JPH02205755A - Apparatus and method for measuring double refraction - Google Patents

Apparatus and method for measuring double refraction

Info

Publication number
JPH02205755A
JPH02205755A JP2622889A JP2622889A JPH02205755A JP H02205755 A JPH02205755 A JP H02205755A JP 2622889 A JP2622889 A JP 2622889A JP 2622889 A JP2622889 A JP 2622889A JP H02205755 A JPH02205755 A JP H02205755A
Authority
JP
Japan
Prior art keywords
polarizing plate
birefringence
light
birefringent member
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2622889A
Other languages
Japanese (ja)
Inventor
Akihisa Miura
明久 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2622889A priority Critical patent/JPH02205755A/en
Publication of JPH02205755A publication Critical patent/JPH02205755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure the double refraction values of a double refraction member at many points in a short time highly accurately by inserting the double refraction member between a first polarizing plate and a second polarizing plate, inputting a bundle of rays into the second polarizing plate from the first polarizing plate, and moving the bundle of rays in the specified direction relatively. CONSTITUTION:A double refraction member 4 can be inserted between a first polarizing plate 1 and a second polarizing plate 2 which are set in a pattern wherein the polarizing directions are orthogonally intersected in a measuring apparatus 10. A bundle of rays in a radial pattern having the equal distribution of amounts of light is generated in concave lenses 7 and inputted into the second polarizing plate 2 from the first polarizing plate 1. A plurality of the concave lenses 7 are continuously arranged in the specified direction along the member 4. The incident light path of the incident bundle of rays 16 is switched to the side of the lenses 7 with a rotary mirror 17. The bundle of rays 16 is vertically inputted into the lenses 7 with correcting prisms 18. In this way, the bundle of rays is sequentially moved for every neighboring measuring point. The amount of the light after the light has been transmitted through the polarizing plate 2 is measured for every measuring point with a photoelectric transducer element train 12.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複屈折測定装置及び方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a birefringence measuring device and method.

[従来の技術] 従来、例えば光磁気ディスクの製造過程では、該ディス
クの評価項目である信号対雑音比(SN比)を劣化させ
る因子としての複屈折値を低減させる必要があり、該複
屈折値の測定方法を確立することが望まれている。
[Prior Art] Conventionally, for example, in the manufacturing process of magneto-optical disks, it has been necessary to reduce the birefringence value, which is a factor that deteriorates the signal-to-noise ratio (SN ratio), which is an evaluation item of the disk. It is desired to establish a method for measuring this value.

ここで、複屈折値としては、複屈折部材表面に垂直に入
射する光線についての面内複屈折値と、複屈折部材表面
に斜め入射する光線についての厚み方向複屈折値とがあ
る。
Here, the birefringence value includes an in-plane birefringence value for a light ray that is perpendicularly incident on the surface of the birefringent member, and a thickness direction birefringence value for a light ray that is obliquely incident on the surface of the birefringent member.

従来の面内複屈折値の測定方法は、セナルモン法といわ
れ、以下の如くであ、先ずコリメートされたレーザー光
を偏光板に透過させ、該偏光板の偏光方向と同方向の直
線偏光を作る0次にディスクの光軸に対して45度で直
線偏光を透過させる。
The conventional method for measuring in-plane birefringence is called the Senarmont method, and is as follows: First, collimated laser light is transmitted through a polarizing plate to create linearly polarized light in the same direction as the polarizing direction of the polarizing plate. Linearly polarized light is transmitted at 45 degrees to the optical axis of the disk in the 0th order.

この時、直線偏光はディスクの複屈折の影響を受けて楕
円偏光になるが、この時の楕円偏光の偏波面は回転しな
い。然し次にこの楕円偏光を174波長板に透過させる
と偏波面が回転し再び直線偏光になる。この回転角は複
屈折の大きさによって変化し、複屈折が大きいほど回転
角も大きくなる。
At this time, the linearly polarized light becomes elliptically polarized light due to the influence of the birefringence of the disk, but the plane of polarization of the elliptically polarized light does not rotate at this time. However, when this elliptically polarized light is then transmitted through a 174-wave plate, the plane of polarization is rotated and it becomes linearly polarized light again. This rotation angle changes depending on the magnitude of birefringence, and the larger the birefringence, the larger the rotation angle.

従って、光線を複屈折部材の表面に垂直に入射させ、検
光子で回転角を測定することにより、面内複屈折値が測
定できる。
Therefore, the in-plane birefringence value can be measured by making a light beam perpendicularly incident on the surface of the birefringent member and measuring the rotation angle with an analyzer.

又、従来の厚み方向複屈折値の測定方法は、複屈折部材
の表面の法線に対し一定の角度で傾けた光線を一周にわ
たり入射せしめ、それによって得られる複屈折値の最大
値と最小値をその入射角度とともに複雑なリタデーショ
ン計算式に代入することにて厚み方向複屈折値を測定で
きることとしている。
In addition, the conventional method for measuring birefringence in the thickness direction is to make a light beam that is tilted at a certain angle with respect to the normal to the surface of the birefringent member enter the birefringent material all around, and to measure the maximum and minimum values of the birefringence obtained. The birefringence value in the thickness direction can be measured by substituting the angle of incidence into a complex retardation calculation formula.

[発明が解決しようとする課1!l!]然しなから、上
記従来のセナルモン法による面内複屈折値の測定方法に
ありては下記■〜■の問題点がある。
[Lesson 1 that the invention attempts to solve! l! However, the conventional method for measuring in-plane birefringence using the Senarmont method has the following problems (1) to (4).

