させる流通路、ガス化剤を
供給する流通路としてそれぞれ構成したうえ、一番内側
の内筒管先端付近外壁およびバーナ先端部内壁に前記冷
却水が高速で接触するような流路を配設したことを特徴
とする冷却型噴出バーナ。 2、内筒管先端付近外壁およびバーナ先端部内壁を流通
する冷却水の流速を10m/s以上とすることを特徴と
する請求項1記載の冷却型噴出バーナ。 3、一番外側の円筒管先端部を一部テーパ構造とするこ
とを特徴とする請求項1記載の冷却型噴出バーナ。 4、粉末固体燃料とガス化剤は、バーナ先端部出口以降
で接触するものである請求項1〜3のいずれかに記載の
冷却型噴出バーナ。
[Claims] 1. A plurality of cylindrical tubes with different diameters are superimposed on the same axis, and the innermost inner cylindrical tube is a central flow path for supplying powdered solid fuel and its carrier gas, and the outer cylindrical tube is The space between the inner cylinder and the cylindrical tubes is configured as a flow path for circulating cooling water and a flow path for supplying the gasifying agent, respectively. A cooling type jet burner characterized by having a flow path that allows cooling water to come into contact with it at high speed. 2. The cooling type jet burner according to claim 1, wherein the flow velocity of the cooling water flowing through the outer wall near the tip of the inner tube and the inner wall of the burner tip is 10 m/s or more. 3. The cooling type jet burner according to claim 1, wherein the outermost cylindrical tube has a partially tapered tip. 4. The cooling type jet burner according to any one of claims 1 to 3, wherein the powdered solid fuel and the gasifying agent come into contact after the outlet of the burner tip.
JP2579289A 1989-02-06 1989-02-06 Cooling type blowing burner Granted JPH02206687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2579289A JPH02206687A (en) 1989-02-06 1989-02-06 Cooling type blowing burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2579289A JPH02206687A (en) 1989-02-06 1989-02-06 Cooling type blowing burner

Publications (2)

Publication Number Publication Date
JPH02206687A true JPH02206687A (en) 1990-08-16
JPH0545638B2 JPH0545638B2 (en) 1993-07-09

Family

ID=12175687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2579289A Granted JPH02206687A (en) 1989-02-06 1989-02-06 Cooling type blowing burner

Country Status (1)

Country Link
JP (1) JPH02206687A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674425A (en) * 1992-07-10 1994-03-15 Sumitomo Metal Ind Ltd Multipurpose burner
WO2009069330A1 (en) * 2007-11-27 2009-06-04 Mitsubishi Heavy Industries, Ltd. Burner for highly caking coal and gasification furnace
JP2010255892A (en) * 2009-04-22 2010-11-11 Electric Power Dev Co Ltd Gasification burner, and method of supplying fuel for gasification burner
JP2012126571A (en) * 2010-11-25 2012-07-05 Mitsubishi Heavy Ind Ltd Bin system and char recovery device
CN103881758A (en) * 2014-01-26 2014-06-25 西安交通大学 Novel gasifying process nozzle with function of spray cooling through narrow channels
JP2014125338A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Char feed tube
CN114659388A (en) * 2021-12-24 2022-06-24 中国联合工程有限公司 Smoke discharging and cooling device for hydrogen combustion engine combustor test bed and using method thereof
CN114854452A (en) * 2021-02-04 2022-08-05 清华大学 Water-cooling jacket of coal gasification burner and gasifier

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674425A (en) * 1992-07-10 1994-03-15 Sumitomo Metal Ind Ltd Multipurpose burner
WO2009069330A1 (en) * 2007-11-27 2009-06-04 Mitsubishi Heavy Industries, Ltd. Burner for highly caking coal and gasification furnace
JP2009127972A (en) * 2007-11-27 2009-06-11 Mitsubishi Heavy Ind Ltd Highly caking coal burner and gasifying furnace
AU2008330927B2 (en) * 2007-11-27 2012-08-02 Mitsubishi Hitachi Power Systems, Ltd. Burner for highly caking coal, and gasifier
US8607716B2 (en) 2007-11-27 2013-12-17 Mitsubishi Heavy Industries, Ltd. Burner for highly caking coal, and gasifier
JP2010255892A (en) * 2009-04-22 2010-11-11 Electric Power Dev Co Ltd Gasification burner, and method of supplying fuel for gasification burner
JP2012126571A (en) * 2010-11-25 2012-07-05 Mitsubishi Heavy Ind Ltd Bin system and char recovery device
JP2014125338A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Char feed tube
US9834733B2 (en) 2012-12-27 2017-12-05 Mitsubishi Heavy Industries, Ltd. Char removal pipe
CN103881758A (en) * 2014-01-26 2014-06-25 西安交通大学 Novel gasifying process nozzle with function of spray cooling through narrow channels
CN114854452A (en) * 2021-02-04 2022-08-05 清华大学 Water-cooling jacket of coal gasification burner and gasifier
CN114659388A (en) * 2021-12-24 2022-06-24 中国联合工程有限公司 Smoke discharging and cooling device for hydrogen combustion engine combustor test bed and using method thereof

Also Published As

Publication number Publication date
JPH0545638B2 (en) 1993-07-09

Similar Documents

Publication Publication Date Title
CA2710732C (en) Method and apparatus to produce synthetic gas
US4052172A (en) Process for gasifying coal or other carbon containing material
CN101605876B (en) Method and device for the entrained-flow gasification of solid fuels under pressure
AU2008330927B2 (en) Burner for highly caking coal, and gasifier
JP2013538248A (en) Biomass pyrolysis gasification method and apparatus via two interconnected furnaces
CN105143414A (en) Methods and systems of producing a particulate free, cooled syngas
KR20000015802A (en) Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
JPH02206687A (en) Cooling type blowing burner
JP4660874B2 (en) Operation control method for waste two-stage gasification system
JPS62236891A (en) Method and apparatus for gasification in coal gasification oven
JP6607817B2 (en) Gasification furnace device and gasification combined power generation facility
JP2006322004A (en) Two-step gasification system of waste material
CN201459076U (en) Cold wall entrained flow gasification device
JP3890482B2 (en) Airflow gasifier
AU2011301418C1 (en) Method for generating synthesis gas
CN208166938U (en) Coal tar Y type air flow bed clean and effective gasification installation
CN207294697U (en) The Y type airflow bed gasification furnaces of dry granulation deslagging
CN106635177B (en) High-efficiency low-consumption high-hydrogen gas generation system
JPH0581637B2 (en)
JPS59172589A (en) Gasification of coal
CN111349463B (en) Entrained-flow bed gasification system and method for dry pulverized coal
JPH0472879B2 (en)
KR960013609B1 (en) Gasifier of coal complex generating system
WO2019156064A1 (en) Furnace wall structure of wet bottom furnace, and wet bottom furnace
CN117025260A (en) Three-section biomass pressurized gasification furnace

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees