JPH02206649A - Flame-retardant polyurethane foam - Google Patents

Flame-retardant polyurethane foam

Info

Publication number
JPH02206649A
JPH02206649A JP2481589A JP2481589A JPH02206649A JP H02206649 A JPH02206649 A JP H02206649A JP 2481589 A JP2481589 A JP 2481589A JP 2481589 A JP2481589 A JP 2481589A JP H02206649 A JPH02206649 A JP H02206649A
Authority
JP
Japan
Prior art keywords
polyurethane foam
expandable graphite
flame
thermally expandable
aluminum hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2481589A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
鈴木 武嗣
Haruo Sakagami
坂上 春雄
Satoshi Ihata
井幡 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Nihon Kasei Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Nihon Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd, Nihon Kasei Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP2481589A priority Critical patent/JPH02206649A/en
Publication of JPH02206649A publication Critical patent/JPH02206649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a polyurethane foam containing a heat expandable graphite and aluminum hydroxide at a specific ratio as frame-retardants and having high flame retardance. CONSTITUTION:When the polyurethane foam is produced using a polyisocyanate, polyol, foaming agent, catalyst, etc., (A) a heat expandable graphite obtained by treating a graphite with a mixture of concentrated sulfuric acid and strong oxidizing agent and then subjecting the treated graphite to water washing and drying and preferably being 50-250cc/g in expansion degree on rapid heating at 1000 deg.C for 10sec and having 30-100 mesh, especially 40-80 mesh granule size and (B) aluminum hydroxide, preferably having 0.5-7m<2>/g BET specific surface area, 0.5-1.5g/ml bulk density and 10-200mum average granule size are blended as flame-retardant so that weight ratio of the component A to component B is 98:2-10:90 and total amount of the components A and B is 5-30wt.% based on weight of polyurethane foam.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は難燃性ポリウレタンフォームに係り、特に著し
く高い難燃性を有する難燃性ポリウレタンフォームに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to flame-retardant polyurethane foams, and particularly to flame-retardant polyurethane foams having extremely high flame retardancy.

[従来の技術] ポリウレタンフォーム等のフオーム材料の中、硬質フオ
ームは、例えば、電気冷蔵庫の保温材、建築物の外装材
、内装材、保温パネル等の建材として、また、軟質フオ
ームはソファ、マツトレス、自動車用シートなどの各種
クツション材に従来よりその優れた特性を活かして各種
の分野に利用されている。しかし、このフオーム材料に
も種々の問題点が指摘されており、とりわけ近年の火災
による災害予防の観点から、特に燃焼に対する抵抗性の
点で改善が要望され、難燃性を改善した難燃性フオーム
が開発された。
[Prior art] Among foam materials such as polyurethane foam, hard foams are used as building materials such as heat insulating materials for electric refrigerators, exterior materials of buildings, interior materials, and heat insulation panels, while soft foams are used as building materials such as sofas and pine tresses. It has been used in various fields, taking advantage of its excellent properties, for various cushioning materials such as automobile seats. However, various problems have been pointed out with this foam material, and in particular, from the perspective of preventing disasters caused by fire in recent years, there has been a demand for improvement, especially in terms of resistance to combustion. form was developed.

しかして、難燃性フオームの耐燃焼性を高めるために、
従来より各種の試みがなされ、提案がなされている0例
えば、発泡成型されたポリウレタンをリン酸化合物、ハ
ロゲン化合物、水酸化アルミニウム等の水溶液あるいは
エマルジョン中に含浸、乾燥する方法、ポリウレタンフ
ォーム中にハロゲン化合物、ハロゲン化リン酸エステル
化合物、水酸化アルミニウム、水酸化マグネシウム、金
属酸化物、三酸化アンチモン等を含有させる方法、原料
の一つであるポリオールとして含リンポリオール、含ハ
ロゲンポリオールを用いたり、更には、フオーム中にイ
ソシアネートの三量体であるイソシアヌレート基等の耐
熱性構造体を形成させる方法も知られている。
Therefore, in order to increase the flame resistance of flame retardant foam,
Various attempts have been made and proposals have been made in the past. For example, a method in which foam-molded polyurethane is impregnated with an aqueous solution or emulsion of a phosphoric acid compound, a halogen compound, aluminum hydroxide, etc. and then dried; A method of incorporating compounds, halogenated phosphate ester compounds, aluminum hydroxide, magnesium hydroxide, metal oxides, antimony trioxide, etc., using a phosphorus-containing polyol or a halogen-containing polyol as a polyol that is one of the raw materials, and further A method is also known in which a heat-resistant structure such as an isocyanurate group, which is an isocyanate trimer, is formed in the foam.

また、別の手段として、ウレタン製品に熱膨張性黒鉛を
添加することにより、難燃性を高める方法が提案されて
いる(tlsP 3,574,644 、 tlsP4
.889,369 )。
In addition, as another means, a method has been proposed to improve flame retardancy by adding thermally expandable graphite to urethane products (tlsP 3,574,644, tlsP4
.. 889,369).

[発明が解決しようとする課題] しかしながら、上記従来のいずれの方法によっても、近
年増々厳しくなる難燃化要求を十分に満足し得る難燃性
フオームを得ることはできず、所望の難燃性を得るため
には難燃性改善のための添加剤を多量に配合する必要が
あり、このためフオーム物性が低下したり、原料コスト
が高くつくなどの欠点があった。
[Problems to be Solved by the Invention] However, none of the conventional methods described above makes it possible to obtain a flame-retardant foam that fully satisfies the flame-retardant requirements that have become increasingly strict in recent years. In order to obtain this, it is necessary to incorporate a large amount of additives to improve flame retardancy, which has disadvantages such as deterioration of foam properties and high raw material costs.

本発明は、−層改善された難燃性ポリウレタンフォーム
を)是イ共することを目的とする。
The object of the present invention is to provide an improved flame retardant polyurethane foam.

[課題を解決するための手段] 本発明の難燃性ポリウレタンフォームは、熱膨張性黒鉛
と水酸化アルミニウムを含むポリウレタンフォームであ
って、ポリウレタンフォーム中の熱膨張性黒鉛と水酸化
アルミニウムとの重量比が98=2〜10:90の範囲
であり、かつ熱膨張性黒鉛と水酸化アルミニウムとの合
計量がポリウレタンフォーム重量の5〜30重量%であ
ることを特徴とする。
[Means for Solving the Problem] The flame-retardant polyurethane foam of the present invention is a polyurethane foam containing thermally expandable graphite and aluminum hydroxide, wherein the weight of the thermally expandable graphite and aluminum hydroxide in the polyurethane foam is It is characterized in that the ratio is in the range of 98=2 to 10:90, and the total amount of thermally expandable graphite and aluminum hydroxide is 5 to 30% by weight of the weight of the polyurethane foam.

即ち、本発明者らは、ポリウレタンフォームの難燃性を
高めるべく鋭意検討を重ねた結果、難燃剤として水酸化
アルミニウムと熱膨張性黒鉛とを併用することにより、
従来の熱膨張性黒鉛を単独で用いるものよりも顕著な相
乗効果を示し、著しく高い難燃効果が得られることを見
出し、本発明を完成させた。
That is, as a result of intensive studies to improve the flame retardancy of polyurethane foam, the present inventors have found that by using aluminum hydroxide and thermally expandable graphite together as flame retardants,
The present invention was completed based on the discovery that a synergistic effect is more pronounced than in conventional thermally expandable graphite used alone, and a significantly higher flame retardant effect can be obtained.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に使用される熱膨張性黒鉛は、広義には種々の方
法で製造される多様な組成物を挙げることができるが、
本発明においては、天然黒鉛、熱分解黒鉛、キッシュ黒
鉛等の黒鉛を、濃厚な硫酸と強い酸化剤との混合物で処
理した後、水洗いし、乾燥して得られる熱膨張性黒鉛を
用いるのが好ましい、黒鉛シートなどの製造に用いられ
る工業的な熱膨張性黒鉛は通常このものをいう。このよ
うな熱膨張性黒鉛は、約500℃以上に急激に加熱する
ことによりC軸方向に数10〜数100倍に膨張する性
質を有するものである。特に、本発明で使用される熱膨
張性黒鉛は、その特性として、1000℃で10秒間急
激に加熱するときの膨張度が50〜250 c c /
 gであることが望ましく、このような熱膨張性黒鉛は
、例えば、93〜99重量%、特に98Ii量1%の濃
硫酸と30=60重量%、特に60重量%の過酸化水素
水の混合液中に、約20〜100メツシユに粉砕した黒
鉛を45℃以下で10〜30分接触させ、水洗い、乾燥
を行なうことにより製造される。
In a broad sense, the thermally expandable graphite used in the present invention can include various compositions manufactured by various methods.
In the present invention, thermally expandable graphite obtained by treating natural graphite, pyrolytic graphite, quiche graphite, etc. with a mixture of concentrated sulfuric acid and a strong oxidizing agent, washing with water, and drying is used. This is usually the preferred industrial thermally expandable graphite used for manufacturing graphite sheets. Such thermally expandable graphite has the property of expanding several tens to hundreds of times in the C-axis direction when rapidly heated to about 500° C. or higher. In particular, the thermally expandable graphite used in the present invention has an expansion degree of 50 to 250 c/c when rapidly heated at 1000°C for 10 seconds.
g, and such thermally expandable graphite can be prepared by, for example, mixing 93 to 99% by weight, especially 1% of 98Ii, of concentrated sulfuric acid and 30=60% by weight, especially 60% of hydrogen peroxide solution. It is produced by contacting graphite crushed into about 20 to 100 meshes in a liquid at 45° C. or below for 10 to 30 minutes, followed by washing with water and drying.

このようにして得られる熱膨張性黒鉛は、通常、その粒
子表面に洗浄工程では除去しきれない遊離硫酸が付着し
ており、これがポリウレタンフォームを製造する際、ウ
レタン化反応を低下させることがあるので、本発明で使
用される熱膨張性黒鉛は、上記遊離硫酸を洗浄により十
分に除去するか、アンモニア水、苛性ソーダ、水酸化バ
リウムの水溶液等で処理して、熱膨張性黒鉛の酸性度を
調整しておくことが望ましい。即ち、上記濃硫酸と過酸
化水素水との混合液による酸処理後、十分に水洗を行な
うか、或いは、水洗工程で、アルカリ金属及び/又はア
ルカリ土類金属の水酸化物の水溶液又は水分散液と接触
させ、次いで濾別した後乾燥することにより該熱膨張性
黒鉛の1重量%濃度の水分散液のpHを4〜9となるよ
うにすることが望ましい。熱膨張性黒鉛の1重量%濃度
の水分散液のpHが4より低い場合、ポリウレタンフォ
ームを生成するための触媒の効果を低下させることにな
り、所望の反応速度で製造するための障害となるおそれ
がある。一方、このpHが9を超えるような場合は、ポ
リウレタンフォームの物性を低下させることもある。
Thermally expandable graphite obtained in this way usually has free sulfuric acid attached to its particle surface that cannot be removed in the washing process, and this may reduce the urethanization reaction when producing polyurethane foam. Therefore, the acidity of the thermally expandable graphite used in the present invention can be reduced by sufficiently removing the free sulfuric acid by washing, or by treating it with an aqueous solution of aqueous ammonia, caustic soda, barium hydroxide, etc. It is advisable to adjust it. That is, after the acid treatment with the above-mentioned mixture of concentrated sulfuric acid and aqueous hydrogen peroxide, sufficient water washing is performed, or an aqueous solution or water dispersion of alkali metal and/or alkaline earth metal hydroxide is prepared in the water washing process. It is desirable that the pH of the 1% by weight aqueous dispersion of thermally expandable graphite be adjusted to 4 to 9 by contacting the dispersion with the heat-expandable graphite, followed by filtering and drying. If the pH of the 1% strength by weight aqueous dispersion of thermally expandable graphite is lower than 4, it will reduce the effectiveness of the catalyst for producing polyurethane foam and will be an obstacle to producing it at the desired reaction rate. There is a risk. On the other hand, if this pH exceeds 9, the physical properties of the polyurethane foam may be deteriorated.

本発明において、熱膨張性黒鉛の1重量%濃度の水分散
液のpHは、測定すべき熱膨張性黒鉛1gを99gの脱
イオン水に投入し、10分間攪拌した後、pH電極によ
り測定される。この測定に際して使用される脱イオン水
は、それ自体のpHが5.5〜7.0の範囲のものを用
いるのが望ましい。
In the present invention, the pH of an aqueous dispersion of thermally expandable graphite with a concentration of 1% by weight is determined by adding 1 g of thermally expandable graphite to be measured into 99 g of deionized water, stirring for 10 minutes, and then measuring the pH using a pH electrode. Ru. The deionized water used in this measurement preferably has a pH in the range of 5.5 to 7.0.

このような熱膨張性黒鉛の粒度は、難燃化効果及びポリ
ウレタンフォームへの分散性等の面から30〜100メ
ツシユであることが好ましい、即ち、熱膨張性黒鉛の粒
度がおよそ80メツシユより細かくなると、熱膨張性が
小さくなる傾向があり、150メツシユより細かい場合
には熱膨張性が極端に低下し、その結果としてポリウレ
タンフォームの難燃化効果が低下する。一方、粒度が大
きい場合、例えば20〜30メツシュ程度の場合には熱
膨張性は十分高いが、ウレタン化反応に用いる場合に均
一分散が困難になり、望ましい難燃性が得られないと同
時にポリウレタンフォーム原料への分散性が良くないた
めに作業効率が低下する。従って、本発明で使用される
熱膨張性黒鉛の粒度は、30〜100メツシユのものが
望ましく、更に40〜80メツシュ程度に分粒されたも
のが最も好ましい。
The particle size of such thermally expandable graphite is preferably 30 to 100 mesh from the viewpoint of flame retardant effect and dispersibility into polyurethane foam. In other words, the particle size of thermally expandable graphite is preferably finer than approximately 80 mesh. If the mesh is finer than 150 mesh, the thermal expansion property will be extremely reduced, and as a result, the flame retardant effect of the polyurethane foam will be reduced. On the other hand, if the particle size is large, for example, about 20 to 30 mesh, the thermal expansion property is sufficiently high, but when used in the urethanization reaction, uniform dispersion becomes difficult, and the desired flame retardance cannot be obtained. Work efficiency decreases due to poor dispersibility into foam raw materials. Therefore, the particle size of the thermally expandable graphite used in the present invention is preferably 30 to 100 mesh, and most preferably 40 to 80 mesh.

熱膨張性黒鉛の粒度は、通常、これを製造する際の原料
黒鉛の粒度に左右される。従って、粒度の調整は、原料
黒鉛或いは得られた熱膨張性黒鉛を粉砕するなどの方法
で容易に行なうことができる。
The particle size of thermally expandable graphite usually depends on the particle size of the raw graphite used to produce it. Therefore, the particle size can be easily adjusted by pulverizing the raw graphite or the obtained thermally expandable graphite.