■複屈折部材の各測定点について検光子を回転する必要
があり、複雑な装置が必要であり、測定時間も長い。
■It is necessary to rotate the analyzer for each measurement point of the birefringent member, which requires complicated equipment and takes a long time to measure.

■検光子にて測定する直線偏光の光量分布を増幅して明
瞭化するものであるため、測定誤差を生じ易い。
■Since it amplifies and clarifies the light intensity distribution of linearly polarized light measured by an analyzer, measurement errors are likely to occur.

■複屈折部材の多数の測定点について、短時間に測定完
了するのに困難がある。
(2) It is difficult to complete measurements in a short time for a large number of measurement points on a birefringent member.

又、上記従来のリタデーション計算式を用いる厚み方向
複屈折値の測定方法にあっては下記■、■の問題点があ
る。
Further, the method of measuring the birefringence value in the thickness direction using the conventional retardation calculation formula has the following problems (1) and (2).

■斜め入射における複屈折値を多量に測定し、更に複雑
な計算作業が必要であり、測定時間が長い。
■A large number of birefringence values at oblique incidence are measured, and more complex calculations are required, and the measurement time is long.

■複屈折部材の多数の測定点について、短時間に測定完
了するのに困難がある。
(2) It is difficult to complete measurements in a short time for a large number of measurement points on a birefringent member.

又、上記従来のセナルモン法による測定方法、及びリタ
デーション計算式を用いる測定方法の何れにあっても、
1回の測定動作により面内複屈折値と厚み方向複屈折値
の両者を同時に測定することはできない。
In addition, regardless of the measurement method using the conventional Senarmont method or the measurement method using the retardation calculation formula,
It is not possible to simultaneously measure both the in-plane birefringence value and the thickness direction birefringence value in one measurement operation.

本発明は、単純な装置を用いて、短時間に、かつ高精度
に、複屈折部材の複屈折値を測定することを目的とする
An object of the present invention is to measure the birefringence value of a birefringent member in a short time and with high precision using a simple device.

又、本発明は、1回の測定動作により面内複屈折値と厚
み方向複屈折値の両者を同時に測定することを目的とす
る。
Another object of the present invention is to simultaneously measure both the in-plane birefringence value and the thickness direction birefringence value by one measurement operation.

又、本発明は、複屈折部材の多点の複屈折値を短時間に
測定することを目的とする。
Another object of the present invention is to measure birefringence values at multiple points of a birefringent member in a short time.

[課題を解決するための手段] 請求項1に記載の本発明の複屈折測定装置は、偏光方向
を直交状態に設定した第1偏光板と第2偏光板との間に
複屈折部材を装入でき、放射状で光量分布の等しい光線
束を、第1偏光板から第2偏光板に向けて入射させ、か
つ複屈折部材に沿う特定方向に相対移動させ、上記放射
状光線束を構成する光線の上記複屈折部材のある測定点
に対する入射角毎の、それら光線の第2偏光板を透過し
た後の光量を測定できる光学系を有して構成されるよう
にしたものである。
[Means for Solving the Problems] The birefringence measurement device of the present invention according to claim 1 includes a birefringence member installed between a first polarizing plate and a second polarizing plate whose polarization directions are set to be perpendicular to each other. A bundle of light rays that can enter the radial bundle and have an equal light intensity distribution is incident from the first polarizing plate toward the second polarizing plate, and is relatively moved in a specific direction along the birefringent member, so that the rays constituting the radial bundle of rays are The birefringent member is configured to include an optical system that can measure the amount of light after passing through the second polarizing plate for each angle of incidence with respect to a certain measurement point of the birefringent member.

請求項2に記載の本発明は、偏光方向を直交状態に設定
した第1偏光板と第2偏光板との間に複屈折部材を装入
でき、放射状で光量分布の等しい光線束を、第1偏光板
から第2偏光板に向けて入射させ、かつ複屈折部材に沿
う特定方向に相対移動させ、上記放射状光線束を構成す
る光線の上記複屈折部材のある測定点に対する入射角毎
の、それら光線の第2偏光板を透過した後の光量を測定
できる光学系を構成し、上記光学系における上記入射角
毎の上記光量測定値と複屈折値との相関関係を予め定め
、今回測定対象としての複屈折部材を装入した上記光学
系にて測定された該複屈折部材のある測定点についての
上記入射角毎の上記光量測定値と上記相関関係とから該
複屈折部材の該測定点についての複屈折値を求めるよう
にしたものである。
According to the second aspect of the present invention, a birefringent member can be inserted between a first polarizing plate and a second polarizing plate whose polarization directions are set to be orthogonal to each other, and a birefringent member can be inserted between a first polarizing plate and a second polarizing plate whose polarization directions are set to be orthogonal. The light rays constituting the radial ray bundle are made incident from one polarizing plate toward the second polarizing plate, and are relatively moved in a specific direction along the birefringent member, for each incident angle with respect to a certain measurement point of the birefringent member. An optical system that can measure the amount of light after passing through the second polarizing plate is configured, and the correlation between the measured value of the amount of light and the birefringence value for each angle of incidence in the optical system is determined in advance, and the object to be measured this time is The measurement point of the birefringent member can be determined from the above-mentioned light amount measurement value for each incident angle and the above-mentioned correlation about the measurement point of the birefringence member measured with the above-mentioned optical system in which the birefringence member is installed. This method is designed to calculate the birefringence value for .

請求項3に記載の本発明は、前記光学系において予め定
められる入射角毎の光量測定値と複屈折値との相関関係
を面内複屈折値及び厚み方向複屈折値をパラメータとし
て定め、今回測定対象としての複屈折部材を装入した上
記光学系にて測定された該複屈折部材のある測定点につ
いての上記入射角毎の上記光量測定値と上記相関関係と
から該複屈折部材の該測定点についての面内複屈折値及
び厚み方向複屈折値を求めるようにしたものである。
The present invention according to claim 3 provides that the correlation between the light quantity measurement value and the birefringence value for each predetermined incident angle in the optical system is determined using the in-plane birefringence value and the thickness direction birefringence value as parameters, and this time The value of the birefringent member can be determined from the above-mentioned light intensity measurement value for each incident angle and the above-mentioned correlation at a certain measurement point of the birefringent member measured by the above-mentioned optical system in which the birefringent member as the measurement object is inserted. The in-plane birefringence value and the thickness-direction birefringence value for a measurement point are determined.

請求項4に記載の本発明は、前記放射状の光線束と前記
複屈折部材の両者をともに移動し、かつそれらの移動方
向を相互に直交する方向とするようにしたものである。
According to a fourth aspect of the present invention, both the radial ray bundle and the birefringent member are moved, and their moving directions are perpendicular to each other.

[作用] 請求項1.2に記載の本発明によれば、下記■、■の作
用効果がある。
[Action] According to the present invention as set forth in claim 1.2, there are the following effects (1) and (2).

■光源と第1及び第2偏光板と受光装置を有して構成さ
れる光学系を用い、放射状の光線束を第1偏光板から入
射し、この光線束を構成する光線の複屈折部材のある測
定点に対する入射角毎に、それら光線の第2偏光板を透
過した後の光量を測定するのみの単純な操作にて複屈折
部材の複屈折値を測定できる。従って、単純な装置を用
いて、短時間に複屈折値を測定できる。
■Using an optical system consisting of a light source, first and second polarizing plates, and a light receiving device, a radial bundle of rays is incident from the first polarizing plate, and the birefringent member of the rays constituting this bundle of rays is The birefringence value of the birefringent member can be measured by a simple operation of measuring the amount of light after passing through the second polarizing plate for each incident angle with respect to a certain measurement point. Therefore, birefringence values can be measured in a short time using a simple device.

■光量の測定により複屈折値を求めるものであるから、
光量分布を測定するセナルモン法に比して、高精度に複
屈折値を測定できる。
■Since the birefringence value is determined by measuring the amount of light,
Birefringence values can be measured with higher accuracy than the Senarmont method, which measures light intensity distribution.

請求項3に記載の本発明によれば、下記■の作用効果が
ある。
According to the present invention as set forth in claim 3, there is the following effect (2).

■入射角毎の光量測定値と複屈折値との相関関係を面内
複屈折値及び厚み方向複屈折値をパラメータとして定め
たから、今回測定結果である入射角毎の測定光量分布が
適合することとなるパラメータを検索することにより、
1回の測定動作により面内複屈折値と厚み方向複屈折値
の両者を同時に測定できる。
■Since the correlation between the measured light amount and birefringence value for each incident angle was determined using the in-plane birefringence value and the thickness direction birefringence value as parameters, the measured light amount distribution for each incident angle, which is the measurement result, is compatible. By searching for the parameters,
Both the in-plane birefringence value and the thickness direction birefringence value can be measured simultaneously by one measurement operation.

請求項4に記載の本発明によれば、下記■の作用効果が
ある。
According to the present invention as set forth in claim 4, there is the following effect (2).

■放射状の光線束を入射させた複屈折部材の各測定点に
ついての複屈折値或いは回内複屈折値及び厚み方向複屈
折値の測定を、相互に直交する、該光線束の移動経路及
び該複屈折部材の移動経路の双方に定まる複数の測定点
について順次進行せしめ、複屈折部材の面内の多点(例
えば光磁気ディスクの半径方向及び周方向の多点)の複
屈折値或いは面内複屈折値及び厚み方向複屈折値を短時
間に測定できる。
■Measurement of the birefringence value, pronation birefringence value, and thickness direction birefringence value at each measurement point of the birefringent member into which the radial beam flux is incident is performed based on the movement path of the beam beam and the birefringence value that are orthogonal to each other. The birefringent member is sequentially moved to a plurality of measuring points determined on both sides of the movement path, and the birefringence values at multiple points within the plane of the birefringent member (for example, multiple points in the radial direction and circumferential direction of a magneto-optical disk) or within the plane are measured. Birefringence value and thickness direction birefringence value can be measured in a short time.

[実施例] 第1図は本発明の一実施例を示す模式図、第2図は本発
明の原理を示す模式図、第3図は本発明における測定光
量と複屈折値との関係を示す線図である。
[Example] Fig. 1 is a schematic diagram showing an example of the present invention, Fig. 2 is a schematic diagram showing the principle of the present invention, and Fig. 3 is a diagram showing the relationship between the measured light amount and the birefringence value in the present invention. It is a line diagram.

先ず、本発明成立の原理について第2図(A)、(B)
、(C)、(D)を参照して説明する。
First, regarding the principle behind the establishment of the present invention, Fig. 2 (A) and (B)
, (C), and (D).

第2図(A)に示す如く、第1と第2の1組の偏光板1
.2の偏光方向IA、2Aを互いに直交状態に設定し、
コリメートされた光線を第1偏光板1から第2偏光板2
に向けて垂直に入射させる。この時、上記第1偏光板1
への入射光は自然光のように多方向に振動しており、第
1偏光板1で偏光されて直線偏光3を生ずるが、この直
線偏光3は第2偏光板2を透過しない。
As shown in FIG. 2(A), a pair of first and second polarizing plates 1
.. 2 polarization directions IA and 2A are set to be perpendicular to each other,
The collimated light beam is passed from the first polarizing plate 1 to the second polarizing plate 2.
Make the light incident perpendicularly to the target. At this time, the first polarizing plate 1
The incident light oscillates in multiple directions like natural light, and is polarized by the first polarizing plate 1 to produce linearly polarized light 3, but this linearly polarized light 3 does not pass through the second polarizing plate 2.

然るに、第2図(B)に示す如く、第1偏光板1と第2
偏光板2の間に複屈折部材4を挿入すると、第1偏光板
1で偏光された直線偏光3が複屈折部材4を透過し楕円
偏光5となり、更に楕円偏光5の一部は第2ii光板2
を透過して漏れ光6となる。この漏れ光6の光量は複屈
折部材4の複屈折値の大きさによって変化し、その複屈
折値が大きくなるほど大きくなる。
However, as shown in FIG. 2(B), the first polarizing plate 1 and the second polarizing plate
When the birefringent member 4 is inserted between the polarizing plates 2, the linearly polarized light 3 polarized by the first polarizing plate 1 passes through the birefringent member 4 and becomes elliptically polarized light 5, and a part of the elliptically polarized light 5 is further transmitted to the second polarizing plate 2. 2
The light passes through and becomes leaked light 6. The amount of this leaked light 6 changes depending on the magnitude of the birefringence value of the birefringent member 4, and increases as the birefringence value increases.

更に、複屈折部材4の表面に対する入射光が、垂直方向
から入射するより斜めから入射する方が漏れ光6の光量
及び複屈折部材4の複屈折値は大きくなり、又その入射
角度が大きくなるほど漏れ光6の光量及び複屈折部材4
の複屈折値は大きくなる(第2図(C)参照)、この入
射角度の違いによる複屈折値の変化は面内複屈折値と厚
み方向複屈折値により決定される。
Furthermore, when the incident light on the surface of the birefringent member 4 is incident obliquely than from the perpendicular direction, the amount of leaked light 6 and the birefringence value of the birefringent member 4 become larger, and the larger the incident angle Amount of leaked light 6 and birefringent member 4
The birefringence value increases (see FIG. 2(C)). The change in birefringence value due to the difference in incidence angle is determined by the in-plane birefringence value and the thickness direction birefringence value.

即ち、本発明にあっては、第2図(C)に示す如くの凹
レンズ7を光源として用いて、放射状で光量分布の等し
い光線束を、複屈折部材4に沿う特定方向に相対移動さ
せ、該放射状光線束な構成する各光線の上記複屈折部材
4に対する入射角度を相互に異ならせ、それら入射角の
異なる各光線に対応する漏れ光6の光量変化を複屈折部
材4の各測定点についてメモリする。この結果として、
第2図(D)に示す如く該複屈折部材4のある測定点に
おいて、上記各光線に対応する漏れ光6の光量変化を読
み取ることができ、ひいては入射角毎の複屈折値、並び
に面内複屈折値及び厚み方向複屈折値を測定できること
となる。
That is, in the present invention, the concave lens 7 as shown in FIG. The angles of incidence of each of the rays constituting the radial ray bundle on the birefringent member 4 are made different, and the changes in the amount of leaked light 6 corresponding to the rays with different angles of incidence are measured at each measurement point of the birefringent member 4. Memorize. As a result of this,
As shown in FIG. 2(D), at a certain measurement point of the birefringent member 4, it is possible to read the change in the light amount of the leaked light 6 corresponding to each of the above-mentioned rays, and as a result, the birefringence value for each incident angle and the in-plane This means that the birefringence value and the thickness direction birefringence value can be measured.

即ち、請求項2に記載の本発明における如く、(1)上
記偏光板1.2からなる光学系における上記入射角毎の
上記漏れ光6の光量測定値と複屈折値との相関関係を予
め定めておけば、今回測定対象としての複屈折部材4を
装入した上記光学系にて測定された該複屈折部材4のあ
る測定点についての上記入射角毎の光量測定値と上記相
関関係とから該複屈折部材4の該測定点についての入射
角毎の複屈折値を求めることができる。
That is, as in the present invention as set forth in claim 2, (1) the correlation between the measured value of the light amount of the leaked light 6 and the birefringence value for each of the incident angles in the optical system consisting of the polarizing plate 1.2 is determined in advance. If it is determined, the light intensity measurement value for each incident angle at a certain measurement point of the birefringent member 4 measured by the optical system in which the birefringent member 4 to be measured this time is measured and the above correlation. From this, the birefringence value for each incident angle for the measurement point of the birefringent member 4 can be determined.

又、請求項3に記載の本発明における如く、(2)上記
光学系において予め定められる入射角毎の光量測定値と
複屈折値との相関関係を面内複屈折値及び厚み方向複屈
折値をパラメータとして定め、今回複屈折部材4を装入
した上記光学系にて測定された該複屈折部材4のある測
定点についての上記入射角毎の光量測定値と上記相関関
係とから該複屈折部材4の該測定点についての面内複屈
折値及び厚み方向複屈折値を求めることができる。
Further, as in the present invention as set forth in claim 3, (2) the correlation between the light quantity measurement value and the birefringence value at each predetermined incident angle in the optical system is determined by the in-plane birefringence value and the thickness direction birefringence value. is determined as a parameter, and the birefringence can be calculated from the above-mentioned light intensity measurement value for each incident angle and the above-mentioned correlation at a certain measurement point of the birefringent member 4 measured with the above-mentioned optical system in which the birefringent member 4 is installed this time. The in-plane birefringence value and the thickness direction birefringence value for the measurement point of the member 4 can be determined.

次に、本発明の一実施例を第1図を参照して説明する。Next, one embodiment of the present invention will be described with reference to FIG.

第1図において、10は複屈折測定装置、1は第1の偏
光板、2は第2の偏光板、4は光ディスク等の複屈折部
材、7は光源としての凹レンズ、12は受光装置を構成
するラインCCD等の光電変換素子列、13は回転軸、
14はチャック、15はモータ、16は入射光線束、1
7は回転ミラー 18は補正プリズムである。
In FIG. 1, 10 is a birefringence measuring device, 1 is a first polarizing plate, 2 is a second polarizing plate, 4 is a birefringent member such as an optical disk, 7 is a concave lens as a light source, and 12 is a light receiving device. 13 is a rotation axis,
14 is a chuck, 15 is a motor, 16 is an incident beam bundle, 1
7 is a rotating mirror, and 18 is a correction prism.

複屈折測定装置10は、偏光方向を直交状態に設定した
第1偏光板1と第2偏光板2との間に複屈折部材4を装
入でき、凹レンズ7にて生成せしめられる放射状で光量
分布の等しい光線束を、第1偏光板1から第2偏光板2
に向けて入射させ、かつ複屈折部材4に沿う特定方向に
相対移動させ、上記放射状光線束を構成する光線の上記
複屈折部材4のある測定点に対する入射角毎の、それら
光線の第2偏光板2を透過した後の光量を光電変換素子
列12にて測定できる。
The birefringence measurement device 10 can insert a birefringence member 4 between a first polarizing plate 1 and a second polarizing plate 2 whose polarization directions are set to be orthogonal, and measure the radial light intensity distribution generated by the concave lens 7. An equal flux of rays is transferred from the first polarizing plate 1 to the second polarizing plate 2.
second polarization of the light rays for each incident angle with respect to a certain measurement point of the birefringence member 4 of the light rays constituting the radial ray bundle; The amount of light after passing through the plate 2 can be measured by the photoelectric conversion element array 12.

更に、複屈折測定装置10は、複屈折部材4に沿う特定
方向(例えば光磁気ディスクの同一半径方向)に複数の
凹レンズ7を連続配置するとともに、回転ミラー17の
回転によって入射光路を隣接する凹レンズ7の側に切換
えられた入射光線束16を更に補正プリズム18にて該
凹レンズ7に垂直入射せしめることにて、該凹レンズ7
にて生成される放射状の光線束を複屈折部材4に沿う上
記特定方向に相対移動せしめ、該光線束を複屈折部材4
の隣接する測定点毎に順次移動せしめる。
Furthermore, the birefringence measuring device 10 arranges a plurality of concave lenses 7 in succession in a specific direction along the birefringence member 4 (for example, in the same radial direction of the magneto-optical disk), and rotates the rotating mirror 17 to change the incident optical path between adjacent concave lenses. The incident light beam 16 switched to the side of 7 is further made perpendicularly incident on the concave lens 7 by the correction prism 18, so that the concave lens 7
The radial light beam generated by the birefringent member 4 is relatively moved in the above-mentioned specific direction,
The adjacent measurement points are sequentially moved.

この時、光電変換素子列12を構成する各光電変換素子
を連続配置された全凹レンズ7のそれぞれに対応するよ
うに一列に配置しており、上記放射状の光線束を構成す
る光線の前記入射角毎に、それら光線の第2偏光板2を
透過した後の光量を該光電変換素子列12により該複屈
折部材4の各測定点毎に測定してメモリする。この結果
として、複屈折測定装置10は、前述の第2図(D)に
示す如く、該複屈折部材4のある測定点において、前述
の放射状光線束な構成した各光線に対応する漏れ光6の
光量変化を読み取ることができ、ひいては入射角毎の複
屈折値、並びに面内複屈折値及び厚み方向複屈折値を測
定できる。
At this time, the photoelectric conversion elements constituting the photoelectric conversion element array 12 are arranged in a line corresponding to each of the continuously arranged fully concave lenses 7, and the incident angle of the light rays constituting the radial bundle of rays is Each time, the amount of light after passing through the second polarizing plate 2 is measured by the photoelectric conversion element array 12 at each measurement point of the birefringent member 4 and is stored in memory. As a result, as shown in FIG. 2(D), the birefringence measuring device 10 detects leakage light rays corresponding to each of the rays constituted by the radial ray bundle at a certain measurement point of the birefringence member 4. It is possible to read the change in the amount of light, and in turn, it is possible to measure the birefringence value for each incident angle, as well as the in-plane birefringence value and the thickness direction birefringence value.

この時、複屈折測定装置10にあっては、上記偏光板1
.2、凹レンズ7、光電変換素子列12から構成される
上記光学系における上記入射角毎の上記光量測定値と複
屈折値との相関関係を予め例えば第3図に示す如く定め
である。更に、この相関関係を面内複屈折値及び厚み方
向複屈折値のパラメータとして定める。第3図に示され
る相関関係は、面内複屈折値Δn 、y= 23nm、
厚み方向複屈折値Δn 、 = 354nsをパラメー
タとするものである。
At this time, in the birefringence measuring device 10, the polarizing plate 1
.. 2. The correlation between the measured light amount and the birefringence value for each angle of incidence in the optical system composed of the concave lens 7 and the photoelectric conversion element array 12 is determined in advance, for example, as shown in FIG. 3. Furthermore, this correlation is determined as a parameter for the in-plane birefringence value and the thickness direction birefringence value. The correlation shown in Figure 3 is the in-plane birefringence value Δn, y=23 nm,
The thickness direction birefringence value Δn = 354 ns is used as a parameter.

尚、この相関関係は、従来の例えばセナルモン法の如き
複屈折測定方法を用いてその入射角毎の複屈折値、並び
に面内複屈折値及び厚み方向複屈折値が既知となってい
る複屈折部材を第1偏光板1と第2偏光板2の間に装入
し、その時に各入射角毎に第2偏光板2を透過した漏れ
光6(第2図参照)の光量な光電変換素子列12により
測定することにて定められる。この時、光電変換素子列
12は受光した光量な光電変換し、これを電圧表示する
。光電変換素子列12の出力電圧が大きいほど、複屈折
値が大きいことを示す。
This correlation is based on birefringence for which the birefringence value for each incident angle, in-plane birefringence value, and thickness direction birefringence value are known using a conventional birefringence measurement method such as the Senarmont method. A photoelectric conversion element in which a member is inserted between a first polarizing plate 1 and a second polarizing plate 2, and the amount of leakage light 6 (see Fig. 2) transmitted through the second polarizing plate 2 at each incident angle is calculated. It is determined by measuring column 12. At this time, the photoelectric conversion element array 12 photoelectrically converts the amount of received light and displays it as a voltage. The larger the output voltage of the photoelectric conversion element array 12, the larger the birefringence value.

従って、上記複屈折測定装置loの光学系に今回測定対
象としての複屈折部材4を装入し、今回第2偏光板2を
透過したある測定点についての各入射角毎の漏れ光6の
光量を測定すれば、この光量測定値と上記第3図の相関
関係から、上記複屈折部材4の該測定点についての各入
射角毎の複屈折値、並びに面内複屈折値及び厚み方向複
屈折値を求めることができる。
Therefore, when the birefringence member 4 as the object of measurement is inserted into the optical system of the birefringence measurement device lo, the amount of leakage light 6 transmitted through the second polarizing plate 2 at each incident angle at a certain measurement point. From the correlation between this light amount measurement value and the above-mentioned FIG. You can find the value.

又、複屈折測定装置10は、上記複屈折部材4(例えば
光磁気ディスクの中心部)をチャック14にて回転軸1
3に固定し、この回転軸13をモータ15にて回転させ
ることにより、該複屈折部材4を上記凹レンズ7の連続
配置方向に対する直角方向(例えば光磁気ディスクの周
方向)にも移動しながら、その移動方向の各点で上記光
電変換素子列12による光量測定を繰り返す、この時、
入射光線束16を回転ミラー17の回転によって上記凹
レンズ7の連続配置方向に移動させる切換速度を回転軸
13の回転速度に比し相当に高速となるように設定する
。これにより、例えば光磁気ディスクの周方向各点につ
いての複屈折値、並びに面内複屈折値及び厚み方向複屈
折値を連続的に測定できる。
The birefringence measurement device 10 also uses a chuck 14 to hold the birefringence member 4 (for example, the center of a magneto-optical disk) on the rotating shaft 1.
3 and by rotating this rotating shaft 13 with a motor 15, the birefringent member 4 is also moved in a direction perpendicular to the continuous arrangement direction of the concave lenses 7 (for example, in the circumferential direction of the magneto-optical disk). Repeating the light intensity measurement by the photoelectric conversion element array 12 at each point in the moving direction, at this time,
The switching speed at which the incident light beam 16 is moved in the direction of continuous arrangement of the concave lenses 7 by the rotation of the rotating mirror 17 is set to be considerably higher than the rotational speed of the rotating shaft 13. Thereby, for example, the birefringence value, in-plane birefringence value, and thickness direction birefringence value at each point in the circumferential direction of the magneto-optical disk can be continuously measured.

尚、複屈折測定袋W10は、上記複屈折部材4の各測定
点について得られる光量測定値のデータを該測定点の位
置(例えば光磁気ディスクの半径方向及び周方向位置)
とともにメモリし、マイコンによるデータ処理にて上述
の複屈折値、並びに面内複屈折値及び厚み方向複屈折値
を求めることができる。これにより、例えば光磁気ディ
スク全面の複屈折値、並びに面内複屈折値及び厚み方向
複屈折値を短時間に測定でき、容易に異常点を探し出す
ことができる。
The birefringence measuring bag W10 collects the data of the light amount measurement value obtained for each measurement point of the birefringence member 4 at the position of the measurement point (for example, the radial direction and circumferential direction position of the magneto-optical disk).
The above-mentioned birefringence value, as well as the in-plane birefringence value and the thickness direction birefringence value can be determined by data processing by a microcomputer. Thereby, for example, the birefringence value, in-plane birefringence value, and thickness direction birefringence value of the entire surface of the magneto-optical disk can be measured in a short time, and abnormal points can be easily found.

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

■光源としての凹レンズ7と第1及び第2偏光板1.2
と光電変換素子列12゛を有して構成される光学系を用
い、放射状の光線束を第1偏光板1から入射し、この光
線束な構成する光線の複屈折部材4のある測定点に対す
る入射角毎に、それら光線の第2偏光板2を透過した後
の光量を測定するのみの単純な操作にて複屈折部材4の
複屈折値を測定できる。従って、単純な装置を用いて、
短時間に複屈折値を測定できる。
■Concave lens 7 and first and second polarizing plates 1.2 as light sources
Using an optical system configured with a photoelectric conversion element array 12, a radial light beam is incident from the first polarizing plate 1, and the light beams constituting this light beam are directed to a certain measurement point of the birefringent member 4. The birefringence value of the birefringent member 4 can be measured by a simple operation of measuring the amount of light after passing through the second polarizing plate 2 for each incident angle. Therefore, using a simple device,
Birefringence values can be measured in a short time.

■光量の測定により複屈折値を求めるものであるから、
光量分布を測定するセナルモン法に比して、高精度に複
屈折値を測定できる。
■Since the birefringence value is determined by measuring the amount of light,
Birefringence values can be measured with higher accuracy than the Senarmont method, which measures light intensity distribution.

■入射角毎の光量測定値と複屈折値との相関関係を面内
複屈折値及び厚み方向複屈折値をパラメータとして定め
たから、今回測定結果である入射角毎の測定光量分布が
適合することとなるバラメータを検索することにより、
1回の測定動作により面内複屈折値と厚み方向複屈折値
の両者を同時に測定できる。
■Since the correlation between the measured light amount and birefringence value for each incident angle was determined using the in-plane birefringence value and the thickness direction birefringence value as parameters, the measured light amount distribution for each incident angle, which is the measurement result, is compatible. By searching for the parameters,
Both the in-plane birefringence value and the thickness direction birefringence value can be measured simultaneously by one measurement operation.

■放射状の光線束を入射させた複屈折部材4の各測定点
についての複屈折値或いは面内複屈折値及び厚み方向複
屈折値の測定を、相互に直交する、該光線束の移動経路
及び該複屈折部材4の移動経路の双方に定まる複数の測
定点について順次進行せしめ、複屈折部材4の面内の多
点(例えば光磁気ディスクの半径方向及び周方向の多点
)の複屈折値或いは面内複屈折値及び厚み方向複屈折値
を短時間に測定できる。
(2) Measurement of the birefringence value, in-plane birefringence value, and thickness direction birefringence value for each measurement point of the birefringent member 4 into which the radial light beam is incident is carried out along the movement path of the light beam and the birefringence value that are perpendicular to each other. The birefringence member 4 is sequentially moved to a plurality of measurement points determined on both sides of the movement path, and the birefringence values at multiple points in the plane of the birefringence member 4 (for example, multiple points in the radial direction and circumferential direction of the magneto-optical disk) are measured. Alternatively, the in-plane birefringence value and the thickness direction birefringence value can be measured in a short time.

尚、本発明の実施において、光源としては、単一波長で
出力分布が等しくかつコリメートされたものを用いる。
In carrying out the present invention, a light source having a single wavelength, an equal output distribution, and a collimated light source is used.

又、凹レンズ等で生成せしめられる放射状の光線束の放
射範囲角度は30度とするのが望ましい、範囲を30度
とするのは複屈折の違いが顕著であるとともに、これ以
上の範囲になると複屈折が大きくなり過ぎて測定困難と
なったり、複屈折部材的反射により求める光が正しい光
量で透過してこない等の不都合を招くためである。
In addition, it is desirable that the radiation range angle of the radial bundle of rays generated by a concave lens is 30 degrees. Setting the range to 30 degrees makes the difference in birefringence noticeable, and if the range is larger than this, the difference in birefringence will increase. This is because the refraction becomes too large, making it difficult to measure, or the desired light does not pass through in the correct amount due to reflection by the birefringent member, which may lead to inconveniences.

[発明の効果] 以上のように本発明によれば、単純な装置を用いて、短
時間に、かつ高精度に、複屈折部材の複屈折値を測定す
ることができる。
[Effects of the Invention] As described above, according to the present invention, the birefringence value of a birefringent member can be measured in a short time and with high precision using a simple device.

又本発明によれば、1回の測定動作により面内複屈折値
と厚み方向複屈折値の両者を同時に測定することができ
る。
Further, according to the present invention, both the in-plane birefringence value and the thickness direction birefringence value can be measured simultaneously by one measurement operation.

又本発明によれば、複屈折部材の多点の複屈折値を短時
間に測定することができる。
Further, according to the present invention, birefringence values at multiple points of a birefringent member can be measured in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す模式図、第2図は本発
明の原理を示す模式図、第3図は本発明における測定光
量と複屈折値との関係を示す線図である。 1・・・第1偏光板、 2・・・第2偏光板、 4・・・複屈折部材、 7・・・凹レンズ(光源)、 12・・・光電変換素子列、 13・・・回転軸、 17・・・回転ミラー 18・・・補正プリズム・ 特許出願人 積水化学工業株式会社 代表者  廣1)馨 第2図(A) 哨2図(B) 第2図(C) 簗2図(D)
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a schematic diagram showing the principle of the invention, and Fig. 3 is a diagram showing the relationship between the measured light amount and the birefringence value in the present invention. . DESCRIPTION OF SYMBOLS 1... First polarizing plate, 2... Second polarizing plate, 4... Birefringent member, 7... Concave lens (light source), 12... Photoelectric conversion element array, 13... Rotation axis , 17...Rotating mirror 18...Correction prism Patent applicant: Sekisui Chemical Co., Ltd. Representative Hiroshi 1) Kaoru Figure 2 (A) Figure 2 (B) Figure 2 (C) Yan Figure 2 ( D)

Claims (4)

【特許請求の範囲】[Claims] (1)偏光方向を直交状態に設定した第1偏光板と第2
偏光板との間に複屈折部材を装入でき、放射状で光量分
布の等しい光線束を、第1偏光板から第2偏光板に向け
て入射させ、かつ複屈折部材に沿う特定方向に相対移動
させ、上記放射状光線束を構成する光線の上記複屈折部
材のある測定点に対する入射角毎の、それら光線の第2
偏光板を透過した後の光量を測定できる光学系を有して
構成される複屈折測定装置。
(1) A first polarizing plate and a second polarizing plate whose polarization directions are orthogonal to each other.
A birefringent member can be inserted between the polarizing plate and a radial beam having an equal light intensity distribution is incident from the first polarizing plate toward the second polarizing plate, and the birefringent member is relatively moved in a specific direction along the birefringent member. and the second of the rays constituting the radial ray bundle for each incident angle with respect to a certain measurement point of the birefringent member.
A birefringence measurement device that includes an optical system that can measure the amount of light after it passes through a polarizing plate.
(2)偏光方向を直交状態に設定した第1偏光板と第2
偏光板との間に複屈折部材を装入でき、放射状で光量分
布の等しい光線束を、第1偏光板から第2偏光板に向け
て入射させ、かつ複屈折部材に沿う特定方向に相対移動
させ、上記放射状光線束を構成する光線の上記複屈折部
材のある測定点に対する入射角毎の、それら光線の第2
偏光板を透過した後の光量を測定できる光学系を構成し
、上記光学系における上記入射角毎の上記光量測定値と
複屈折値との相関関係を予め定め、今回測定対象として
の複屈折部材を装入した上記光学系にて測定された該複
屈折部材のある測定点についての上記入射角毎の上記光
量測定値と上記相関関係とから該複屈折部材の該測定点
についての複屈折値を求める複屈折測定方法。
(2) A first polarizing plate and a second polarizing plate whose polarization directions are orthogonal to each other.
A birefringent member can be inserted between the polarizing plate and a radial beam having an equal light intensity distribution is incident from the first polarizing plate toward the second polarizing plate, and the birefringent member is relatively moved in a specific direction along the birefringent member. and the second of the rays constituting the radial ray bundle for each incident angle with respect to a certain measurement point of the birefringent member.
An optical system capable of measuring the amount of light after passing through a polarizing plate is configured, and the correlation between the measured value of the amount of light and the birefringence value for each angle of incidence in the optical system is determined in advance, and the birefringence member as the object of measurement is determined in advance. The birefringence value for the measurement point of the birefringent member is determined from the above-mentioned light intensity measurement value for each incident angle and the above correlation, measured by the optical system containing the birefringence member at the measurement point. A method of measuring birefringence to determine the
(3)前記光学系において予め定められる入射角毎の光
量測定値と複屈折値との相関関係を面内複屈折値及び厚
み方向複屈折値をパラメータとして定め、今回測定対象
としての複屈折部材を装入した上記光学系にて測定され
た該複屈折部材のある測定点についての上記入射角毎の
上記光量測定値と上記相関関係とから該複屈折部材の該
測定点についての面内複屈折値及び厚み方向複屈折値を
求める請求項2記載の複屈折測定方法。
(3) The correlation between the light quantity measurement value and the birefringence value for each predetermined incident angle in the optical system is determined using the in-plane birefringence value and the thickness direction birefringence value as parameters, and the birefringent member as the measurement target this time The in-plane birefringence at the measuring point of the birefringent member is calculated from the above-mentioned light amount measurement value for each incident angle and the above correlation at a certain measuring point of the birefringent member measured by the optical system in which the birefringent member is loaded. 3. The method for measuring birefringence according to claim 2, wherein a refraction value and a thickness direction birefringence value are determined.
(4)前記放射状の光線束と前記複屈折部材の両者をと
もに移動し、かつそれらの移動方向を相互に直交する方
向とする請求項2又は3記載の複屈折測定方法。
(4) The birefringence measuring method according to claim 2 or 3, wherein both the radial light beam and the birefringence member are moved, and the directions of movement thereof are orthogonal to each other.
JP2622889A 1989-02-03 1989-02-03 Apparatus and method for measuring double refraction Pending JPH02205755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2622889A JPH02205755A (en) 1989-02-03 1989-02-03 Apparatus and method for measuring double refraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2622889A JPH02205755A (en) 1989-02-03 1989-02-03 Apparatus and method for measuring double refraction

Publications (1)

Publication Number Publication Date
JPH02205755A true JPH02205755A (en) 1990-08-15

Family

ID=12187496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2622889A Pending JPH02205755A (en) 1989-02-03 1989-02-03 Apparatus and method for measuring double refraction

Country Status (1)

Country Link
JP (1) JPH02205755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7272091B2 (en) 2002-11-12 2007-09-18 Nec Corporation Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7272091B2 (en) 2002-11-12 2007-09-18 Nec Corporation Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus
US7542401B2 (en) 2002-11-12 2009-06-02 Nec Corporation Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus

Similar Documents

Publication Publication Date Title
US4672196A (en) Method and apparatus for measuring properties of thin materials using polarized light
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
US6738137B2 (en) Measurement of waveplate retardation using a photoelastic modulator
CN101504329B (en) Double refraction measuring method, apparatus and program
US6181421B1 (en) Ellipsometer and polarimeter with zero-order plate compensator
CN114018830B (en) Linear polarization direction detection method based on liquid crystal polarization grating
CN100383499C (en) Method and device for measuring parameters of liquid crystal unit
CN103616077A (en) Measuring system and measuring method for vector polarized light polarization states of any columns
JPH02205755A (en) Apparatus and method for measuring double refraction
US3016789A (en) Polarimetric apparatus
US2986066A (en) Polarimetric apparatus
JPH08201277A (en) Method and apparatus for measuring double refraction
JPH02205756A (en) Apparatus and method for measuring double refraction
US3438712A (en) Magneto-optical displacement sensing device
JPH02205754A (en) Apparatus and method for measuring double refraction
WO2001042750A1 (en) Automated system for measurement of an optical property
JP2712987B2 (en) Adjustment method of polarization measuring device
CN114720095B (en) Device and method for measuring phase delay amount and fast axis direction of wave plate
JPS60249007A (en) Instrument for measuring film thickness
JPH01182737A (en) Double-refraction measurement
CN116481772A (en) Detection method and system based on polarization information
JPH0777490A (en) Measuring method for double refraction
SU851204A1 (en) Device for studying sedimentation
JPH06241987A (en) Birefringence measuring device
JP3100717B2 (en) Surface shape measuring device