JPH02205754A - Apparatus and method for measuring double refraction - Google Patents

Apparatus and method for measuring double refraction

Info

Publication number
JPH02205754A
JPH02205754A JP2622789A JP2622789A JPH02205754A JP H02205754 A JPH02205754 A JP H02205754A JP 2622789 A JP2622789 A JP 2622789A JP 2622789 A JP2622789 A JP 2622789A JP H02205754 A JPH02205754 A JP H02205754A
Authority
JP
Japan
Prior art keywords
polarizing plate
birefringence
light
amount
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2622789A
Other languages
Japanese (ja)
Inventor
Akihisa Miura
明久 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2622789A priority Critical patent/JPH02205754A/en
Publication of JPH02205754A publication Critical patent/JPH02205754A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure a double refraction value in a short time highly accurately by inserting a double refraction member between a first polarizing plate and a second polarizing plate which are provided in such a way that the polarizing directions of the plates are orthogonally intersected, and measuring the amount of light after the transmission through the second polarizing plate. CONSTITUTION:In a double refraction measuring apparatus 10, a double refraction member 4 can be inserted between a first polarizing plate 1 and a second polarizing plate 2 which are set at a pattern wherein the polarizing directions are orthogonally intersected. Collimated light rays which are emitted from a laser diode train 11 are vertically inputted into the second polarizing plate 2 from the first polarizing plate 1. The amount of the light rays after the light rays have been transmitted through the second polarizing plate 2 can be measured with photoelectric transducer element train 12. The correlation between the measured value of the amount of light and the double refraction value in the optical system that is composed of the polarizing plates 1 and 2, the diode train 11 and the element line 12 is determined by using a double refraction member whose double refraction value is known beforehand. When the double refraction member 4 as an object to be measured is inserted and the amount of leaking light which has been transmitted through the polarizing plate 2 is measured, the double refraction value can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複屈折測定装置及び方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a birefringence measuring device and method.

[従来の技術] 従来、例えば光磁気ディスクの製造過程では、該ディス
クの評価項目である信号対雑音比(SN比)を劣化させ
る因子としての複屈折値を低減させる必要があり、該複
屈折値の測定方法を確立することが望まれている。
[Prior Art] Conventionally, for example, in the manufacturing process of magneto-optical disks, it has been necessary to reduce the birefringence value, which is a factor that deteriorates the signal-to-noise ratio (SN ratio), which is an evaluation item of the disk. It is desired to establish a method for measuring this value.

従来の複屈折測定方法は、セナルモン法といわれ、以下
の如くである。先ずコリメートされたレザー光を偏光板
に透過させ、該偏光板の偏光方向と同方向の直線偏光を
作る0次にディスクの光軸に対して45度で直線偏光を
透過させる。この時、直線偏光はディスクの複屈折の影
響を受けて楕円偏光になるが、この時の楕円偏光の偏波
面は回転しない、然し次にこの楕円偏光を174波長板
に透過させると偏波面が回転し再び直線偏光になる。
The conventional method for measuring birefringence is called the Senarmont method, and is as follows. First, the collimated laser light is transmitted through a polarizing plate, and the linearly polarized light is transmitted at an angle of 45 degrees to the optical axis of the 0th-order disk to produce linearly polarized light in the same direction as the polarization direction of the polarizing plate. At this time, the linearly polarized light becomes elliptically polarized light due to the influence of the birefringence of the disk, but the plane of polarization of the elliptically polarized light does not rotate.However, when this elliptically polarized light is transmitted through a 174-wave plate, the plane of polarization changes. It rotates and becomes linearly polarized light again.

この回転角は複屈折の大きさによって変化し、複屈折が
大きいほど回転角も大きくなる。従って、検光子で回転
角を測定することにより、複屈折値が測定できる。
This rotation angle changes depending on the magnitude of birefringence, and the larger the birefringence, the larger the rotation angle. Therefore, by measuring the rotation angle with an analyzer, the birefringence value can be measured.

[発明が解決しようとする課題] 然しながら、上記従来のセナルモン法による複屈折測定
方法にあつては下記■〜■の問題点がある。
[Problems to be Solved by the Invention] However, the conventional birefringence measuring method using the Senarmont method has the following problems (1) to (4).

■複屈折部材の各測定点について検光子を回転する必要
があり、複雑な装置が必要であり、測定時間も長い。
■It is necessary to rotate the analyzer for each measurement point of the birefringent member, which requires complicated equipment and takes a long time to measure.

■検光子にて測定する直線偏光の光量分布を増幅して明
瞭化するものであるため、測定誤差を生じ易い。
■Since it amplifies and clarifies the light intensity distribution of linearly polarized light measured by an analyzer, measurement errors are likely to occur.

■検光子は1回につき1点の測定を可能とするのみであ
り、複数の測定点について同時測定できず、複屈折部材
の面内を短時間にくまなく測定完了するのに困難がある
(2) The analyzer can only measure one point at a time, and cannot measure multiple measurement points simultaneously, making it difficult to complete measurements over the entire surface of a birefringent member in a short period of time.

本発明は、単純な装置を用いて、短時間に、かつ高精度
に、複屈折部材の複屈折値を測定することを目的とする
An object of the present invention is to measure the birefringence value of a birefringent member in a short time and with high precision using a simple device.

又本発明は、複屈折部材の多点の複屈折値を短時間に測
定することを目的とする。
Another object of the present invention is to measure birefringence values at multiple points of a birefringent member in a short time.

[課題を解決するための手段] 請求項1に記載の本発明の複屈折測定装置は、偏光方向
を直交状態に設定した第1偏光板と第2偏光板との間に
複屈折部材を装入でき、コリメートされた光線を第1偏
光板から第2偏光板に向けて垂直に入射させ、上記光線
の第2偏光板を透過した後の光量を測定できる光学系を
有して構成されるようにしたものである。
[Means for Solving the Problems] The birefringence measurement device of the present invention according to claim 1 includes a birefringence member installed between a first polarizing plate and a second polarizing plate whose polarization directions are set to be perpendicular to each other. an optical system capable of vertically entering a collimated light beam from a first polarizing plate toward a second polarizing plate and measuring the amount of light after the light beam passes through the second polarizing plate. This is how it was done.

請求項2に記載の本発明は、偏光方向を直交状態に設定
した第1偏光板と第2偏光板との間に複屈折部材を装入
でき、コリメートされた光線を第1偏光板から第2偏光
板に向けて垂直に入射させ、上記光線の第2偏光板を透
過した後の光量を測定できる光学系を構成し、上記光学
系における上記光量測定値と複屈折値との相関関係を予
め定め、今回測定対象としての複屈折部材を装入した上
記光学系にて測定された該複屈折部材のある測定点につ
いての上記光量測定値と上記相関関係とから該複屈折部
材の該測定点についての複屈折値を求めるようにしたも
のである。
According to the second aspect of the present invention, a birefringent member can be inserted between the first polarizing plate and the second polarizing plate whose polarization directions are set to be orthogonal, and the collimated light beam is transferred from the first polarizing plate to the second polarizing plate. An optical system is configured that allows the light beam to be incident perpendicularly toward a second polarizing plate and measures the amount of light after passing through the second polarizing plate, and the correlation between the measured light amount value and the birefringence value in the optical system is determined. The measurement of the birefringent member is determined in advance and is based on the above-mentioned light intensity measurement value at a measurement point of the birefringent member measured by the above-mentioned optical system in which the birefringent member to be measured is inserted, and the above-mentioned correlation. This method calculates the birefringence value for a point.

請求項3に記載の本発明は、前記光学系の光量として複
数のレーザーダイオードを一列に並べたレーザーダイオ
ード列を用い、かつ該光学系の受光装置として上記レー
ザーダイオード列に対応するように複数の光電変換素子
を一列に並べた光電変換素子列を用いて、複屈折部材の
複数の測定点について前記光量を同時測定するようにし
たものである。
The present invention according to claim 3 uses a laser diode array in which a plurality of laser diodes are arranged in a line as the light amount of the optical system, and as a light receiving device of the optical system, a plurality of laser diode arrays are used as the light receiving device of the optical system. Using a photoelectric conversion element array in which photoelectric conversion elements are arranged in a row, the light amount is simultaneously measured at a plurality of measurement points on the birefringent member.

請求項4に記載の本発明は、前記複屈折部材を前記レー
ザーダイオード列の発するライン状光線束に対して直角
方向に相対移動し、該複屈折部材の複数の測定点につい
ての前記光量の同時測定動作を、該複屈折部材の面内に
て連続的に行なうようにしたものである。
The present invention as set forth in claim 4 is characterized in that the birefringent member is moved relative to the line-shaped beam bundle emitted by the laser diode array in a direction perpendicular to the beam, and the amount of light at a plurality of measurement points of the birefringent member is simultaneously adjusted. The measurement operation is performed continuously within the plane of the birefringent member.

[作用] 請求項1.2に記載の本発明によれば、下記■及び■の
作用効果がある。
[Function] According to the present invention as set forth in claim 1.2, there are the following effects (1) and (2).

■光量と第1及び第2偏光板と受光装置を有して構成さ
れる光学系を用い、コリメートされた光線を第1偏光板
から入射し、この光線の第2偏光板を透過した後の光量
を測定するのみの単純な操作にて複屈折部材の複屈折値
を測定できる。従って、単純な装置を用いて、短時間に
複屈折値を測定できる。
■Using an optical system consisting of light intensity, first and second polarizing plates, and a light receiving device, a collimated light beam is incident from the first polarizing plate, and after this light beam passes through the second polarizing plate, The birefringence value of a birefringent member can be measured by simply measuring the amount of light. Therefore, birefringence values can be measured in a short time using a simple device.

■光量の測定により複屈折値を求めるものであるから、
光量分布を測定するセナルモン法に比して、高精度に複
屈折値を測定できる。
■Since the birefringence value is determined by measuring the amount of light,
Birefringence values can be measured with higher accuracy than the Senarmont method, which measures light intensity distribution.

請求項3に記載の本発明によれば、下記■の作用効果が
ある。
According to the present invention as set forth in claim 3, there is the following effect (2).

■レーザーダイオード列と光電変換素子列とを用いるこ
とにより、それらレーザーダイオード列と光電変換素子
列に対応する複屈折部材の複数の測定点について、第2
偏光板を透過した光線の光量を同時に測定でき、複数の
測定点についての複屈折値を短時間に測定できる。
■By using a laser diode array and a photoelectric conversion element array, the second
The amount of light transmitted through the polarizing plate can be measured simultaneously, and the birefringence values at multiple measurement points can be measured in a short time.

請求項4に記載の本発明によれば、下記■の作用効果が
ある。
According to the present invention as set forth in claim 4, there is the following effect (2).

■レーザーダイオード列と光電変換素子列とを用い、更
に複屈折部材を該レーザーダイオード列の発するライン
状光線束に対して直角方向に相対移動することにより、
上記■における複数の測定点についての光量の同時測定
動作を、複屈折部材の面内にて連続化することになる。
(2) By using a laser diode array and a photoelectric conversion element array, and further moving a birefringent member in a direction perpendicular to the linear beam emitted by the laser diode array,
The operation of simultaneously measuring the amount of light at a plurality of measurement points in (2) above is made continuous within the plane of the birefringent member.

従って、複屈折部材の多点の複屈折値を短時間に測定で
きる。
Therefore, the birefringence values at multiple points of the birefringent member can be measured in a short time.

[実施例] 第1図は本発明の一実施例を示す模式図、第2図は本発
明の原理を示す模式図、第3図は本発明における測定光
量と複屈折値との関係を示す線図である。
[Example] Fig. 1 is a schematic diagram showing an example of the present invention, Fig. 2 is a schematic diagram showing the principle of the present invention, and Fig. 3 is a diagram showing the relationship between the measured light amount and the birefringence value in the present invention. It is a line diagram.

先ず、本発明成立の原理について第2図(A)、(B)
を参照して説明する。
First, regarding the principle behind the establishment of the present invention, Fig. 2 (A) and (B)
Explain with reference to.

第2図(A)に示す如く、第1と第2の1組の偏光板1
.2の偏光方向IA、2Aを互いに直交状態に設定し、
コリメートされた光線を第1偏光板1から第2偏光板2
に向けて垂直に入射させる。この時、上記第1偏光板1
への入射光は自然光のように多方向に振動しており、第
1偏光板1で偏光されて直線偏光3を生ずるが、この直
線偏光3は第2偏光板2を透過しない。
As shown in FIG. 2(A), a pair of first and second polarizing plates 1
.. 2 polarization directions IA and 2A are set to be perpendicular to each other,
The collimated light beam is passed from the first polarizing plate 1 to the second polarizing plate 2.
Make the light incident perpendicularly to the target. At this time, the first polarizing plate 1
The incident light oscillates in multiple directions like natural light, and is polarized by the first polarizing plate 1 to produce linearly polarized light 3, but this linearly polarized light 3 does not pass through the second polarizing plate 2.

然るに、第2図(B)に示す如く、第1偏光板1と第2
偏光板2の間に複屈折部材4を挿入すると、第1偏光板
1で偏光された直線偏光3が複屈折部材4を透過し楕円
偏光5となり、更に楕円偏光5の一部は第2偏光板2を
透過して漏れ光6となる。この漏れ光6の光量は複屈折
部材4の複屈折値の大きさによって変化し、その複屈折
値が大きくなるほど大きくなる。
However, as shown in FIG. 2(B), the first polarizing plate 1 and the second polarizing plate
When a birefringent member 4 is inserted between the polarizing plates 2, linearly polarized light 3 polarized by the first polarizing plate 1 passes through the birefringent member 4 and becomes elliptically polarized light 5, and a part of the elliptically polarized light 5 becomes second polarized light. The light passes through the plate 2 and becomes leaked light 6. The amount of this leaked light 6 changes depending on the magnitude of the birefringence value of the birefringent member 4, and increases as the birefringence value increases.

従って、本発明における如く、上記偏光板1.2からな
る光学系における上記漏れ光6の光量測定値と複屈折値
との相関関係を予め定めておけば、今回測定対象として
の複屈折部材4を挿入した上記光学系にて測定されたあ
る測定点についての今回の漏れ光6の光量測定値と上記
相関関係とから該複屈折部材の該測定点についての複屈
折値を求めることができる。
Therefore, as in the present invention, if the correlation between the measured value of the light amount of the leaked light 6 and the birefringence value in the optical system consisting of the polarizing plate 1.2 is determined in advance, the birefringent member 4 as the object of measurement this time can be The birefringence value of the birefringent member at the measurement point can be determined from the current measurement value of the amount of leaked light 6 at the measurement point measured by the optical system in which the birefringence member is inserted and the above correlation.

次に、本発明の一実施例を第1図を参照して説明する。Next, one embodiment of the present invention will be described with reference to FIG.

第1図において、10は複屈折測定装置、1は第1の偏
光板、2は第2の偏光板、4は光磁気ディスク等の複屈
折部材、11は光量を構成するレーザーダイオード列、
12は受光装置を構成するラインCCD等の光電変換素
子列、13は回転軸、14はチャック、15はモータで
ある。
In FIG. 1, 10 is a birefringence measuring device, 1 is a first polarizing plate, 2 is a second polarizing plate, 4 is a birefringent member such as a magneto-optical disk, 11 is a laser diode array that constitutes the amount of light,
12 is a photoelectric conversion element array such as a line CCD constituting the light receiving device; 13 is a rotating shaft; 14 is a chuck; and 15 is a motor.

複屈折測定装置10は、偏光方向を直交状態に設定した
第1偏光板1と第2偏光板2との間に複屈折部材4を装
入でき、レーザーダイオード列11が発するコリメート
された光線を第1偏光板1から第2偏光板2に向けて垂
直に入射させ、上記光線の第2偏光板2を透過した後の
光量な光電変換素子列12にて測定できる。
The birefringence measurement device 10 can insert a birefringence member 4 between a first polarizing plate 1 and a second polarizing plate 2 whose polarization directions are set to be orthogonal, and can measure the collimated light beams emitted by the laser diode array 11. The light beam is made perpendicularly incident from the first polarizing plate 1 toward the second polarizing plate 2, and the amount of light after passing through the second polarizing plate 2 can be measured by the photoelectric conversion element array 12.

この時、複屈折測定装置10にあっては、上記偏光板1
.2、レーザーダイオード列11、光電変換素子列12
から構成される上記光学系における上記光量測定値と複
屈折値との相関関係を予め例えば第3図に示す如く定め
である。
At this time, in the birefringence measuring device 10, the polarizing plate 1
.. 2. Laser diode row 11, photoelectric conversion element row 12
The correlation between the light amount measurement value and the birefringence value in the optical system composed of the above is determined in advance, for example, as shown in FIG. 3.

尚、この相関関係は、従来の例えばセナルモン法の如き
複屈折測定方法を用いてその複屈折値が既知となってい
る複屈折部材を第1偏光板1と第2偏光板2の間に装入
し、その時に第2偏光板2を透過した漏れ光6(第2図
参照)の光量を光電変換素子列12により測定すること
にて定められる。この時、光電変換素子列12は受光し
た光量を光電変換し、これを電圧表示する。光電変換素
千列12の出力電圧が大きいほど、複屈折値が大きいこ
とを示す。
Note that this correlation can be obtained by mounting a birefringent member whose birefringence value is known between the first polarizing plate 1 and the second polarizing plate 2 using a conventional birefringence measuring method such as the Senarmont method. It is determined by measuring the amount of leaked light 6 (see FIG. 2) transmitted through the second polarizing plate 2 at that time using the photoelectric conversion element array 12. At this time, the photoelectric conversion element array 12 photoelectrically converts the amount of received light and displays it as a voltage. The larger the output voltage of the photoelectric conversion element array 12, the larger the birefringence value.

従って、上記複屈折測定装置10の光学系に今回測定対
象としての複屈折部材4を装入し、今回第2偏光板2を
透過した漏れ光6の光量を測定すれば、この光量測定値
と上記第3図の相関関係から上記複屈折部材4の複屈折
値を求めることができる。
Therefore, if the birefringence member 4 to be measured this time is inserted into the optical system of the birefringence measuring device 10 and the amount of leaked light 6 transmitted through the second polarizing plate 2 is measured, this light amount measurement value can be obtained. The birefringence value of the birefringent member 4 can be determined from the correlation shown in FIG.

更に、複屈折測定装置10は、その光学系の光量として
複数のレーザーダイオードを一列に並べたレーザーダイ
オード列11を用い、かつ該光学系の受光装置として上
記レーザーダイオード列11に対応するように複数の光
電変換素子を一列に並べた光電変換素子列12を用いる
ことにて、上記複屈折部材4の複数の測定点(例えば光
磁気ディスクの同一半径上の複数の測定点)について上
記漏れ光6の光量を同時測定できることとしている。こ
れにより、例えば光磁気ディスクの半径方向の各点につ
いての複屈折値を瞬時に全て測定できる。
Further, the birefringence measuring device 10 uses a laser diode array 11 in which a plurality of laser diodes are arranged in a line as the light amount of its optical system, and uses a plurality of laser diode arrays 11 as light receiving devices of the optical system to correspond to the laser diode array 11. By using a photoelectric conversion element array 12 in which photoelectric conversion elements of It is possible to measure the amount of light at the same time. This makes it possible to instantaneously measure all birefringence values at each point in the radial direction of the magneto-optical disk, for example.

又、複屈折測定装置10は、上記複屈折部材4(例えば
光磁気ディスクの中心部)をチャック14にて回転軸1
3に固定し、この回転軸13をモータ15にて回転させ
ることにより、該複屈折部材4を上記レーザーダイオー
ド列11の発するライン状光線束に対して直角方向(例
えば光磁気ディスクの周方向)に相対移動し、光電変換
素子列12が該複屈折部材4の複数の測定点について行
なう光量の同時測定動作を、該複屈折部材4の面内にて
連続的に行なうことができる。
The birefringence measurement device 10 also uses a chuck 14 to hold the birefringence member 4 (for example, the center of a magneto-optical disk) on the rotating shaft 1.
3 and by rotating this rotating shaft 13 with a motor 15, the birefringent member 4 is rotated in a direction perpendicular to the linear beam flux emitted by the laser diode array 11 (for example, in the circumferential direction of the magneto-optical disk). , the photoelectric conversion element array 12 can continuously measure the amount of light at a plurality of measurement points of the birefringent member 4 within the plane of the birefringent member 4 .

尚、複屈折測定装置10は、上記複屈折部材4の各測定
点について得られる光量測定値のデータを該測定点の位
置(例えば光磁気ディスクの半径方向及び周方向位置)
とともにメモリし、マイコンによるデータ処理にて上述
の複屈折値を求めることができる。これにより、例えば
光磁気ディスク全面の複屈折値を短時間に測定でき、容
易に異常点を探し出すことができる。
The birefringence measuring device 10 uses the data of the light intensity measurement value obtained for each measurement point of the birefringence member 4 as the position of the measurement point (for example, the radial and circumferential position of the magneto-optical disk).
The above-mentioned birefringence value can be obtained through data processing by a microcomputer. Thereby, for example, the birefringence value of the entire surface of the magneto-optical disk can be measured in a short time, and abnormal points can be easily found.

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

■レーザーダイオード列11と第1及び第2偏光板1.
2と光電変換素子列12を有して構成される光学系を用
い、コリメートされた光線を第1偏光板1から入射し、
この光線の第2偏光板2を透過した後の光量を測定する
のみの単純な操作にて複屈折部材4の複屈折値を測定で
きる。従って、単純な装置を用いて、短時間に複屈折値
を測定できる。
■Laser diode array 11 and first and second polarizing plates 1.
2 and a photoelectric conversion element array 12, a collimated light beam is incident from the first polarizing plate 1,
The birefringence value of the birefringent member 4 can be measured by a simple operation of measuring the amount of light after passing through the second polarizing plate 2. Therefore, birefringence values can be measured in a short time using a simple device.

■光量の測定により複屈折値を求めるものであるから、
光量分布を測定するセナルモン法に比して、高精度に複
屈折値を測定できる。
■Since the birefringence value is determined by measuring the amount of light,
Birefringence values can be measured with higher accuracy than the Senarmont method, which measures light intensity distribution.

■レーザーダイオード列11と光電変換素子列12とを
用いることにより、それらレーザーダイオード列11と
光電変換素子列12に対応する複屈折部材4の複数の測
定点について、第2偏光板2を透過した後の光量を同時
に測定でき、複数の測定点についての複屈折値を短時間
に測定できる。
■By using the laser diode array 11 and the photoelectric conversion element array 12, the light transmitted through the second polarizing plate 2 is measured at a plurality of measurement points of the birefringent member 4 corresponding to the laser diode array 11 and the photoelectric conversion element array 12. The subsequent light intensity can be measured simultaneously, and birefringence values at multiple measurement points can be measured in a short time.

■レーザーダイオード列11と光電変換素子列12とを
用い、更に複屈折部材4を該レーザーダイオード列11
の発するライン状光線束に対して直角方向に相対移動す
ることにより、上記■における複数の測定点についての
光量の同時測定動作を、複屈折部材4の面内にて連続化
することになる。従って、複屈折部材4の多点の複屈折
値を短時間に測定できる。
(2) Using a laser diode array 11 and a photoelectric conversion element array 12, a birefringent member 4 is further attached to the laser diode array 11.
By moving relative to the direction perpendicular to the line-shaped light beam emitted by the birefringent member 4, the simultaneous measurement operation of the light amount at a plurality of measurement points in (2) above is made continuous within the plane of the birefringent member 4. Therefore, the birefringence values at multiple points of the birefringent member 4 can be measured in a short time.

尚、本発明に実施において、光量は例えば単一のレーザ
ーダイオードからなり、単一光線を発するものであって
も足りる。
In addition, in implementing the present invention, the amount of light may be made of, for example, a single laser diode that emits a single beam of light.

又、本発明の実施において、複屈折部材はコリメートさ
れた光線に対して回転移動するのでなく、直線移動する
ことにて、該複屈折部材における測定点を連続的に拡張
されるものであっても良い、又、本発明の実施において
、光量としては、光線の進み方向における任意の各点で
同一光量かつ同一波長であれば、レーザーダイオードに
限らず、他の如何なるものでも良い。
Further, in carrying out the present invention, the birefringent member is not rotated relative to the collimated light beam, but is moved linearly, so that the measurement point on the birefringent member is continuously expanded. Furthermore, in carrying out the present invention, any other device other than a laser diode may be used as long as the amount of light is the same and the wavelength is the same at each arbitrary point in the direction in which the light ray travels.

【発明の効果] 以上のように本発明によれば、単純な装置を用いて、短
時間に、かつ高精度に、複屈折部材の複屈折値を測定す
ることができる。
[Effects of the Invention] As described above, according to the present invention, the birefringence value of a birefringent member can be measured in a short time and with high precision using a simple device.

又本発明によれば、複屈折部材の多点の複屈折値を短時
間に測定することができる。
Further, according to the present invention, birefringence values at multiple points of a birefringent member can be measured in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す模式図、第2図は本発
明の原理を示す模式図、第3図は本発明における測定光
量と複屈折値との関係を示す線図である。 1・・・第1偏光板、 2・・・第2偏光板、 4・・・複屈折部材、 10・・・複屈折測定装置、 11・・・レーザーダイオード列、 12・・・光電変換素子列、 13・・・回転軸。 特許出願人 積水化学工業株式会社 代表者  廣1)馨 第1図 第3図 光量測定値 (mv)
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a schematic diagram showing the principle of the invention, and Fig. 3 is a diagram showing the relationship between the measured light amount and the birefringence value in the present invention. . DESCRIPTION OF SYMBOLS 1... First polarizing plate, 2... Second polarizing plate, 4... Birefringence member, 10... Birefringence measuring device, 11... Laser diode row, 12... Photoelectric conversion element Column 13...Rotation axis. Patent applicant Sekisui Chemical Co., Ltd. Representative Hiroshi 1) Kaoru Figure 1 Figure 3 Light intensity measurement value (mv)

Claims (4)

【特許請求の範囲】[Claims] (1)偏光方向を直交状態に設定した第1偏光板と第2
偏光板との間に複屈折部材を装入でき、コリメートされ
た光線を第1偏光板から第2偏光板に向けて垂直に入射
させ、上記光線の第2偏光板を透過した後の光量を測定
できる光学系を有して構成される複屈折測定装置。
(1) A first polarizing plate and a second polarizing plate whose polarization directions are orthogonal to each other.
A birefringent member can be inserted between the polarizing plate and the collimated light beam is made perpendicularly incident from the first polarizing plate to the second polarizing plate, and the amount of light after passing through the second polarizing plate is calculated. A birefringence measurement device that includes an optical system that can perform measurements.
(2)偏光方向を直交状態に設定した第1偏光板と第2
偏光板との間に複屈折部材を装入でき、コリメートされ
た光線を第1偏光板から第2偏光板に向けて垂直に入射
させ、上記光線の第2偏光板を透過した後の光量を測定
できる光学系を構成し、上記光学系における上記光量測
定値と複屈折値との相関関係を予め定め、今回測定対象
としての複屈折部材を装入した上記光学系にて測定され
た該複屈折部材のある測定点についての上記光量測定値
と上記相関関係とから該複屈折部材の該測定点について
の複屈折値を求める複屈折測定方法。
(2) A first polarizing plate and a second polarizing plate whose polarization directions are orthogonal to each other.
A birefringent member can be inserted between the polarizing plate and the collimated light beam is made perpendicularly incident from the first polarizing plate to the second polarizing plate, and the amount of light after passing through the second polarizing plate is calculated. An optical system capable of measurement is configured, a correlation between the light amount measurement value and the birefringence value in the optical system is determined in advance, and the birefringence value measured by the optical system in which the birefringence member to be measured is inserted is determined in advance. A birefringence measuring method for determining a birefringence value at a certain measuring point of the birefringent member from the above-mentioned light intensity measurement value and the above-mentioned correlation for the certain measuring point of the refractive member.
(3)前記光学系の光量として複数のレーザーダイオー
ドを一列に並べたレーザーダイオード列を用い、かつ該
光学系の受光装置として上記レーザーダイオード列に対
応するように複数の光電変換素子を一列に並べた光電変
換素子列を用いて、複屈折部材の複数の測定点について
前記光量を同時測定する請求項2記載の複屈折測定方法
(3) A laser diode array in which a plurality of laser diodes are arranged in a line is used as the light amount of the optical system, and a plurality of photoelectric conversion elements are arranged in a line so as to correspond to the laser diode array as the light receiving device of the optical system. 3. The birefringence measurement method according to claim 2, wherein the light amount is simultaneously measured at a plurality of measurement points of the birefringence member using a photoelectric conversion element array.
(4)前記複屈折部材を前記レーザーダイオード列の発
するライン状光線束に対して直角方向に相対移動し、該
複屈折部材の複数の測定点についての前記光量の同時測
定動作を、該複屈折部材の面内にて連続的に行なう請求
項3記載の複屈折測定方法。
(4) The birefringence member is moved relative to the line-shaped beam flux emitted by the laser diode array in a direction perpendicular to the line-shaped beam, and the simultaneous measurement operation of the light amount at a plurality of measurement points of the birefringence member is performed. 4. The method for measuring birefringence according to claim 3, wherein the birefringence measurement method is carried out continuously within the plane of the member.
JP2622789A 1989-02-03 1989-02-03 Apparatus and method for measuring double refraction Pending JPH02205754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2622789A JPH02205754A (en) 1989-02-03 1989-02-03 Apparatus and method for measuring double refraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2622789A JPH02205754A (en) 1989-02-03 1989-02-03 Apparatus and method for measuring double refraction

Publications (1)

Publication Number Publication Date
JPH02205754A true JPH02205754A (en) 1990-08-15

Family

ID=12187472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2622789A Pending JPH02205754A (en) 1989-02-03 1989-02-03 Apparatus and method for measuring double refraction

Country Status (1)

Country Link
JP (1) JPH02205754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178409A (en) * 2005-12-28 2007-07-12 Topcon Corp Apparatus for measuring optical image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178409A (en) * 2005-12-28 2007-07-12 Topcon Corp Apparatus for measuring optical image

Similar Documents

Publication Publication Date Title
EP0165771B1 (en) Method of determining a phase difference between a rotating analyser and a rotary phase detecting means of an ellipsometer
CN102183360B (en) The detection method of polarization extinction ratio of optical polarizer and pick-up unit
US8009292B2 (en) Single polarizer focused-beam ellipsometer
EP0150945A2 (en) Method and apparatus for measuring properties of thin materials
US6738137B2 (en) Measurement of waveplate retardation using a photoelastic modulator
JPH02196930A (en) Polarization measurement method and apparatus
CN109579780A (en) One kind being based on polarization spectro auto-collimation three-dimensional perspective measuring device and method
KR20170039232A (en) Birefringence measurement device and birefringence measurement method
JP2003035600A (en) Method and system for determining degree of polarization
CN109990736A (en) A kind of roll angle measurement method and device based on Stokes vector
US6891616B2 (en) Polarization analyzer using a plurality of Faraday rotators
CN102636333B (en) Device and method for measuring phase retardation and fast axis azimuth angle of wave plate in real time
US4171910A (en) Retroreflectance measurement system
US6654121B1 (en) Apparatus and method for detecting polarization
JP3131242B2 (en) Method of measuring incident angle of light beam, measuring device and method of using the device for distance measurement
JPH02205754A (en) Apparatus and method for measuring double refraction
US3016789A (en) Polarimetric apparatus
US3589812A (en) Processes and devices for measuring stresses within a transparent body for electromagnetic waves
US6317209B1 (en) Automated system for measurement of an optical property
CN114235352A (en) Relative polarization angle testing method for four-camera real-time polarization imaging system
CN101561317B (en) System for measuring the influence of object to polarization state of transmitted beams with high precision and automation
JPH02205755A (en) Apparatus and method for measuring double refraction
JPH11101739A (en) Ellipsometry apparatus
JPH02205756A (en) Apparatus and method for measuring double refraction
JP2712987B2 (en) Adjustment method of polarization measuring device