本発明で使用される水酸化アルミニウムは、通常、ゴム
用補強顔料、プラスチック用充填剤、製紙用難燃充填剤
等、難燃剤として用いられる公知の方法で工業的に製造
されているもので良く、BET法による比表面積が0 
、 5〜7 rn” / g 、嵩密度が0.5〜1.
5g/miのものが好適である。水酸化アルミニウムは
ポリウレタン製造原料に添加するに際し、分散性を確保
するために、その平均粒子径としては10〜200μm
程度のものが好適である。水酸化アルミニウムの粒子径
が細かすぎたり、嵩密度が小さすぎたりあるいは比表面
積が大きすぎる場合には原料を増粘させることがあり、
好ましくない場合がある。用いる水酸化アルミニウムは
シラン処理、脂肪酸処理等の表面改質処理がなされてい
ても良い。
The aluminum hydroxide used in the present invention may be industrially manufactured by known methods used as flame retardants, such as reinforcing pigments for rubber, fillers for plastics, and flame-retardant fillers for paper manufacturing. , the specific surface area according to the BET method is 0
, 5-7 rn"/g, bulk density 0.5-1.
5 g/mi is preferred. When adding aluminum hydroxide to raw materials for polyurethane production, the average particle size is 10 to 200 μm to ensure dispersibility.
It is preferable that the If the particle size of aluminum hydroxide is too small, the bulk density is too small, or the specific surface area is too large, the raw material may thicken.
It may be undesirable. The aluminum hydroxide used may be subjected to surface modification treatment such as silane treatment or fatty acid treatment.

本発明において、熱膨張性黒鉛と水酸化アルミニウムと
の配合割合は、重量比で98;2〜10:90、好まし
くは90:10〜25 : 75とする。熱膨張性黒鉛
と水酸化アルミニウムの割合が上記範囲をはずれると、
熱膨張性黒鉛と水酸化アルミニウムを併用することによ
る優れた相乗効果を得ることができない。
In the present invention, the blending ratio of thermally expandable graphite and aluminum hydroxide is 98:2 to 10:90, preferably 90:10 to 25:75 by weight. If the ratio of thermally expandable graphite and aluminum hydroxide is out of the above range,
It is not possible to obtain an excellent synergistic effect by using thermally expandable graphite and aluminum hydroxide together.

また、含有量としては両者の合計量がポリウレタンフォ
ームの5〜30重量%であることが好ましい。ポリウレ
タンフォーム重量に対する熱膨張性黒鉛と水酸化アルミ
ニウムとの合計重量が5%未満では難燃化が不十分であ
り、また30%を超えるとポリlレタンフオームとして
の特性を低下させるので好ましくない。
Moreover, it is preferable that the total content of both is 5 to 30% by weight of the polyurethane foam. If the total weight of thermally expandable graphite and aluminum hydroxide based on the weight of the polyurethane foam is less than 5%, flame retardation will be insufficient, and if it exceeds 30%, the properties of the polyurethane foam will deteriorate, which is not preferable.

なお、本発明で用いられるポリウレタンフォームフオー
ム原料としては、軟質フオーム用、半硬質及び硬質フオ
ーム用として通常使用されるものであれば何れでも良く
、ポリイソシアネートとしては、例えば、トルエンジイ
ソシアネート、ジフェニルメタンジイソシアネート、メ
タキシリレンジイソシアネート、ナフタレンジイソシア
ネート°等の芳香族ジイソシアネート、ジシクロヘキシ
ルメタンジイソシアネート、イソホロンジイソシアネー
ト、ヘキサメチレンジイソシアネート等の脂環式或いは
脂肪族ジイソシアネートが挙げられる。ジフェニルメタ
ンジイソシアネートはモノメリックMDIと称されるジ
フェニルメタン−4゜4′−ジイソシアネートの他、こ
れが重合した多核体を含有する所謂ポリメリックMDI
やクルードMDIを使用することもできる。さらに、ト
リフェニルメタントリイソシアネート、ジメチルトリフ
ェニルメタンテトライソシアネート等の多官能性イソシ
アネートや、上記のポリイソシアネートの二量体、二量
体、プレポリマー、或いはカルボジイミド変性、ビウレ
ット変性、アロファネート変性した変性物を用いること
もできる。
The raw material for the polyurethane foam used in the present invention may be any material commonly used for soft foam, semi-rigid foam, and hard foam. Examples of the polyisocyanate include toluene diisocyanate, diphenylmethane diisocyanate, Examples include aromatic diisocyanates such as metaxylylene diisocyanate and naphthalene diisocyanate, and alicyclic or aliphatic diisocyanates such as dicyclohexylmethane diisocyanate, isophorone diisocyanate and hexamethylene diisocyanate. Diphenylmethane diisocyanate includes diphenylmethane-4゜4'-diisocyanate, which is called monomeric MDI, as well as so-called polymeric MDI, which contains a polynuclear product obtained by polymerizing this diphenylmethane diisocyanate.
or crude MDI can also be used. Furthermore, polyfunctional isocyanates such as triphenylmethane triisocyanate and dimethyltriphenylmethanetetraisocyanate, dimers, dimers, prepolymers, or carbodiimide-modified, biuret-modified, allophanate-modified products of the above polyisocyanates. You can also use

ポリオールとしては、ポリオキシエチレングリコール、
ポリオキシプロピレングリコール、ポリオキシエチレン
ジプロピレングリコール、ポリオキシプロピレングリセ
リン、ポリオキシプロピレンペンタエリスリトール、ポ
リオキシプロピレンシェークローズ等のアルコール系ポ
リエーテル類、ポリオキシエチレントリエタノールアミ
ン、ポリオキシプロピレンエチレンジアミン等のアミン
系ポリエーテル類、ポリエチレンアジペート、ポリエチ
レンセバケート、ポリエチレンサクシネート、ポリプロ
ピレンアジペート、ポリへキサメチレンアジペート、ト
リメチロールプロパンフタレート、ペンタエリスリトー
ルアジペート等のポリエステル類が挙げられる。
Polyols include polyoxyethylene glycol,
Alcohol-based polyethers such as polyoxypropylene glycol, polyoxyethylene dipropylene glycol, polyoxypropylene glycerin, polyoxypropylene pentaerythritol, polyoxypropylene Shake rose, amines such as polyoxyethylene triethanolamine, polyoxypropylene ethylene diamine, etc. Examples include polyesters such as polyethers, polyethylene adipate, polyethylene sebacate, polyethylene succinate, polypropylene adipate, polyhexamethylene adipate, trimethylolpropane phthalate, and pentaerythritol adipate.

また、芳香族ポリエステルポリオールは、それ自体難燃
性の向上に有効であり、機械的強度の改善にも有効であ
る。
Furthermore, aromatic polyester polyols themselves are effective in improving flame retardancy and are also effective in improving mechanical strength.

これらポリイソシアネートとポリオールの好ましい組合
せとして、トルエンジイソシアネート、ジフェニルメタ
ンジイソシアネート等のジイソシアネートとアルコール
系ポリエーテル類又は芳香族系ポリエステルポリオール
類との組合せが挙げられるが、所望のフオーム物性を得
るために各種の原料を組合わせることも可能である。
Preferred combinations of these polyisocyanates and polyols include combinations of diisocyanates such as toluene diisocyanate and diphenylmethane diisocyanate and alcoholic polyethers or aromatic polyester polyols. It is also possible to combine.

ウレタン化反応の触媒としては、トリエチルアミン、ト
リエタノールアミン、ピリジン等のモノアミン類、テト
ラメチルエチレンジアミン、テトラメチルヘキサンジア
ミン、トリエチレンジアミン等のジアミン類、ジブチル
スズジラウレート、ジブチルスズシマレート、ジブチル
スズジアセテート等の有機錫化合物、その他、公知の触
媒が適宜使用される。
Catalysts for the urethanization reaction include monoamines such as triethylamine, triethanolamine, and pyridine, diamines such as tetramethylethylenediamine, tetramethylhexanediamine, and triethylenediamine, and organic tins such as dibutyltin dilaurate, dibutyltin simarate, and dibutyltin diacetate. Compounds and other known catalysts may be used as appropriate.

さらに発泡剤として、水、フレオン溶剤、メチレンクロ
ライド、エチレンクロライド等の塩素化炭化水素、必要
に応じて、ポリジメチルシロキサン、ポリシロキサン・
ポリオキシアルキレンコポリマー等のシリコーン系界面
活性剤、エチレングリコール、プロピレングリコール、
グリセリン、ヘキサメチレンジアミン、エタノールアミ
ン等の多官能性の活性水素含有物買を、鎖延長剤、架橋
剤として使用することもできる。
Furthermore, as a blowing agent, water, Freon solvent, chlorinated hydrocarbons such as methylene chloride and ethylene chloride, polydimethylsiloxane, polysiloxane, etc.
Silicone surfactants such as polyoxyalkylene copolymers, ethylene glycol, propylene glycol,
Polyfunctional active hydrogen-containing substances such as glycerin, hexamethylene diamine, and ethanolamine can also be used as chain extenders and crosslinking agents.

また、本発明のポリウレタンフォームには、トリス(2
−クロロエチル)フォスフェート、トリス(2−クロロ
プロピル)フォスフェート、トリス(2,3−ジブロモ
プロピル)フォスフェート、ポリ塩化ビニル、フマル酸
、イソフタル酸等の有機系難燃剤、塩化亜鉛、酸化アン
チモン、ポリリン酸アンモニウム、ホウ酸ナトリウム等
の無機系難燃剤を併用しても良い、或いは、リン及び/
又はハロゲン含有ポリオール、塩化TDI、フッ化TD
I等のハロゲン含有ポリイソシアネートの使用、イソシ
アヌレート環、オキサゾリドン環、ポリイミド基、カル
ボジイミド基のポリウレタンへの導入、フェノールホル
ムアルデヒド樹脂初期縮合物の使用による難燃化を組合
わせても良い。
In addition, the polyurethane foam of the present invention contains Tris (2
- Organic flame retardants such as chloroethyl) phosphate, tris(2-chloropropyl) phosphate, tris(2,3-dibromopropyl) phosphate, polyvinyl chloride, fumaric acid, isophthalic acid, zinc chloride, antimony oxide, Inorganic flame retardants such as ammonium polyphosphate and sodium borate may be used together, or phosphorus and/or
or halogen-containing polyol, TDI chloride, TD fluoride
It is also possible to combine the use of a halogen-containing polyisocyanate such as I, the introduction of an isocyanurate ring, an oxazolidone ring, a polyimide group, or a carbodiimide group into the polyurethane, and the use of a phenol-formaldehyde resin initial condensate for flame retardation.

本発明の難燃性ポリウレタンフォームは、上記のポリイ
ソシアネート、ポリオール、発泡剤、触媒等を用いてポ
リウレタンフォームを製造するに際し、難燃剤として前
述の熱膨張性黒鉛と水酸化アルミニウムを併用して配合
すること以外は従来のポリウレタンフォームと同様にし
て製造することができる。
The flame-retardant polyurethane foam of the present invention is produced by combining the above-mentioned thermally expandable graphite and aluminum hydroxide as flame retardants when producing polyurethane foam using the above-mentioned polyisocyanate, polyol, blowing agent, catalyst, etc. It can be manufactured in the same manner as conventional polyurethane foam except for the following.

一般に、ポリウレタンフォームの製造にあたっては、ポ
リオール側に、ポリイソシアネート以外の全ての原料を
添加し、混合して用いるのが通例である。本発明の難燃
性ポリウレタンフォームの製造にあたり、熱膨張性黒鉛
及び水酸化アルミニウムの添加方法には特別の制限はな
いが、通常の場合、ポリオールに添加して反応を行なう
ようにするのが好ましい、この場合、用いるポリオール
の種類によっては、ポリウレタンフォーム重量に対して
熱膨張性黒鉛及び水酸化アルミニウムの合計重量が25
重量%以上となるような添加量であると作業性が低下す
るおそれがある。いずれにおいても、熱膨張性黒鉛及び
水酸化アルミニウムは、反応時に分散状態をとっている
ので、ポリオールに添加したまま放置した場合、混合物
の下層に沈降堆積することもあるので、この場合には使
用の直前によく攪拌して用いることが望ましい。
Generally, in producing polyurethane foam, all raw materials other than polyisocyanate are added to the polyol and mixed together. In producing the flame-retardant polyurethane foam of the present invention, there are no particular restrictions on the method of adding thermally expandable graphite and aluminum hydroxide, but in normal cases, it is preferable to add them to polyol and carry out the reaction. In this case, depending on the type of polyol used, the total weight of thermally expandable graphite and aluminum hydroxide may be 25% of the weight of the polyurethane foam.
If the amount added is greater than % by weight, workability may decrease. In either case, thermally expandable graphite and aluminum hydroxide are in a dispersed state during the reaction, so if they are left in the polyol, they may settle and accumulate in the lower layer of the mixture, so in this case, they should not be used. It is desirable to stir well before use.

[作用] 熱膨張性黒鉛は、炎に接した際に急激に膨張してフオー
ムの燃焼を抑制し、また延焼を防止するという優れた難
燃性向上効果を有する。しかして、熱膨張性黒鉛と水酸
化アルミニウムとの併用により、それぞれの単独使用で
は得られない著しく優れた相乗効果が奏され、極めて良
好な難燃性を有する難燃性ポリウレタンフォームが得ら
れる。
[Function] Thermally expandable graphite rapidly expands when it comes into contact with flame, suppresses foam combustion, and has an excellent effect of improving flame retardancy in that it prevents the spread of fire. Therefore, by using thermally expandable graphite and aluminum hydroxide in combination, an extremely excellent synergistic effect that cannot be obtained by using each alone can be produced, and a flame-retardant polyurethane foam having extremely good flame retardance can be obtained.

[実施例] 以下に実施例及び比較例を挙げて本発明をより具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない、なお、実施例及び比
較例において、用いた原料の詳細は下記の通りである。
[Examples] The present invention will be described below in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples unless it exceeds the gist of the invention. In the examples and comparative examples, details of the raw materials used are as follows.

仇旦互エ ポリイソシアネート: ポリメチレンボリフェニレンボリイソシアネート(商品
名rPAPI−135」NCO当量;138(エム・デ
イー化成■社製))ボリオール: ポリオキシプロピレンシュークローズ (商品名rH3
−209J OH当量;125  (三洋化成社製)) 整泡剤: シリコーン系界面活性剤(商品名rl、−5340J 
 (日本ユニカー社製))触媒: アミン系(商品名rKao−No、1」(花王社製)) 熱膨張性黒鉛: 粒度分布が35〜80メツシユで、1000℃、10秒
間の膨張度がzoomu/gであり、かつ、アンモニア
で中和されており、1重量%水分散液のpHが6.7で
ある熱膨張性黒鉛 水酸化アルミニウム: 試薬1級の市販品 発泡剤: フロン溶剤(商品名rR−11EJ  (塩ガラス社製
)) H2O(脱イオン水) 実施例1〜6、比較例1.2 第1表に示した配合割合で原料を反応させた。
Polyisocyanate: Polymethylene polyphenylene polyisocyanate (product name: rPAPI-135, NCO equivalent: 138 (manufactured by M.D. Kasei)) Polyol: Polyoxypropylene polyisocyanate (product name: rH3)
-209J OH equivalent: 125 (manufactured by Sanyo Chemical Co., Ltd.) Foam stabilizer: Silicone surfactant (trade name rl, -5340J
(manufactured by Nippon Unicar Co., Ltd.)) Catalyst: Amine type (product name: rKao-No, 1'' (manufactured by Kao Corporation)) Thermally expandable graphite: Particle size distribution is 35-80 mesh, degree of expansion at 1000°C for 10 seconds is zoomu /g, and has been neutralized with ammonia and has a pH of 1% by weight aqueous dispersion of thermally expandable graphite aluminum hydroxide: Reagent 1st grade commercial product Blowing agent: CFC solvent (commercial product) Name rR-11EJ (manufactured by Shio Glass Co., Ltd.) H2O (deionized water) Examples 1 to 6, Comparative Examples 1.2 Raw materials were reacted at the blending ratios shown in Table 1.

まず、ポリエチレン製容器でポリイソシアネート、発泡
剤rR−11,J 、熱膨張性黒鉛以外の各原料を所定
比率で混合し、次に所定比率の熱膨張性黒鉛を添加しく
比較例2においては添加せず)、十分に攪拌混合してか
ら、液温を20±1℃に保ちながら所定量の発泡剤を加
えて混合原料を得た。次いで11のポリエチレン製ビー
カーに所定量の混合原料を採り、ここに所定量のポリイ
ソチアネートを投入し、直ちに激しく5秒間攪拌した後
、内容物を素早<20cmx20cmx25cmの大幹
さの容器に移してそのまま静置し30分後に発泡成型品
を取り出した。
First, in a polyethylene container, polyisocyanate, blowing agent rR-11,J, and raw materials other than thermally expandable graphite are mixed at a predetermined ratio, and then thermally expandable graphite is added at a predetermined ratio. After thorough stirring and mixing, a predetermined amount of blowing agent was added while maintaining the liquid temperature at 20±1° C. to obtain a mixed raw material. Next, a predetermined amount of the mixed raw materials was taken into a polyethylene beaker No. 11, and a predetermined amount of polyisocyanate was added thereto. After stirring vigorously for 5 seconds, the contents were quickly transferred to a container with a diameter of <20 cm x 20 cm x 25 cm. After 30 minutes, the foamed molded product was taken out.

得られた発泡成型品について、J I S−に−720
1に基き、酸素指数を測定し、結果を第1表及び第1図
に示した。
Regarding the obtained foam molded product, JIS-Ni-720
1, the oxygen index was measured and the results are shown in Table 1 and Figure 1.

第1表及び第1図より、熱膨張性黒鉛と水酸化アルミニ
ウムとの併用による相乗効果が明らかであり、かつ優れ
た難燃性が得られることが明らかである。
From Table 1 and FIG. 1, it is clear that the combined use of thermally expandable graphite and aluminum hydroxide has a synergistic effect, and that excellent flame retardancy can be obtained.

[発明の効果] 以上詳述した通り、本発明の難燃性フオームによれば、
熱膨張性黒鉛と水酸化アルミニウムとの併用による著し
く優れた相乗効果により、難燃性が従来品に比べて大幅
に向上された難燃性フオームが提供される。
[Effects of the Invention] As detailed above, according to the flame retardant foam of the present invention,
The combination of thermally expandable graphite and aluminum hydroxide provides an excellent synergistic effect, providing a flame retardant foam with significantly improved flame retardancy compared to conventional products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜6、比較例1.2の酸素指数の測定
結果を示すグラフである。 代理人  弁理士  瓜 野  剛
FIG. 1 is a graph showing the measurement results of the oxygen index of Examples 1 to 6 and Comparative Example 1.2. Agent Patent Attorney Tsuyoshi Urino

Claims (1)

【特許請求の範囲】[Claims] (1)熱膨張性黒鉛と水酸化アルミニウムを含むポリウ
レタンフォームであって、ポリウレタンフォーム中の熱
膨張性黒鉛と水酸化アルミニウムとの重量比が98:2
〜10:90の範囲であり、かつ熱膨張性黒鉛と水酸化
アルミニウムとの合計量がポリウレタンフォーム重量の
5〜30重量%であることを特徴とする難燃性ポリウレ
タンフォーム。
(1) A polyurethane foam containing thermally expandable graphite and aluminum hydroxide, wherein the weight ratio of thermally expandable graphite and aluminum hydroxide in the polyurethane foam is 98:2.
10:90, and the total amount of thermally expandable graphite and aluminum hydroxide is 5 to 30% by weight of the weight of the polyurethane foam.
JP2481589A 1989-02-03 1989-02-03 Flame-retardant polyurethane foam Pending JPH02206649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2481589A JPH02206649A (en) 1989-02-03 1989-02-03 Flame-retardant polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2481589A JPH02206649A (en) 1989-02-03 1989-02-03 Flame-retardant polyurethane foam

Publications (1)

Publication Number Publication Date
JPH02206649A true JPH02206649A (en) 1990-08-16

Family

ID=12148688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2481589A Pending JPH02206649A (en) 1989-02-03 1989-02-03 Flame-retardant polyurethane foam

Country Status (1)

Country Link
JP (1) JPH02206649A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248461A (en) * 1989-03-22 1990-10-04 M D Kasei Kk Preparation of flame-retardant polyisocyanurate foam
JPH04270718A (en) * 1990-08-24 1992-09-28 Bayer Ag Manufacture of rigid polyurethane foam
US6153674A (en) * 1998-01-30 2000-11-28 3M Innovative Properties Company Fire barrier material
US6765035B2 (en) 1999-10-07 2004-07-20 Huntsman International Llc Process for making rigid and flexible polyurethane foams containing a fire-retardant
JP2005023192A (en) * 2003-07-01 2005-01-27 Kyocera Chemical Corp Flame-retardant unsaturated polyester resin composition
JP2006257118A (en) * 2005-03-15 2006-09-28 Denki Kagaku Kogyo Kk Spongy molding
JP2013018988A (en) * 2012-09-11 2013-01-31 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane resin composition and polyurethane resin
CN103834157A (en) * 2012-11-26 2014-06-04 北京市建筑工程研究院有限责任公司 Halogen-free non-phosphorus high-flame-retardant rigid polyurethane foam insulation material and preparation method thereof
JP2016199732A (en) * 2015-04-14 2016-12-01 三洋化成工業株式会社 Method for producing urethane foam
KR101954718B1 (en) * 2018-08-23 2019-03-07 (주)이에스피 Flame Retardant Pellets Using Waste Plastics and Manufacture Method Thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311167A (en) * 1988-04-14 1989-12-15 Bayer Ag Production of polyurethane foam
JPH02105811A (en) * 1988-08-23 1990-04-18 Bayer Ag Preparation of polyurethane foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311167A (en) * 1988-04-14 1989-12-15 Bayer Ag Production of polyurethane foam
JPH02105811A (en) * 1988-08-23 1990-04-18 Bayer Ag Preparation of polyurethane foam

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248461A (en) * 1989-03-22 1990-10-04 M D Kasei Kk Preparation of flame-retardant polyisocyanurate foam
JPH04270718A (en) * 1990-08-24 1992-09-28 Bayer Ag Manufacture of rigid polyurethane foam
US6153674A (en) * 1998-01-30 2000-11-28 3M Innovative Properties Company Fire barrier material
US6765035B2 (en) 1999-10-07 2004-07-20 Huntsman International Llc Process for making rigid and flexible polyurethane foams containing a fire-retardant
JP2005023192A (en) * 2003-07-01 2005-01-27 Kyocera Chemical Corp Flame-retardant unsaturated polyester resin composition
JP2006257118A (en) * 2005-03-15 2006-09-28 Denki Kagaku Kogyo Kk Spongy molding
JP2013018988A (en) * 2012-09-11 2013-01-31 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane resin composition and polyurethane resin
CN103834157A (en) * 2012-11-26 2014-06-04 北京市建筑工程研究院有限责任公司 Halogen-free non-phosphorus high-flame-retardant rigid polyurethane foam insulation material and preparation method thereof
CN103834157B (en) * 2012-11-26 2016-12-21 北京市建筑工程研究院有限责任公司 A kind of non-halogen non-phosphate high fire-retardance rigid polyurethane foam heat insulation material and preparation method thereof
JP2016199732A (en) * 2015-04-14 2016-12-01 三洋化成工業株式会社 Method for producing urethane foam
KR101954718B1 (en) * 2018-08-23 2019-03-07 (주)이에스피 Flame Retardant Pellets Using Waste Plastics and Manufacture Method Thereof

Similar Documents

Publication Publication Date Title
US4259452A (en) Method of producing flexible reticulated polyether polyurethane foams
EP1153067B1 (en) Open-celled semi-rigid foams with exfoliating graphite
EP1630192B1 (en) Process for producing water blown flexible polyurethane foam containing metal hydrate salts
EP2970561B1 (en) Flame retardant polyurethane foam and method for producing same
KR100628669B1 (en) Polyurethane based foam containing exfoliating graphite and the process for the preparation thereof
EP1647565B1 (en) Polyurethane foam and process for producing the same
EP2640763A2 (en) Flame resistant flexible polyurethane foam
EP2726543A2 (en) Thermally stable flame resistant flexible polyurethane foam
JPH04252219A (en) Flame-retardant composition comprising fatty acid ester and/or amide
PT1758947E (en) Flexible polyurethane foam
PL211561B1 (en) Open-celled polyurethane foams containing graphite which exhibit low thermal conductivity
JPH02206649A (en) Flame-retardant polyurethane foam
JPH10168150A (en) Composition for flame retarding rigid polyurethane foam
JPH10147623A (en) Composition for flame retardant soft polyurethane foam
US20040092616A1 (en) Process for producing rigid polyurethane foams and finished articles obtained therefrom
US5776992A (en) Halogen-free, flame retardant rigid polyurethane foam
JP2679214B2 (en) Flame retardant polyurethane foam
EP0116309A1 (en) Flexible polyurethane foams having high indentation load deflection prepared from polyol blends
EP0464204A1 (en) Method of producing flame-retardant polyisocyanurate foam
JP2002003713A (en) Flame-retardant flexible polyurethane foam
CA1273354A (en) Isocyanate terminated quasi-prepolymers useful for preparing urethane-group-containing polyisocyanurate foams having low friability
JP2775798B2 (en) Flame retardant polyurethane foam
JP2710368B2 (en) Flame retardant polyurethane foam
JPH02215518A (en) Manufacture of nonflammable rebonded foam
JP3688313B2 (en) Method for producing urethane-modified polyisocyanurate foam