JPH02205642A - High strength copper alloy for lead frame - Google Patents

High strength copper alloy for lead frame

Info

Publication number
JPH02205642A
JPH02205642A JP2284389A JP2284389A JPH02205642A JP H02205642 A JPH02205642 A JP H02205642A JP 2284389 A JP2284389 A JP 2284389A JP 2284389 A JP2284389 A JP 2284389A JP H02205642 A JPH02205642 A JP H02205642A
Authority
JP
Japan
Prior art keywords
copper alloy
strength
lead frame
high strength
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2284389A
Other languages
Japanese (ja)
Other versions
JP2870780B2 (en
Inventor
Hajime Abe
元 阿部
Noboru Hagiwara
登 萩原
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1022843A priority Critical patent/JP2870780B2/en
Publication of JPH02205642A publication Critical patent/JPH02205642A/en
Application granted granted Critical
Publication of JP2870780B2 publication Critical patent/JP2870780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Conductive Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the high strength copper alloy for a lead frame having particularly excellent interface peeling resistance in soldering and strength- improving properties by work hardening by forming it with the compsn. contg. each prescribed amt. of Ni, Sn, Zn, Si and P and the balance Cu with inevitable impurities. CONSTITUTION:The high strength copper alloy for a lead frame is formed with the compsn. contg. 1.0 to 5.0% Ni, 0.5 to 2.5% Sn, 3.3 to 7.0% Zn, 0.2 to 1.0% Si, 0.03 to 0.3% P and the balance Cu with inevitable impurities. By the copper alloy, work hardening can be shown in addition to precipitation hardening and, as the result, strength superior to the one of high Ni alloy can be retained. Furthermore, interface peeling resistance in soldering can perfectly be prevented by suitably adding Zn to the copper alloy. Thus, the copper alloy is suitable for making a lead frame into copper alloy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、リードフレーム用として有用な高強度銅合金
に関し、とくに優れた耐半田付界面剥離性を有すると共
に加工硬化による強度向上特性を有する高強度銅合金に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-strength copper alloy useful for lead frames, which has particularly excellent solder interface peeling resistance and strength improvement properties through work hardening. It concerns high-strength copper alloys.

〔従来の技術] 従来、半導体機器用リードフレーム材としては、熱膨張
係数が低く、半導体素子や封止材との接着性や封着性の
良好な42合金(Fe−42%Ni )やコバール(F
e −29%Ni −17%Co )などの高ニッケル
合金が主に用いられてきた。
[Prior Art] Conventionally, 42 alloy (Fe-42%Ni) and Kovar, which have a low coefficient of thermal expansion and good adhesion and sealing properties with semiconductor elements and sealing materials, have been used as lead frame materials for semiconductor devices. (F
High nickel alloys such as e-29%Ni-17%Co) have been mainly used.

しかし、最近半導体素子の集積度が益々増大し、電力消
費の高い素子が多くなり、導電性および熱伝導性の良好
なリードフレーム材への要求が一層高まってきている。
However, recently, the degree of integration of semiconductor devices has been increasing, and the number of devices with high power consumption has increased, and the demand for lead frame materials with good electrical conductivity and thermal conductivity has further increased.

上記高ニッケル合金は、引張強さにおいては、65kg
r/ms”と良好であるが、導電率は3%lAC3程度
と極めて低く、通常導電率とほぼ並行した性質を示す熱
伝導性においてら十分なものとはいえない。
The above high nickel alloy has a tensile strength of 65 kg.
r/ms", but the electrical conductivity is extremely low at about 3% lAC3, and cannot be said to be sufficient even in terms of thermal conductivity, which exhibits properties almost parallel to normal electrical conductivity.

そこで、上記高ニッケル合金に代えて、導電率および熱
伝導性共に優れている銅合金をリードフレーム材として
使用しようという傾向が顕著になってきたう 上述した半導体機器のリードフレーム材として一般に要
求される特性には、上記導電性や熱伝導性に優れている
ことのほかに、信頭性の上から実装時や機器への組込み
等に付加される外力に十分耐え得る強度を有することお
よび半田付は工程を有するために半田付は特性に優れて
いることが、不可欠な条件とされる。
Therefore, there is a growing trend to use copper alloys as lead frame materials, which have excellent electrical conductivity and thermal conductivity, instead of the high nickel alloys mentioned above. In addition to the above-mentioned excellent electrical and thermal conductivity, it also has the characteristics of being strong enough to withstand external forces applied during mounting and assembly into equipment, etc. in terms of reliability, and the ability to solder. Since soldering involves a process, it is considered an essential condition that soldering has excellent characteristics.

通常の銅系材料をリードフレーム材に適用しようとして
も、強度の上で不十分であり、なんらかの強度向上策が
必要である。金属材料の強度を上げる一般的方法として
は、合金元素を添加する方法および冷間加工度を大きく
する方法の二つがあり、リードフレーム材においてもそ
のような施策がとられてきた。
Even if an ordinary copper-based material is used as a lead frame material, it is insufficient in terms of strength, and some kind of strength improvement measure is required. There are two general methods for increasing the strength of metal materials: adding alloying elements and increasing the degree of cold working, and such measures have also been taken for lead frame materials.

[発明が解決しようとする課題J 銅合金の場合、ある種の合金元素を添加すると熱処理に
より強度を増大し得る析出硬化型合金とすることができ
る。しかし、この析出硬化に依存しても十分に大きな強
度が得られないことがあり、そのような場合には固溶硬
化型の合金元素を添加し、冷間加工による硬化をも併用
する必要がある。
[Problem to be Solved by the Invention J] In the case of copper alloys, the addition of certain alloying elements can make them precipitation-hardening alloys whose strength can be increased by heat treatment. However, relying on precipitation hardening may not provide sufficient strength, and in such cases it is necessary to add solid solution hardening alloying elements and also use hardening through cold working. be.

また、リードフレームにおいてはアウターリードを基板
に半田付けして使用することが多い。
Further, in lead frames, outer leads are often soldered to a substrate.

強度を向上させるために合金元素を添加した銅合金を用
いたリードフレーム材においては、上記半田付けを行な
った後に、半田付けの界面において経時的に脆性剥離が
発生する現象がみられることがあり、信頼性の上から大
きな間組となっている。このような脆性層の形成は、素
材としてのCuと半田の中のsn成分および添加元素が
拡散することによって生ずるものと考えられており、X
y1マイクロアナライザによる所見によっても、銅合金
と半田との界面にCu−3n系におけるε相あるいはη
相といっな脆性の大きい金属間化合物が拡散形成される
ことが確認されている。さらに、添加元素のマイグレー
ション層が界面に拡散形成され(Fe 、P、Siにお
いてとくに顕著である)、これらが前記脆性剥離の原因
となることも明らかになっている。
In lead frame materials that use copper alloys to which alloying elements have been added to improve strength, after the above soldering, brittle peeling may occur over time at the soldered interface. , from the viewpoint of reliability, there is a large gap. The formation of such a brittle layer is thought to occur due to the diffusion of Cu as a material, the sn component in the solder, and additive elements, and
According to the findings by the y1 microanalyzer, there is an ε phase or η phase in the Cu-3n system at the interface between the copper alloy and the solder.
It has been confirmed that intermetallic compounds with high brittleness such as phases are formed by diffusion. Furthermore, it has been revealed that a migration layer of additive elements is diffused and formed at the interface (this is particularly noticeable in Fe, P, and Si), and that this causes the brittle peeling.

本発明の目的は、上記したような従来技術の問題点を解
消し、銅系合金の強度を大きな冷間加工を加えることに
より向上させ得ると共に半田付界面剥離性についても大
巾に改善し得る新規なリードフレーム用高強度銅合金を
提供しようとするものである。
It is an object of the present invention to solve the problems of the prior art as described above, to improve the strength of copper-based alloys by applying extensive cold working, and to significantly improve the peelability at the soldering interface. The present invention aims to provide a novel high-strength copper alloy for lead frames.

[課題を解決するための手段] 本発明は、Ni1.0〜5.0%、Sn0.5〜2.5
%、Zn3.3〜7.0%、Si  0. 2〜1.0
%、P0.003〜0,3%、を含み、残部Cuおよび
不可避なる不純物をもって構成した銅合金にある。
[Means for Solving the Problems] The present invention provides Ni1.0 to 5.0% and Sn0.5 to 2.5%.
%, Zn3.3-7.0%, Si 0. 2-1.0
%, P0.003 to 0.3%, and the balance is Cu and unavoidable impurities.

「作用I CuにNi 、Siを上記範囲において添加した合金は
、析出硬化型合金を梢成し、熱処理によって析出硬化し
強度を向上させることができる。
``Effect I An alloy in which Ni and Si are added to Cu in the above range forms a precipitation-hardening alloy, which can be precipitation-hardened by heat treatment to improve strength.

しかし、十分に大きな強度を求める場合には、析出硬化
にのみ依存することは適当ではなく、固溶硬化型の元素
を添加し、加工硬化に基く強度の向上をも図る必要があ
る。
However, when seeking sufficiently high strength, it is not appropriate to rely solely on precipitation hardening, and it is necessary to add solid solution hardening elements to improve the strength based on work hardening.

Snは、そのように加工硬化させ得る元素として添加し
固溶体化処理するものであるが、含有量が0.5%以下
ではその効果が不十分であり、2.5%を越えると導電
率の低下が大きくなり好ましくない。
Sn is added as an element that can be work hardened and subjected to solid solution treatment, but if the content is less than 0.5%, the effect is insufficient, and if it exceeds 2.5%, the conductivity will decrease. The decrease becomes large, which is not preferable.

また、Ni含有量については、1.0%以下では高強度
効果が低く、5.0%以上になると加工性が劣化し導電
率を低下させるため好ましくない。
Regarding the Ni content, if it is less than 1.0%, the high strength effect will be low, and if it is more than 5.0%, the workability will deteriorate and the electrical conductivity will decrease, which is not preferable.

Si含有量については、0.2%以下では同じく強度の
向上効果が小さく、1,0%以上になると後述する第1
表からもわかるように界面tl1M防止に要するznの
添加量を増大させねばならず、結果的に導電率が低下す
ることとなり好ましくない。
Regarding the Si content, if the Si content is 0.2% or less, the strength improvement effect will be small, and if it is 1.0% or more, the
As can be seen from the table, it is necessary to increase the amount of zn added to prevent the interface tl1M, which is undesirable because the conductivity decreases as a result.

znは、その理由の詳細についてはなお不明であるが、
後に詳述するように、銅合金の半田付けにおける界面剥
離防止に非常に有効に作用する。
zn, although the details of the reason are still unknown,
As will be explained in detail later, it is very effective in preventing interfacial peeling during soldering of copper alloys.

しかし、この含有量が3.3%以下では析出硬化せしめ
る上で有効なSi添加との関係から半田界面剥離防止効
果が不十分となり好ましくなく、7.0%以上になると
導電率の低下が大きくなり同じく好ましくない。
However, if this content is less than 3.3%, the effect of preventing peeling at the solder interface will be insufficient due to the relationship with the addition of Si, which is effective for precipitation hardening, which is undesirable, and if it is more than 7.0%, the electrical conductivity will decrease significantly. It's just as undesirable.

Pは脱酸剤として添加するものであり、上記界面剥離防
止に有効なznが脱酸のなめに消費され本来の界面剥離
防止効果が低下する結果となるのを防止するためのもの
である。しかし、Pの含有量が0.003%以下では脱
酸効果が小さ(Znの消費が大きくなり、0.3%以上
になると加工性が低下する1導電率の低下が大きくなり
好ましくないのである。
P is added as a deoxidizing agent to prevent Zn, which is effective in preventing interfacial peeling, from being consumed in deoxidizing, resulting in a reduction in the original interfacial peeling preventing effect. However, if the P content is less than 0.003%, the deoxidizing effect will be small (Zn consumption will be large, and if it is more than 0.3%, the processability will deteriorate, which is undesirable). .

[実施例J 以下に、本発明について実施例を参照し説明する。[Example J The present invention will be described below with reference to Examples.

第1表は、各種元素を表示した量だけ添加した銅合金に
znを表中に示した種々な量をもって添加し、5n−4
0%pb半田にドブ付はメツキした後、150℃で表に
それぞれ示した時間だけ加熱し、これを0.25Rで9
0゛曲げしその後曲げ戻した場合の界面の剥離の有無を
顕微鏡で!+1察した結果を示すものである。
Table 1 shows the results of adding Zn in various amounts shown in the table to a copper alloy containing various elements in the amounts shown.
After plating the dots on the 0% PB solder, heat it at 150℃ for the time shown in the table, and then heat it at 0.25R for 9
Use a microscope to check if there is peeling at the interface when you bend it by 0° and then bend it back! This shows the result of +1.

第 表 表において、Oは界面剥離の生じないもの、Xは界面剥
離を生じた場合をそれぞれ示す。
In Table 1, O indicates the case where interfacial peeling did not occur, and X indicates the case where interfacial peeling occurred.

第1表よりわかるように、添加元素の違いによってその
効果に差異があるものの、Znを添加することにより半
田付界面剥離を適確に防止することが可能になる。この
ようにZnに界面剥離防止効果のある理由については、
前述したように未だ詳細については不明なところが多い
、しかし、SlやPの含有量が多くなると、その効果が
阻害される#J!肉がはっきりと現れる。従って、その
有効性がわかっていいてもSlやPを余り多く添加する
ことは好ましくないことかわかる。
As can be seen from Table 1, the addition of Zn makes it possible to accurately prevent peeling at the soldering interface, although the effect varies depending on the added element. The reason why Zn has the effect of preventing interfacial peeling is as follows.
As mentioned above, there are still many details that are unclear, but when the content of Sl and P increases, the effect is inhibited #J! The flesh is clearly visible. Therefore, even if their effectiveness is known, it is not desirable to add too much Sl or P.

550mm’ x0. 25Rm’ (7)板とした後
500℃X1分の熱処理を施した。
550mm' x0. 25Rm' (7) After forming a plate, it was heat treated at 500°C for 1 minute.

つぎに、上記板材より15薗マX0.25+u+’X5
0m’の供試片を切り出し、半田付界面剥離性について
評価した。
Next, from the above plate material, 15 mm x 0.25 + u + 'X 5
A 0 m' test piece was cut out and evaluated for releasability at the soldering interface.

各供試片を250℃に保持したsn −40%pb半田
洛中においてドブ付はメツキし、これを大気中において
150’Cx1OOO時間加熱した後、0.25Rで9
0゛曲げしその後曲げ戻して界面における剥離の有無を
100倍の顕微鏡で観察評価した。
Each test piece was plated in a sn-40%pb soldering medium kept at 250°C, heated in the atmosphere for 150'C x 100 hours, and then heated at 0.25R for 9
The film was bent by 0°, then bent back, and the presence or absence of peeling at the interface was observed and evaluated using a 100x microscope.

第2表に評価結果を示す。Table 2 shows the evaluation results.

実施例 第2表に示す組成よりなる銅合金を水冷@型を/[いて
半連続鋳造し、850℃で熱間圧延を施して550關’
X10mm’の板とした。これを焼鈍、冷間圧延を繰返
し、550間’X0.5ffil+’の板とし、さらに
800℃×30分熱処理して急冷しな、その後加工度6
6%で冷間圧延し、第 表 本発明に係る合金は、析出硬化に加工硬化が加わり、引
張強さにおいていずれも69krf/+m”以上という
高い値を示しており、前記した高ニッケル合金にまさる
強度を保持し得ることがわかる。
Example A copper alloy having the composition shown in Table 2 was semi-continuously cast in a water-cooled mold, hot rolled at 850°C,
It was made into a plate of x10mm'. This was annealed and cold rolled repeatedly to form a plate of '
The alloys according to the present invention, which are cold-rolled at 6%, show a high tensile strength of 69krf/+m'' or more due to the addition of precipitation hardening and work hardening, and are superior to the high nickel alloys mentioned above. It can be seen that it can maintain superior strength.

しかも、第2表かられがるように本発明合金は、所定量
以上のZnを含有させることにより半田付界面剥離の発
生を完全に防止することができる。
Moreover, as shown in Table 2, the alloy of the present invention can completely prevent the occurrence of solder interface peeling by containing Zn in a predetermined amount or more.

これに対し、Znを含有しない比較例では、いずれの場
合も界面剥離が生じている。また、Slの含有量が高い
ものにあっては、znを2.5%あるいは3.0%添加
しているにも拘らず界面#I離を生じており、Si含有
量を高くし強度を大きくしようとする場合にはZnKも
3.3%以上添加しないと効果のないことがわかる。
On the other hand, in the comparative examples that do not contain Zn, interfacial peeling occurs in all cases. In addition, in those with a high Sl content, interface #I separation occurs despite the addition of 2.5% or 3.0% Zn, and the strength is increased by increasing the Si content. It can be seen that if an attempt is made to increase the size, there is no effect unless ZnK is also added in an amount of 3.3% or more.

[発明の効果] 以上の通り、本発明に係る銅合金によれば、析出硬化に
加え加工硬化がみられる結果、高ニッケル合金にまさる
強度を保持することができ、また、適切にZnが添加さ
れることで半田付界面剥離を完全に防止することが可能
となるものであって、これによってリードフレームの銅
合金化に適切に対応できることとなる意義は大きい。
[Effects of the Invention] As described above, according to the copper alloy of the present invention, work hardening is observed in addition to precipitation hardening, and as a result, strength superior to that of high nickel alloys can be maintained, and Zn is appropriately added. By doing so, it is possible to completely prevent delamination at the soldering interface, and this is of great significance as it allows us to appropriately respond to copper alloying of lead frames.

代理人  弁理士  佐 藤 不二雄Agent: Patent Attorney Fujio Sato

Claims (1)

【特許請求の範囲】[Claims] (1)Ni1.0〜5.0%、Sn0.5〜2.5%、
Zn3.3〜7.0%、Si 0.2〜1.0%、P0.003〜0.3 %、を含み、残部Cuおよび不可避なる不 純物よりなるリードフレーム用高強度銅合 金。
(1) Ni 1.0-5.0%, Sn 0.5-2.5%,
A high-strength copper alloy for lead frames containing 3.3 to 7.0% Zn, 0.2 to 1.0% Si, and 0.003 to 0.3% P, with the balance being Cu and unavoidable impurities.
JP1022843A 1989-02-01 1989-02-01 High-strength copper alloy for lead frames Expired - Fee Related JP2870780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1022843A JP2870780B2 (en) 1989-02-01 1989-02-01 High-strength copper alloy for lead frames

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1022843A JP2870780B2 (en) 1989-02-01 1989-02-01 High-strength copper alloy for lead frames

Publications (2)

Publication Number Publication Date
JPH02205642A true JPH02205642A (en) 1990-08-15
JP2870780B2 JP2870780B2 (en) 1999-03-17

Family

ID=12093991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1022843A Expired - Fee Related JP2870780B2 (en) 1989-02-01 1989-02-01 High-strength copper alloy for lead frames

Country Status (1)

Country Link
JP (1) JP2870780B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070651A (en) * 2005-09-02 2007-03-22 Hitachi Cable Ltd Copper alloy material and its manufacturing method
CN115896536A (en) * 2022-12-26 2023-04-04 江西科美格新材料有限公司 Tin-zinc-copper alloy and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293130A (en) * 1987-05-26 1988-11-30 Mitsubishi Shindo Kk Lead frame material made of cu alloy for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293130A (en) * 1987-05-26 1988-11-30 Mitsubishi Shindo Kk Lead frame material made of cu alloy for semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070651A (en) * 2005-09-02 2007-03-22 Hitachi Cable Ltd Copper alloy material and its manufacturing method
JP4501818B2 (en) * 2005-09-02 2010-07-14 日立電線株式会社 Copper alloy material and method for producing the same
CN115896536A (en) * 2022-12-26 2023-04-04 江西科美格新材料有限公司 Tin-zinc-copper alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP2870780B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
KR930005072B1 (en) Copper alloy for electronic instrument and method of manufacturing the same
US6132529A (en) Leadframe made of a high-strength, high-electroconductivity copper alloy
JP2670670B2 (en) High strength and high conductivity copper alloy
JP3824884B2 (en) Copper alloy material for terminals or connectors
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS6396237A (en) Material for electrically conductive parts of electronic and electrical appliance
JPH06228684A (en) Connector for electric and electronic appliance made of cu alloy
JPS6345338A (en) Copper alloy for electronic and electric appliance and its production
JPS6254852B2 (en)
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS6231059B2 (en)
JPH0534409B2 (en)
JPH02205642A (en) High strength copper alloy for lead frame
JPS6250428A (en) Copper alloy for electronic appliance
JPH0440417B2 (en)
JPH1081926A (en) Copper alloy for electronic device
JPS6250426A (en) Copper alloy for electronic appliance
JPH01225781A (en) Tin or tin alloy-coated copper alloy material having excellent whisker resistance
JPS63125628A (en) Copper alloy for semiconductor device lead material
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP2870779B2 (en) High-strength copper alloy for lead frames
JPS64449B2 (en)
JPS6365038A (en) Copper alloy for electronic and electrical equipment
JPH02205644A (en) High strength copper alloy for lead frame

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees