JPH02205825A - Variable light passing area type liquid crystal optical shutter - Google Patents

Variable light passing area type liquid crystal optical shutter

Info

Publication number
JPH02205825A
JPH02205825A JP2542589A JP2542589A JPH02205825A JP H02205825 A JPH02205825 A JP H02205825A JP 2542589 A JP2542589 A JP 2542589A JP 2542589 A JP2542589 A JP 2542589A JP H02205825 A JPH02205825 A JP H02205825A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrodes
area
optical shutter
crystal optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2542589A
Other languages
Japanese (ja)
Inventor
Bunji Koshiishi
輿石 文次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2542589A priority Critical patent/JPH02205825A/en
Publication of JPH02205825A publication Critical patent/JPH02205825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an image display device using liquid crystal which provides picture quality equivalent to that of a cathode-ray tube in terms of easiness to see, definition, etc., by varying the area of light passage in one picture element like the stop of a camera and making a gradational display. CONSTITUTION:Grooves are formed in a V or corrugated shape in either or both of picture element electrodes E and a common electrode in one picture element of an active TN type dot matrix liquid crystal optical shutter which uses MIM instead of TFT. Then the differences between electrodes are made different and the intensity of an electric field is varied with the place; and the area of the phase shift of liquid crystal is increased or decreased by varying an effective voltage applied between the electrodes by vary the area of light passage. Namely, when the voltage between the electrodes is varied, the TN liquid crystal shifts in phase from the place where the distance between the electrodes is short (the electric field intensity is large) to pass or cut off light, and the area of light passage varies to make the gradational display. Consequently, visual angle dependency is small, so an image is seen sharply in any direction.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明はTVやコンピューターなどの画像表示装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to image display devices for TVs, computers, and the like.

(ロ) 従来の技術 現在、小型TVやパソコンに使われているTFT+M 
I Mを使ったアクティブタイプのTN型ドツトマトリ
クス液晶光シャッターは、光のねじれる角度を変えるこ
とにより一つの画素内で一様に光の通過量を変え111
m表示を行なっている。そのため液晶に視角依存性が出
て見る角度によりコントラストや明るさが変わったりし
て決して見やすいものではなかった、これまで表示画質
向上のために数多くの努力がなされてきたが今だに満足
のいく液晶表示装置は得られていない。
(b) Conventional technology TFT+M currently used in small TVs and computers
An active type TN dot matrix liquid crystal optical shutter using IM uniformly changes the amount of light passing within one pixel by changing the angle at which the light is twisted111
m is displayed. As a result, the LCD has viewing angle dependence, and the contrast and brightness change depending on the viewing angle, making it never easy to see.Many efforts have been made to improve display image quality, but none are yet satisfactory. A liquid crystal display device has not been obtained.

またTFTやMIMに一つでも欠陥があると商品になら
ないため9画素数を10倍にすると歩止まり1よ100
分の1に悪化するので、100万画素の液晶光シャッタ
ーの量産化などは利金実現不可能がった。
Also, if there is even one defect in TFT or MIM, the product cannot be manufactured, so if you increase the number of pixels by 10, the yield will increase from 1 to 100.
Since it would be 1/2 the worse, mass production of 1-megapixel liquid crystal optical shutters was considered impossible to achieve at a higher interest rate.

(ハ) 発明が解決しようとする課題 この発明は見やすさ、精細度などでブラウン管に匹適す
る画質の液晶による画像表示装置を得ることを目的とす
る。
(c) Problems to be Solved by the Invention The object of the present invention is to obtain an image display device using a liquid crystal whose image quality is comparable to that of a cathode ray tube in terms of visibility and definition.

(ニ) 課題を解決するための手段 これまでのTN液晶のように電極間における液晶の相転
移の割合を変えることにより光の旋光角を変えることで
階調表示を行なうのでは無く、カメラのしぼりのように
、ひとつの画素内で光の通る面積を変えることにより階
調表示を行なうことにした。というのはTN液晶におい
ても光が最大限通過する状態においては視角効果が発生
しにくいからである。
(d) Means for solving the problem Instead of displaying gradation by changing the angle of optical rotation of light by changing the phase transition ratio of the liquid crystal between the electrodes, as with conventional TN liquid crystals, We decided to display gradations by changing the area through which light passes within a single pixel, similar to a squeezer. This is because viewing angle effects are unlikely to occur even in TN liquid crystals when the maximum amount of light passes through them.

そのためには、ひとつの画素内で画素電極、あるいは共
通電極のどちらか一方あるいは両方の電極に山や谷を作
ることにより、電極間の距離に差をつけ同じ画素内にお
いても、場所により電界強度を変え、電極間にかかる有
効電圧の変化により液晶の相移転する面積を増減させ、
それにより光の通過する面積を変え階調表示することに
すればよい、液晶はしきい特性が急峻なものを使う。
To achieve this, by creating peaks and valleys in either or both of the pixel electrode or the common electrode within one pixel, the distance between the electrodes can be varied, and the electric field strength can vary depending on the location, even within the same pixel. By changing the effective voltage applied between the electrodes, the area where the liquid crystal undergoes phase transition can be increased or decreased.
This can be done by changing the area through which light passes and displaying gradations.Use a liquid crystal with a steep threshold characteristic.

電極に山や谷を作るためには、基板を型押や機械加工し
たり、透明電極を厚さに差がでるように塗る。厚めに塗
りエツチングするなどの方法が考えられる。
To create peaks and valleys in the electrodes, the substrate is embossed or machined, or transparent electrodes are coated with varying thicknesses. Possible methods include applying it thickly and etching it.

また、超多画素化することによる1’FTJ??MIM
の欠陥の発生率の増加に対しては、欠陥画素の位置の重
なり合わない2枚の面積可変式液晶を2枚重ね合わせて
使うことにより、素子の欠陥の補償を行なうことができ
る。
Also, 1'FTJ due to ultra-high pixel count? ? MIM
To cope with the increase in the incidence of defects, it is possible to compensate for device defects by superimposing two variable area liquid crystals in which the positions of defective pixels do not overlap.

(ホ) 作用 電極間に電圧を加えていくと、電極間の距離の近い場所
(電界強度の大きい所)からTNfi晶に相転移が起こ
り光の通過あるいは遮断が行なわれ光の通過する面積が
変わり階調表示ができる。
(e) When a voltage is applied between the working electrodes, a phase transition occurs in the TNfi crystal from a place where the distance between the electrodes is close (a place where the electric field strength is large), and light passes or is blocked, and the area through which light passes increases. You can display different gradations.

請求項2のような構造をとることにより、ちょうどカメ
ラのしぼりを2枚重ねたのと同様なことになり、2枚の
しぼりが動作しようと、TFTやMIMの欠陥によりど
ちらが1枚しか動作しなくてもほとんど同じ中間階調が
得られる。
By adopting the structure as claimed in claim 2, it will be similar to stacking two camera apertures, and even if the two apertures work, only one will work due to a defect in the TFT or MIM. Almost the same intermediate gradation can be obtained without it.

(へ) 実施例 実施例1 第1図は、゛請求項1の実施例1を示す原理図である。(f) Examples Example 1 FIG. 1 is a principle diagram showing a first embodiment of claim 1.

ここでは画素電極に透明の導電膜を数ミクロン程度に厚
く塗りそれをエツチングにより円錐型の山を作ったもの
の断面である。
This is a cross section of a pixel electrode in which a transparent conductive film is applied to a thickness of several microns and etched to form conical peaks.

半分はど光を通す程度の電圧を加えた状態を示している
Half of the graph shows a state where a voltage is applied that is sufficient to allow light to pass through.

第2図は、請求項2の実施例2を示す原理図である。ガ
ラス基板にtl![加工により深さ数ミクロンノV字型
の溝を作ったものである。
FIG. 2 is a principle diagram showing a second embodiment of claim 2. TL on the glass substrate! [This is a V-shaped groove several microns deep.

ノーマリイホワイトの動作モードを持ち、tvfi間に
かかる電圧を増加させると端の方がら順に光を通さなく
なる。
It has a normally white operation mode, and when the voltage applied between the tvfi and the tvfi terminals is increased, light gradually stops passing from the ends.

上は中程度の電圧をがけな場合で2枚の液晶とも動作し
た状態を示している。
The image above shows a state in which both liquid crystals are operating when a medium voltage is not applied.

下はそれと同じ電圧をがけな場合だが、1枚目の液龜は
動作せず、2枚目の液晶だけが動作しているが、2枚の
液晶が同時に動作したのとほぼ同じ光の遮断量を持つこ
とを表わしている。
Below is the case when the same voltage is applied, but the first liquid crystal does not operate and only the second liquid crystal operates, but the light is blocked almost as much as if the two liquid crystals were operated at the same time. It represents having quantity.

これによって画素の欠陥の補償ができる。This allows compensation for pixel defects.

重なり合った2つの液晶部分は画素の幅にくらべできる
だけ近ずけなほうがよい。
It is better to place the two overlapping liquid crystal parts as close as possible compared to the width of the pixel.

図は理解しやすいように各部は分離して書いである。ま
た各部の大きさの比率は誇張してあり実際の通りではな
い、電極間の点線は液晶分子の配列方向を表わしている
Each part of the diagram is separated to make it easier to understand. Furthermore, the proportions of the sizes of each part are exaggerated and do not represent the actual size.The dotted lines between the electrodes represent the alignment direction of liquid crystal molecules.

(ト)  発明の効果 本発明ではこれまでのTN液晶光シャッターを利用した
画像表示装置と違い視角依存性が少ないためどの方角か
ら見ても鮮明に見える、また画素数を増加しても歩止ま
りの低下が少ないので大型で高精細の液晶画像表示装置
が実現できる。
(G) Effects of the Invention Unlike image display devices using conventional TN liquid crystal optical shutters, the present invention has less viewing angle dependence, so it can be seen clearly from any direction, and even if the number of pixels is increased, there is no yield limit. Since there is little deterioration in image quality, a large, high-definition liquid crystal image display device can be realized.

以上のように、それほど工数を増加させることなく、こ
れまでの液晶表示装置の欠点を無くすことができるため
、液晶のFi[2と、ブラウン管の見やすさをあわせ持
った画像表示装置が実現することになり、ブラウン管に
とってかわることも不可能ではない。
As described above, it is possible to eliminate the drawbacks of conventional liquid crystal display devices without significantly increasing the number of man-hours, so it is possible to realize an image display device that has both the Fi[2 of a liquid crystal and the ease of viewing of a cathode ray tube. , and it is not impossible for it to replace the cathode ray tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、それぞれこの考案の実施例1、実施
例2を示す原理図である。 A−光源 C−縦偏光板 E−画素電極 G−入射光 ニー遮光膜 B−ガラス基板 り一横偏光板 F−共通電極 H−通過光
FIG. 1 and FIG. 2 are principle diagrams showing a first embodiment and a second embodiment of this invention, respectively. A - Light source C - Vertical polarizing plate E - Pixel electrode G - Incident light light shielding film B - Glass substrate Horizontal polarizing plate F - Common electrode H - Passing light

Claims (1)

【特許請求の範囲】 請求項1 TFTやMIMを使ったアクティブタイプのTN型ドッ
トマトリクス液晶光シャッターにおいてひとつの画素内
で画素電極、あるいは共通電極のどちらか一方あるいは
両方の電極に山や谷、V字形や波形の溝を作ることによ
り、電極間の距離に差をつけ場所により電界強度を変え
、電極間にかかる有効電圧の変化により、液晶の相転移
する面積を増減させ(面積可変式液晶板)、それにより
光の通過する面積を変えることにより階調表示を行なう
液晶光シャッター。 請求項2 3枚の偏光フィルターを光の偏光方向が交互に直交する
ように重ね、その間に同じ電極パターンと相転移面積変
化特性をもつ2枚の請求項1において得られるTN型面
積可変式液晶板を位置合わせして1枚ずつはさんだ構造
をもつ液晶光シャッターにおいて、重ね合わさった画素
を駆動させるTFTやMIM素子のどちらか一方に欠陥
があっても一枚の無欠陥のドッツトマトリクス光シャッ
ターとして機能することを目的とする透過型液晶光シャ
ッター。
[Scope of Claims] Claim 1: In an active type TN dot matrix liquid crystal optical shutter using TFT or MIM, in one pixel, there are peaks, valleys, or valleys on either or both of the pixel electrode or the common electrode. By creating V-shaped or wave-shaped grooves, the distance between the electrodes is varied to change the electric field strength depending on the location, and by changing the effective voltage applied between the electrodes, the area where the liquid crystal undergoes phase transition can be increased or decreased (variable area liquid crystal A liquid crystal optical shutter that displays gradations by changing the area through which light passes. Claim 2: A TN type variable area liquid crystal obtained in claim 1, in which three polarizing filters are stacked so that the polarization directions of the light are alternately orthogonal, and the two filters have the same electrode pattern and phase transition area change characteristics between them. In the liquid crystal optical shutter, which has a structure in which plates are aligned and sandwiched one by one, even if there is a defect in either the TFT or MIM element that drives the stacked pixels, a single sheet of defect-free dot matrix light is generated. A transmissive liquid crystal optical shutter intended to function as a shutter.
JP2542589A 1989-02-03 1989-02-03 Variable light passing area type liquid crystal optical shutter Pending JPH02205825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2542589A JPH02205825A (en) 1989-02-03 1989-02-03 Variable light passing area type liquid crystal optical shutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2542589A JPH02205825A (en) 1989-02-03 1989-02-03 Variable light passing area type liquid crystal optical shutter

Publications (1)

Publication Number Publication Date
JPH02205825A true JPH02205825A (en) 1990-08-15

Family

ID=12165610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2542589A Pending JPH02205825A (en) 1989-02-03 1989-02-03 Variable light passing area type liquid crystal optical shutter

Country Status (1)

Country Link
JP (1) JPH02205825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234132A (en) * 1989-03-08 1990-09-17 Hitachi Ltd Liquid crystal display device
JPH02310534A (en) * 1989-05-26 1990-12-26 Toshiba Corp Active matrix type liquid crystal display element
JPH07199193A (en) * 1993-12-28 1995-08-04 Nec Corp Liquid crystal display device and production of substrate for liquid crystal display device
KR100402506B1 (en) * 1999-08-20 2003-10-22 세이코 엡슨 가부시키가이샤 Electro-optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234132A (en) * 1989-03-08 1990-09-17 Hitachi Ltd Liquid crystal display device
JPH02310534A (en) * 1989-05-26 1990-12-26 Toshiba Corp Active matrix type liquid crystal display element
JPH07199193A (en) * 1993-12-28 1995-08-04 Nec Corp Liquid crystal display device and production of substrate for liquid crystal display device
KR100402506B1 (en) * 1999-08-20 2003-10-22 세이코 엡슨 가부시키가이샤 Electro-optical device

Similar Documents

Publication Publication Date Title
US8681303B2 (en) Liquid crystal display device comprising periodically changed permutations of at least two types of electrode-pattern pairs
JP2019207432A (en) Liquid crystal display device with light valve
EP2503787A1 (en) 2D/3D liquid crystal display device
US11561427B2 (en) 3D liquid crystal display panel, display device and driving method
KR20070070331A (en) Liquid crystal display device
DE102008060279A1 (en) Multi-view display device and manufacturing method thereof
US10937376B2 (en) Liquid crystal display device
US20180341149A1 (en) Transparent liquid crystal display panel and display device comprising the same
JP4917377B2 (en) Display device
JPS62159119A (en) Liquid crystal display panel
JPS6218917B2 (en)
JPH02205825A (en) Variable light passing area type liquid crystal optical shutter
TWI277801B (en) A panel and a liquid crystal display including the panel
JPH07270822A (en) Liquid crystal display element
US5300928A (en) Liquid crystal color display device
JP2773748B2 (en) Liquid crystal display device
KR101035924B1 (en) Color filter array substrate
JP2003215613A (en) Liquid crystal display element
WO2009101734A1 (en) Liquid crystal display element and display device including same
JP4250813B2 (en) Liquid crystal display
JPS6048037B2 (en) Color LCD display panel for TV
JPH06160856A (en) Liquid crystal display element
CN107209431B (en) Vertical spiral ferroelectric liquid crystal display unit
JP2636592B2 (en) LCD substrate
JP3236681B2 (en) Liquid crystal display device