JPH02206172A - Horizontal type conductivity modulating mosfet and method of controlling same - Google Patents

Horizontal type conductivity modulating mosfet and method of controlling same

Info

Publication number
JPH02206172A
JPH02206172A JP2694489A JP2694489A JPH02206172A JP H02206172 A JPH02206172 A JP H02206172A JP 2694489 A JP2694489 A JP 2694489A JP 2694489 A JP2694489 A JP 2694489A JP H02206172 A JPH02206172 A JP H02206172A
Authority
JP
Japan
Prior art keywords
region
type
conductivity
layer
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2694489A
Other languages
Japanese (ja)
Other versions
JPH0812920B2 (en
Inventor
Yasukazu Seki
康和 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2694489A priority Critical patent/JPH0812920B2/en
Priority to DE19904003389 priority patent/DE4003389A1/en
Publication of JPH02206172A publication Critical patent/JPH02206172A/en
Publication of JPH0812920B2 publication Critical patent/JPH0812920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enhance conductivity modulation in the ON state and to extinguish the conductivity modulation quickly in transistion from the ON to OFF state by providing a lead-out electrode in contact with an N<+>type buffer layer. CONSTITUTION:On the surface of an N<->type substrate 1 of the first conductivity type, there are provided a first region (P-type well) 2 of the second conductivity type and a second region (N<+>type buffer layer) 9 of the first conductivity type which are spaced from each other by a predetermined distance. On the surface of the P-type well 2, there are provided a third highly doped region (P<++>type contact layer) 3 of the second conductivity type and a fourth region (N<+>type source layer) 4 of the first conductivity type. On the surface of the buffer layer 9, there is provided a fifth highly doped region (P<+>type drain layer) 8 of the second conductivity type which is in contact with a drain electrode 10. A lead- out electrode 11 is provided in contact with the buffer layer 9. ln the ON state, a forward voltage is applied to the PN junction between the second and fifth regions. In the transition from the ON to OFF state, a reverse voltage is applied. In this manner, conductivity modulation can be enhanced in the ON state, and the conductivity modulation can be extinguished quickly in the OFF state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、横型バイポーラトランジスタのベース電流を
MOS F ETのチャネル電流によって供給する横型
伝導度変調型MOSFETおよびその制御方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lateral conductivity modulated MOSFET in which the base current of a lateral bipolar transistor is supplied by a channel current of a MOSFET, and a control method thereof.

〔従来の技術〕[Conventional technology]

伝導度変調型MOS F ETは絶縁ゲート型バイポー
ラトランジスタ (Insulated Gate B
ipolarTransistor)とも呼ばれるので
以下IGBTと略称する。IGBTは、電圧駆動型のバ
イポーラ素子として知られ、当初はたて型の素子として
開発が進められ、最近になり横型のIGBTが開発され
るようになった。これは、たて型のI GBTは半導体
基板の表面と裏面との間に電流が流れるのに対し、横型
のI GBTは半導体基板の一面側のみを使って形成さ
れるので、基板への組込みが簡単で同一基板内の集積回
路との接続が容易であることによる。
A conductivity modulated MOS FET is an insulated gate bipolar transistor (Insulated Gate B
Since it is also called (ipolartransistor), it will be abbreviated as IGBT hereinafter. IGBTs are known as voltage-driven bipolar devices, and were initially developed as vertical devices, but recently horizontal IGBTs have been developed. This is because a vertical IGBT allows current to flow between the front and back surfaces of the semiconductor substrate, whereas a horizontal IGBT is formed using only one side of the semiconductor substrate. This is because it is simple and easy to connect with integrated circuits on the same board.

第2図は従来の横型のNチャネルI GETを示し、N
−基板1の一面に設けられたPウェル2の表面部にはP
+4層3およびそれに接するN′″ソース層4が設けら
れ、その両層にソース端子Sに接続されるソース電極5
が接触している。ソース層4とN−基板領域1の間の上
には、ゲート酸化膜6を介して多結晶シリコンゲート電
極7が設けられ、ゲート端子Gに接続されている。Pウ
ェル層2と間隔を置いてP″ ドレイン層8を囲むN+
バッファ層9が配置されており、P“層8にはドレイン
端子りに接続されるドレイン電極10が接触している。
Figure 2 shows a conventional horizontal N-channel I GET, with N
- The surface of the P well 2 provided on one side of the substrate 1 has P
A +4 layer 3 and an N'' source layer 4 in contact with it are provided, and a source electrode 5 connected to a source terminal S is provided on both layers.
are in contact. A polycrystalline silicon gate electrode 7 is provided between the source layer 4 and the N-substrate region 1 via a gate oxide film 6, and is connected to the gate terminal G. N+ surrounding the P well layer 2 and the P'' drain layer 8 with a space therebetween.
A buffer layer 9 is arranged, and a drain electrode 10 connected to the drain terminal is in contact with the P'' layer 8.

このI GBTではゲート電極7に電圧を印加し、その
直下の2層2の表面を反転させてNチャネルを形成し、
電子をN+ソース層4よりN−層1に導入する。これに
応じて、中性条件を満たすようにドレイン側のP′″層
8より正孔がN′″バッファ層9を通じてN−層1に導
入される。このようにしてN−層8においてはキャリア
の蓄積が生じ、伝導度変調が生ずることとなる。
In this IGBT, a voltage is applied to the gate electrode 7, and the surfaces of the two layers 2 immediately below it are inverted to form an N channel.
Electrons are introduced into the N- layer 1 from the N+ source layer 4. In response, holes are introduced from the P'' layer 8 on the drain side into the N- layer 1 through the N'' buffer layer 9 so as to satisfy the neutrality condition. In this way, carriers accumulate in the N- layer 8, resulting in conductivity modulation.

第3図はポテンシャルバリア図で、ドレインP3層8よ
り′N・バッファ層9を通じてN−層1へ正孔31が導
入されてゆく経路を描いている。従来は、N゛バフ21
層9比抵抗を変化させ、すなわちフェルミレベルを変化
させることにより、正孔のP″ ドレイン層8からN“
バッファ層9へのポテンシャル障壁を制御していた。具
体的には、N゛バフフ1層比抵抗を上げるとポテンシャ
ル障壁が低くなり、比抵抗を下げるとポテンシャル障壁
が高くなる。
FIG. 3 is a potential barrier diagram showing a path through which holes 31 are introduced from the drain P3 layer 8 to the N− layer 1 through the 'N buffer layer 9. Previously, N゛buff 21
By changing the resistivity of the layer 9, that is, changing the Fermi level, the hole P″ is transferred from the drain layer 8 to N″
The potential barrier to the buffer layer 9 was controlled. Specifically, increasing the specific resistance of the N'buff 1 layer lowers the potential barrier, and lowering the specific resistance increases the potential barrier.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

I GBTは、実際にはスイッチング素子として使用さ
れる場合が多く、この場合には、オン状態では出来るだ
け伝導度変調が生ずるように、すなわちオン抵抗が出来
るだけ小さくなるようにしたい。そしてまた一方では、
オン状態からオフ状態へ移行する際には、出来るだけ速
やかにオフ状態へ移りたい、すなわち速いスイッチング
時間が要求される。
IGBTs are actually often used as switching elements, and in this case, it is desirable to cause conductivity modulation as much as possible in the on state, that is, to make the on-resistance as small as possible. And on the other hand,
When transitioning from the on state to the off state, it is desired to transition to the off state as quickly as possible, that is, a fast switching time is required.

このような要求に介して、N1バッファ層9の比抵抗お
よび厚さを考慮し、なおかつライフタイムキラーを導入
し特性を得ている。すなわち、伝導度変調の生ずる程度
およびライフタイムキラーによるキャリアの消滅のさせ
方の両者を調整し、最適値を決定しているのが実情であ
る。
In view of these requirements, the specific resistance and thickness of the N1 buffer layer 9 are taken into consideration, and a lifetime killer is introduced to obtain the characteristics. That is, the reality is that the optimum value is determined by adjusting both the degree of conductivity modulation and the manner in which carriers are annihilated by the lifetime killer.

このようにN+バッファ層9は単に耐圧を保持するため
の空乏層のストッパという働きばかりでな(、IGET
のスイッチングに関して大きな役割を追っている。しか
し、N′″バッファ層9の不純物濃度と厚さは一義的に
決まっており、その条件の下でライフタイムキラーを多
く入れるとスイッチング時間は速くなるがオン抵抗が大
きくなり、ライフタイムキラーを少なく入れるとスイッ
チング時間は遅くなるがオン抵抗が小さくり、スイッチ
時間とオン状態での電圧降下はトレードオフ関係にある
In this way, the N+ buffer layer 9 merely functions as a stopper for the depletion layer to maintain the withstand voltage (IGET
We are pursuing a major role in switching. However, the impurity concentration and thickness of the N''' buffer layer 9 are uniquely determined, and under these conditions, if a large number of lifetime killers are added, the switching time becomes faster, but the on-resistance increases, and the lifetime killer is If less is added, the switching time will be slower, but the on-resistance will be smaller, and there is a trade-off relationship between the switching time and the voltage drop in the on-state.

本発明は、このトレードオフを解消し、オン状態ではで
きうる限り伝導度を変調を生じさせ、オフへのスイッチ
ング時には伝導度変調を出来うる限り速やかに消滅させ
ることを実現させた横型IGBTおよびその制御方法を
提供することを目的としている。
The present invention eliminates this trade-off and provides a lateral IGBT and its lateral IGBT that modulates the conductivity as much as possible in the on state and eliminates the conductivity modulation as quickly as possible when switching to the off state. The purpose is to provide a control method.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、低不純物濃度
の第一導電形の基板の表面部に選択的に第二導電形の第
一領域と第一導電形の第二領域とが所定の間隔を介して
位置し、第一領域の表面部にいずれも高不純物濃度の第
二導電形の第三領域と第一導電形の第四領域が選択的に
形成され、第三領域と第四領域はソース電極によって短
絡され、第四領域と基板領域の間の第一領域の表面には
酸化膜を介してゲート電極が設けられ、かつ第二領域の
表面部にはドレイン電極が接触する高不純物濃度の第二
導電形の第五領域が選択的に形成される横型I GBT
において、第二領域に引き出し電極が接触するものとす
る。オン状態ではドレイン電極と引き出し電極を介して
第二領域と第五wi域の間のPN接合に対し順方向とな
る電圧を印加するものとする。オンよりオフへのスイッ
チング廿態ではドレイン電極と引き出し電極を介して第
二領域と第五領域の間のPN接合に対して逆方向となる
電圧を印加するものとする。
In order to achieve the above object, the present invention provides a method in which a first region of a second conductivity type and a second region of a first conductivity type are selectively provided on the surface of a substrate of a first conductivity type with a low impurity concentration. A third region of the second conductivity type and a fourth region of the first conductivity type, both of which have a high impurity concentration, are selectively formed on the surface of the first region. The four regions are short-circuited by a source electrode, a gate electrode is provided on the surface of the first region between the fourth region and the substrate region via an oxide film, and a drain electrode is in contact with the surface of the second region. Horizontal IGBT in which a fifth region of the second conductivity type with high impurity concentration is selectively formed
In this case, it is assumed that the extraction electrode contacts the second region. In the on state, a forward voltage is applied to the PN junction between the second region and the fifth wi region via the drain electrode and the extraction electrode. In the switching state from on to off, a voltage in the opposite direction is applied to the PN junction between the second region and the fifth region via the drain electrode and the extraction electrode.

〔作用〕[Effect]

第二領域に専用の引き出し電極を設けたので、ドレイン
層である第五領域とバッファ層である第二領域との間に
直流電圧を適宜の極性で印加することができ、両層間の
PN接合のポテンシャル障壁が制御できるようになり、
オン状態に対応して一方のキャリアの注入を容易にして
伝導度変調を大きくし、オンよりオフへのスイッチング
状態に対応して一方のキャリアの注入、他方のキャリア
の排出を制御し、伝導度変調を速やかに消滅させること
が可能となる。
Since a dedicated extraction electrode is provided in the second region, it is possible to apply a DC voltage with appropriate polarity between the fifth region, which is the drain layer, and the second region, which is the buffer layer. The potential barrier can now be controlled,
Corresponding to the on state, it is easy to inject one carrier to increase the conductivity modulation, and corresponding to the switching state from on to off, the injection of one carrier and the ejection of the other carrier are controlled, thereby increasing the conductivity. It becomes possible to quickly eliminate the modulation.

〔実施例〕〔Example〕

第1図は本発明の一実施例の横型のNチャネルIGBT
を示す。基板1内に形成される層構造は第2図の従来例
と同じである。すなわち比抵抗50〜100ΩのN−基
板1に表面からの拡散によりいずれも幅40〜50−で
表面不純物濃度5 X IQ” / adのPウェル(
第一領域)2と表面不純物濃度約10” / cdのN
4バッファ層 (第二領域)9が50〜100−の間隔
dを介して形成されている。Pウェル2にはさらに表面
からの不純物拡散で深さ4〜5μ1表面不純物濃度10
19 / cd以上のP ++接触層(第三領域)3と
深さ1/IWl以下1表面不純物濃度約10”/−〇N
4ソース層 (第四領域)4が設けられている。一方、
N+バッファ層9にも表面からの不純物拡散で幅20〜
30μ、深さ4〜5−1表面不純物濃度約10”/−の
P゛ ドレイン層 (第五領域)8が設けられている。
FIG. 1 shows a horizontal N-channel IGBT according to an embodiment of the present invention.
shows. The layer structure formed within the substrate 1 is the same as the conventional example shown in FIG. That is, a P well (with a width of 40 to 50 Ω and a surface impurity concentration of 5
first region) 2 and surface impurity concentration of approximately 10”/cd N
Four buffer layers (second regions) 9 are formed at intervals d of 50 to 100 −. In P-well 2, impurity is further diffused from the surface to a depth of 4 to 5μ1 and the surface impurity concentration is 10.
19/cd or more P++ contact layer (third region) 3 and depth 1/IWl or less 1 surface impurity concentration approximately 10”/-〇N
Four source layers (fourth regions) 4 are provided. on the other hand,
The N+ buffer layer 9 also has a width of 20~ due to impurity diffusion from the surface.
A P drain layer (fifth region) 8 with a depth of 4 to 5-1 and a surface impurity concentration of about 10''/- is provided.

N′″ソース層4と表面に露出したN−基板1の間の上
には、厚さtoo。
The layer between the N''' source layer 4 and the N-substrate 1 exposed at the surface has a thickness of too.

人のゲート酸化膜6を介して不純物濃度10”/cdの
多結晶シリコンにより厚さ1nのゲート電極7で形成さ
れている。さらにP+4層3とN+ソース層4に接触し
て両層を短絡するソース電極5.P゛ドレイン1147
層8ドレイン電極10のほが、本発明によりN゛バフ2
1層接触する引き出し電極11が設けられている。各電
極はそれぞれMまたはMoからなり、ソース電極4はソ
ース端子Sに、ゲート電極7はゲート端子Gに、またド
レイン電極10はドレイン端子りにそれぞれ接続されて
おり、ドレイン端子りと引き出し電極11の間には直流
電源21あるいは22が接続される。
A gate electrode 7 with a thickness of 1n is formed of polycrystalline silicon with an impurity concentration of 10"/cd through a human gate oxide film 6. Furthermore, it contacts the P+4 layer 3 and the N+ source layer 4 to short-circuit both layers. source electrode 5.P drain 1147
The layer 8 drain electrode 10 is N'buffed 2 according to the present invention.
A single-layer contacting extraction electrode 11 is provided. Each electrode is made of M or Mo, and the source electrode 4 is connected to the source terminal S, the gate electrode 7 is connected to the gate terminal G, and the drain electrode 10 is connected to the drain terminal. A DC power supply 21 or 22 is connected between them.

次にこのIGBTの制御方法について述べる。Next, a method of controlling this IGBT will be described.

例えば、ドレイン1 ソース間に600vの電圧が印加
されるIGETに、まずオン状態では伝導度変調を出来
うる限り生じさせるという観点から、第4図ta+に示
すようなポテンシャルバリアを実現させる。これは電源
21によりN′″バッファ層とP′″ドレインのPN接
合部に順方向になるように、数ないし数十Vの電圧を印
加することにより実現する。これにより、P′″ ドレ
イン層8からN−層Jへの正孔31の注入、N−層1か
らP3 ドレイン層8への電子32の排出は容易になり
、伝導度変調を大きくすることができる。従ってオン電
圧が低下する。これに対し、オフへのスイッチング状態
では、第4図世)に示すようなポテンシャルバリアを実
現させる。これは、電源22によりN9バッファ層とP
4 ドレインのPN接合部に逆方向になるように数ない
し数十Vの電圧を印加することにより実現する。これに
より、Pl ドレイン層8からN層1への正孔31の注
入は著しく制限されるばかりでなく、N−層1からP3
 ドレ、イン層8へ排出してゆく電子32も著しく制限
され、この結果スイッチング時間も極めて短くすること
が可能となる。
For example, in an IGET to which a voltage of 600 V is applied between the drain and the source, a potential barrier as shown in ta+ in FIG. 4 is realized from the viewpoint of causing as much conductivity modulation as possible in the on state. This is realized by applying a voltage of several to several tens of volts in the forward direction to the PN junction between the N'''' buffer layer and the P'' drain using the power source 21. This facilitates the injection of holes 31 from the P''' drain layer 8 to the N-layer J and the ejection of electrons 32 from the N-layer 1 to the P3 drain layer 8, making it possible to increase the conductivity modulation. Therefore, the on-voltage decreases.On the other hand, in the off-switching state, a potential barrier as shown in Figure 4 is realized.This is because the power supply 22 connects the N9 buffer layer and the P
4. This is achieved by applying a voltage of several to several tens of volts to the PN junction of the drain in the opposite direction. As a result, not only the injection of holes 31 from the Pl drain layer 8 to the N layer 1 is significantly restricted, but also the injection of holes 31 from the N− layer 1 to the P3
The electrons 32 discharged to the drain and in layers 8 are also significantly restricted, and as a result, the switching time can also be extremely shortened.

例えば、直流電源21.22の双方を接続すれば、オン
電圧が同じIQBTにおいてスイッチング損失が半分に
なる。しかし、直流電源21.22の一方のみを接続し
、一方の効果のみを利用することも可能である。
For example, if both the DC power supplies 21 and 22 are connected, the switching loss will be halved in IQBTs with the same on-voltage. However, it is also possible to connect only one of the DC power supplies 21 and 22 and utilize only the effect of one.

以上の実施例は横型のNチャネルIGBTについて述べ
たが、各層の導電形を逆にしたPチャネルI GBTに
も同様に実施できる。この場合オン状態およびオフへの
スイッチング状態でドレイン電極と引き出し電極の間に
印加する直流電圧の極性は上記の実施例と逆にする。
Although the above embodiments have been described with respect to a lateral N-channel IGBT, they can also be implemented in a similar manner to a P-channel IGBT in which the conductivity types of each layer are reversed. In this case, the polarity of the DC voltage applied between the drain electrode and the extraction electrode in the on-state and off-switching state is opposite to that of the above embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、たて型IGETでは電極引き出し不能
のバッファ層に引き出し電極を設け、ドレイン電極の間
にドレイン層、バッファ層間のPN接合に対し順方向あ
るいは逆方向の電圧を印加することによりポテンシャル
バリアを制御し、オン状態ではキャリアの注入を容易に
し、オフへのスイッチング状態ではキャリアの注入ある
いは他のキャリアの排出を制限することにより、オン電
圧の低減あるいはスイッチング時間の短縮が可能になる
。しかも、このような効果は印加電圧の大きさのみによ
り任意の程度に制御でき、バッファ層の比抵抗の調整あ
るいはライフタイムキラー導大量の調整にくらべて極め
て容易に所望の特性のI GETが得られるのでその効
果は極めて大きい。
According to the present invention, in a vertical IGET, an extraction electrode is provided in the buffer layer from which the electrode cannot be extracted, and a forward or reverse voltage is applied to the PN junction between the drain layer and the buffer layer between the drain electrodes. By controlling the potential barrier, facilitating carrier injection in the on state, and restricting carrier injection or other carrier ejection in the off switching state, it is possible to reduce the on voltage or shorten the switching time. . Moreover, such effects can be controlled to any desired degree only by the magnitude of the applied voltage, and it is much easier to obtain an I GET with desired characteristics than by adjusting the resistivity of the buffer layer or the amount of lifetime killer conductivity. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の横型rGBTの要部断面図
、第2図は従来の横型IGETの要部断面図、第3図は
従来のP・ ドレイン層−N“バッファ層−N−層のポ
テンシャルバリア図、第4図(a)、(blは本発明の
一実施例による電圧印加によって第3図に示したポテン
シャルバリアが変化する状態を示す図である。
FIG. 1 is a sectional view of a main part of a lateral rGBT according to an embodiment of the present invention, FIG. 2 is a sectional view of a main part of a conventional lateral IGET, and FIG. 3 is a sectional view of a conventional lateral rGBT. 4 (a) and (bl) are diagrams showing how the potential barrier shown in FIG. 3 changes due to voltage application according to an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)低不純物濃度の第一導電形の基板の表面部に選択
的に第二導電形の第一領域と第一導電形の第二領域とが
所定の間隔を介して位置し、第一領域の表面部にいずれ
も高不純物濃度の第二導電形の第三領域と第一導電形の
第四領域が選択的に形成され、第三領域と第四領域はソ
ース電極によって短絡され、第四領域と基板領域の間の
第一領域の表面には酸化膜を介してゲート電極が設けら
れ、かつ第二領域にはドレイン電極が接触する高不純物
濃度の第二導電形の第五領域が選択的に形成されるもの
において、第二領域に引き出し電極が接触することを特
徴とする横型伝導度変調型MOSFET。
(1) A first region of a second conductivity type and a second region of the first conductivity type are selectively located at a predetermined interval on a surface portion of a substrate of a first conductivity type with a low impurity concentration, A third region of the second conductivity type and a fourth region of the first conductivity type, both of which have a high impurity concentration, are selectively formed on the surface of the region, and the third region and the fourth region are short-circuited by the source electrode, and A gate electrode is provided on the surface of the first region between the fourth region and the substrate region via an oxide film, and a fifth region of the second conductivity type with a high impurity concentration and in contact with the drain electrode is provided on the second region. A lateral conductivity modulation type MOSFET that is selectively formed and characterized in that an extraction electrode contacts the second region.
(2)オン状態でドレイン電極と引き出し電極を介して
第二領域と第五領域の間のPN接合に対して順方向とな
る電圧を印加することを特徴とする請求項1記載の横型
伝導度変調型MOSFETの制御方法。
(2) The lateral conductivity according to claim 1, characterized in that a forward voltage is applied to the PN junction between the second region and the fifth region through the drain electrode and the extraction electrode in the on state. Control method of modulation type MOSFET.
(3)オンよりオフへのスイッチング状態でドレイン電
極と引き出し電極を介して第二領域と第五領域の間のP
N接合に対して逆方向となる電圧を印加することを特徴
とする請求項1記載の横型伝導度変調型MOSFETの
制御方法。
(3) P between the second region and the fifth region via the drain electrode and the extraction electrode in the switching state from on to off.
2. The method of controlling a lateral conductivity modulation type MOSFET according to claim 1, further comprising applying a voltage in a reverse direction to the N junction.
JP2694489A 1989-02-06 1989-02-06 Lateral conductivity modulation type MOSFET and control method thereof Expired - Fee Related JPH0812920B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2694489A JPH0812920B2 (en) 1989-02-06 1989-02-06 Lateral conductivity modulation type MOSFET and control method thereof
DE19904003389 DE4003389A1 (en) 1989-02-06 1990-02-05 Horizontal conductivity changing MOSFET - has substrate with low impurity concn. and two electrodes, with second one contacted by second zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2694489A JPH0812920B2 (en) 1989-02-06 1989-02-06 Lateral conductivity modulation type MOSFET and control method thereof

Publications (2)

Publication Number Publication Date
JPH02206172A true JPH02206172A (en) 1990-08-15
JPH0812920B2 JPH0812920B2 (en) 1996-02-07

Family

ID=12207265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2694489A Expired - Fee Related JPH0812920B2 (en) 1989-02-06 1989-02-06 Lateral conductivity modulation type MOSFET and control method thereof

Country Status (2)

Country Link
JP (1) JPH0812920B2 (en)
DE (1) DE4003389A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307389A (en) * 1994-05-07 1995-11-21 Samsung Electron Co Ltd Fuse device of semiconductor integrated circuit
WO2013088544A1 (en) * 2011-12-15 2013-06-20 株式会社日立製作所 Semiconductor device and power converting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019157A1 (en) 2005-04-25 2006-10-26 Robert Bosch Gmbh Metal oxide semiconductor field effect transistor arrangement for use in integrated circuit, has source and gate connections of transistors that are connected with each other and that contact connections of chip, respectively

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307389A (en) * 1994-05-07 1995-11-21 Samsung Electron Co Ltd Fuse device of semiconductor integrated circuit
WO2013088544A1 (en) * 2011-12-15 2013-06-20 株式会社日立製作所 Semiconductor device and power converting apparatus
JPWO2013088544A1 (en) * 2011-12-15 2015-04-27 株式会社日立製作所 Semiconductor device and power conversion device
US9349847B2 (en) 2011-12-15 2016-05-24 Hitachi, Ltd. Semiconductor device and power converter

Also Published As

Publication number Publication date
JPH0812920B2 (en) 1996-02-07
DE4003389C2 (en) 1992-12-17
DE4003389A1 (en) 1990-08-16

Similar Documents

Publication Publication Date Title
US5801420A (en) Lateral semiconductor arrangement for power ICS
US4656493A (en) Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
JPH0312783B2 (en)
US20020053717A1 (en) Semiconductor apparatus
US5317171A (en) MOS gated thyristor with remote turn-off electrode
US5585650A (en) Semiconductor bidirectional switch and method of driving the same
JPS6137796B2 (en)
JPH0783120B2 (en) Bipolar semiconductor switching device
GB2295052A (en) Integrated circuits
US6404037B1 (en) Insulated gate bipolar transistor
JPS63224260A (en) Conductivity modulation type mosfet
JP2002299622A (en) Semiconductor element for power
JPH0231506B2 (en)
JP2703240B2 (en) Conduction modulation type MOSFET
JPH02206172A (en) Horizontal type conductivity modulating mosfet and method of controlling same
JP3249891B2 (en) Semiconductor device and method of using the same
JPH0888357A (en) Lateral igbt
JP2551152B2 (en) MOS control thyristor
JPH01238062A (en) Anode short type conductive modulation mosfet
JP3110094B2 (en) Insulated gate thyristor
JPH02206174A (en) P-channel insulated-gate bipolar transistor
JPH06232392A (en) Dual gate semiconductor device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP2590168B2 (en) Thyristor driving method
JP3300563B2 (en) Insulated gate power semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees