JPH0220561B2 - - Google Patents

Info

Publication number
JPH0220561B2
JPH0220561B2 JP56059305A JP5930581A JPH0220561B2 JP H0220561 B2 JPH0220561 B2 JP H0220561B2 JP 56059305 A JP56059305 A JP 56059305A JP 5930581 A JP5930581 A JP 5930581A JP H0220561 B2 JPH0220561 B2 JP H0220561B2
Authority
JP
Japan
Prior art keywords
catalyst
silica
surface area
specific surface
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56059305A
Other languages
Japanese (ja)
Other versions
JPS5724638A (en
Inventor
Deyupan Teieri
Deyubyui Joruju
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhone Poulenc Industries SA
Original Assignee
Rhone Poulenc Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Industries SA filed Critical Rhone Poulenc Industries SA
Publication of JPS5724638A publication Critical patent/JPS5724638A/en
Publication of JPH0220561B2 publication Critical patent/JPH0220561B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/508Preparation of sulfur dioxide by oxidation of sulfur compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、有機硫黄化合物を酸化させるための
触媒およびその用途に関する。更に特定するに、
本発明は、二硫化炭素および(又は)硫化カルボ
ニルおよび(又は)メルカプタンを硫化水素と同
時に或は硫化水素不在で酸化させるための触媒お
よびその用途に関する。 有機硫黄化合物を含有する流出物を接触法で処
理することは既知である。 かかる方法では、該有機硫黄化合物を硫化水素
に転化させるべくその加水分解を行なう。而し
て、生成せる硫化水素は極めて有害な汚染ガスで
あるため、これを除去せねばならない。この除去
は一般に、クラウス反応に従い或は高温での熱焼
却によつて実施せねばならない。 或る種の産業流出物、特にクラウス装置からの
流出物には、硫黄と(又は)酸化しうる汚染性硫
黄化合物が含まれており、これらは、酸化により
二酸化硫黄に転化せしめられるよう処理されねば
ならない。かかる流出物中に存在する特定の硫黄
化合物は主に、硫化水素と、二硫化炭素および
(又は)硫化カルボニルおよび(又は)メルカプ
タンの如き有機硫黄化合物である。 而して、硫化水素を含有する流出物を高温で燃
焼することにより該流出物を処理することは知ら
れているが、しかしこの方法は、エネルギーの消
費が高くまた技術的観点からも、酸素要求量が大
きいなどの理由で今は用いられていない。 また、硫化水素を含有するガスを処理するため
の接触法が提案されているが、しかしながら、か
かる方法は、触媒活性が十分でなく、硫化水素の
完全な酸化を十分に低い温度では行なえず、触媒
の寿命も十分でないなどの欠点を有する。 更にまた、フランス国特許出願番号2144148か
ら、一般式M1xCrzFe2-zOu(ここでM=Zn,Cu,
Co,Ni,Mg,Mn又はCd)のスピネル型混成酸
化物よりなる活性相を含んだ触媒の存在下、二酸
化硫黄ガスに含まれる硫黄化合物を400〜600℃で
接触転位により酸化させることが知られている。
このような触媒は、その不満足な性能を別にして
も、スピネル型構造を得るために、該製造時最低
650℃の温度で4時間の仮焼を行なう必要がある
など相当の不便さがある。 本発明者は、有機硫黄化合物を適宜硫黄および
硫化水素とともに単一工程でかなり無害な化合物
に転化させる接触法を開発した。この方法は、活
性相にスピネル型の混成酸化物を含まずしかも
550℃よりも低い温度で製造される触媒の存在下
有機硫黄化合物をすぐれた収率を以て二酸化硫黄
に接触酸化させるものである。而して、上記触媒
は非常に高い触媒活性を有し、また異例なほど長
い寿命を示す。 本発明は、有機硫黄化合物を適宜硫黄および硫
化水素とともに二酸化硫黄に酸化させるための触
媒にして、シリカ、酸化ジルコニウム、シリカ−
マグネシア、シリカ−ジルコニア又はシリカ−酸
化チタンを1成分として含み且つ、銅、銀、モリ
ブデン、タングステン、鉄、ビスマス、ランタニ
ド、クロム、ロジウム、イリジウム、パラジウ
ム、白金および錫よりなる群から選ばれる少くと
も1種の元素を他成分として含むことを特徴とす
る触媒に関する。 本発明はまた、有機硫黄化合物を適宜硫黄およ
び硫化水素とともに二酸化硫黄に気相酸化させる
方法にして、 シリカ、酸化ジルコニウム、シリカ−マグネシ
ア、シリカ−ジルコニア又はシリカ−酸化チタン
を1成分として含み且つ、銅、銀、モリブデン、
タングステン、鉄、ビスマス、ランタニド、クロ
ム、ロジウム、イリジウム、パラジウム、白金お
よび錫よりなる群から選ばれる少くとも1種の元
素を他成分として含む触媒上に、有機硫黄化合物
少くとも1種とまた適宜硫黄および硫化水素を含
むガスを通すことを特徴とした方法に係わる。 本発明に従つた触媒は在来法により製造するこ
とができる。それは特に、シリカ、酸化ジルコニ
ウム、シリカ−マグネシア、シリカ−ジルコニア
又はシリカ−酸化チタンを基剤とする担体に触媒
活性元素若しくはその先駆物質を含浸させ、或は
シリカ、酸化ジルコニウム、又はシリカ−ジルコ
ニア若しくはシリカ−酸化チタン混合物の粉末に
触媒活性含素の先駆物質を混ぜ込むこと
(malaxating)によつて製造することができる。 該触媒はまた、耐熱性酸化物に、シリカ、酸化
ジルコニウム又はシリカ−ジルコニア若しくはシ
リカ−酸化チタン混合物の先駆物質とまた、触媒
活性元素又はその先駆物質を被覆することによつ
て製造することもできる。用語先駆物質を本明細
書中で用いるとき、それは、加熱により前記元素
又は対応酸化物を供与することのできる任意化合
物を意味するものとする。 本発明の触媒は、その製造方法がいかなるもの
であれ、最終段階では、スピネル型の混成酸化物
を含まないようにして550℃未満の温度で仮焼さ
れる。而して、かかる触媒の仮焼は一般に、約
300℃〜550℃好ましくは350℃〜450℃範囲の温度
で実施される。 本発明に従つた、酸化ジルコニウムを担体とす
る触媒は好ましくは、約5〜250m2/g、より好
ましくは20〜150m2/gの比表面積を有する。 また、本発明に従つた、シリカ、シリカ−マグ
ネシア、シリカ−ジルコニア又はシリカ−酸化チ
タンを担体とする触媒は好ましくは、約50〜600
m2/g、より好ましくは80〜500m2/gの比表面
積を有する。 触媒中に存在する触媒活性元素/けい素、ジル
コニウム、マグネシウム又はけい素−マグネシウ
ム若しくはけい素−チタン混合物の原子比は約
0.00005〜0.1範囲である。 本発明の触媒の存在で有機硫黄化合物を適宜硫
黄および硫化水素とともに二酸化硫黄に気相酸化
させる方法は、該化合物を含む流出物に分子状酸
素含有ガスを接触させることによつて遂行されう
る。このガスは一般に空気であるが、適宜酸素富
化した空気でもよく、或は純酸素であつてもよ
い。而して、このガスには、有機硫黄化合物とま
た在れば硫黄および硫化水素を全て二酸化硫黄に
酸化させるのに必要な化学量論的量ないし理論量
に少くとも等しいか、好ましくはかかる量より多
い酸素が含まれる。有利には、ガス中に存在する
酸素量を、理論量よりも約15〜100%多くする。 本発明の方法は、約150℃より高い、好ましく
は約200〜550℃範囲の温度で遂行される。 本発明の方法に従つて処理することのできるガ
スの組成は広い範囲にわたつて変動しうる。一般
に、本発明に従い処理することのできる産業流出
物には好ましくは、約0.1〜5容量%の硫黄化合
物が含まれる。 触媒の使用量は好ましくは、VVH(1時間に
つき触媒1容当り処理されるガスの容量)が1000
〜30000、有利には1500〜10000範囲になる如き値
とする。 下記例は本発明を例示するものにして、その範
囲を限定するものではない。 例 1 ローヌープーラン社製のシリカ担体を使用。こ
の担体は480m2-1の比表面積を有する。 該担体に、硫酸で弱酸性化した硫酸第一鉄溶液
を含浸させる。これを150℃で2時間乾燥し、450
℃で2時間仮焼する。本触媒は下記特性値を有す
る: 比表面積:SBE=410m2-1 原子比:Fe/Si=0.05 例 2 例1の担体に、アンモニア性の塩化第一銅溶液
を含浸させ、110℃で8時間乾燥し、450℃で2時
間仮焼する。本触媒は下記特定値を有する: 比表面積:SBE=380m2-1 原子比:Cu/Si=0.04 例 2 シリカ含量70重量%および酸化チタン30重量%
のシリカ−酸化チタン担体を使用。この担体は
350m2/gの比表面積を有する。 この担体にアンモニア性塩化第一銅溶液を含浸
させ、150℃で乾燥し、更に硝酸第二鉄溶液を含
浸させ、400℃で2時間仮焼する。本触媒は下記
特性値を有する: 比表面積:SBE=325m2-1 原子比:Cu+Fe/Si+Ti=0.06、Cu/Fe=2 例 4 例1の触媒に、塩化イリジウム溶液を含浸さ
せ、110℃で24時間乾燥し、そのあと400℃で2時
間仮焼する。本触媒は下記特性値を有する: 比表面積:SBE=379m2-1 原子比:Cu+Ir/Si=0.06015、Cu/Ir=400 例 5 例11で用いたシリカ担体にパラモリブデン酸ア
ンモニウム溶液を含浸させ、110℃で一夜乾燥し、
そのあと450℃で2時間仮焼する。本触媒は下記
特性値を有する: 比表面積:SBE=370m2-1 原子比:Mo/Si=0.06 例 6 シリカ含量60重量%およびマグネシア含量40重
量%のシリカ−マグネシア担体を使用。この担体
は240m2/gの比表面積を有する。 該担体にパラモリブデン酸アンモニウム溶液を
含浸させ、150℃で4時間乾燥し、400℃で2時間
仮焼する。生成触媒は下記特性値を有する: 比表面積:SBE=215m2-1 原子比:Mo/Si+Mg=0.05 例 7 例1で用いたシリカ担体に、硝酸ビスマスの硝
酸庭溶液を含浸させ、110℃で24時間乾燥し、そ
のあと450℃で2時間仮焼する。本触媒は下記特
性値を有する: 比表面積:SBE=373m2-1 原子比:Bi/Si=0.04 例 8 例7の触媒に塩化ロジウム溶液を含浸させ、
110℃で24時間乾燥し、そのあと400℃で2時間仮
焼する。本触媒は下記特性値を有する: 比表面積:SBE=371m2-1 原子比:Bi+Rh/Si=0.0401、Bi/Rh=400 例 9 比表面積82m2-1の酸化ジルコニウム担体に硝
酸第二鉄溶液を含浸させ、150℃で8時間乾燥し、
そのあと450℃で2時間仮焼する。本触媒は下記
特性値を有する: 比表面積:SBE=76m2-1 原子比:Fe/Zr=0.04 原子比:Fe+La/Zr=0.06、Fe/La=1 原子比:Fe+Sn/Zr=0.06、Fe/Sn=2
The present invention relates to a catalyst for oxidizing organic sulfur compounds and its use. More specifically,
The present invention relates to a catalyst for oxidizing carbon disulfide and/or carbonyl sulfide and/or mercaptan simultaneously with hydrogen sulfide or in the absence of hydrogen sulfide and its use. It is known to treat effluents containing organic sulfur compounds by catalytic methods. In such a method, the organic sulfur compound is hydrolyzed to convert it to hydrogen sulfide. The hydrogen sulfide produced is an extremely harmful pollutant gas and must be removed. This removal generally has to be carried out according to a Claus reaction or by thermal incineration at high temperatures. Certain industrial effluents, particularly those from Claus units, contain sulfur and/or oxidizable polluting sulfur compounds that are treated to be converted by oxidation to sulfur dioxide. Must be. The specific sulfur compounds present in such effluents are primarily hydrogen sulfide and organic sulfur compounds such as carbon disulfide and/or carbonyl sulfide and/or mercaptans. It is thus known to treat effluents containing hydrogen sulfide by burning them at high temperatures, but this method is energy-intensive and, from a technical point of view, It is not currently used due to the large amount of demand. Contact methods have also been proposed for treating gases containing hydrogen sulfide; however, such methods lack sufficient catalytic activity and cannot completely oxidize hydrogen sulfide at sufficiently low temperatures. It has drawbacks such as insufficient catalyst life. Furthermore, from French Patent Application No. 2144148, the general formula M 1x Cr z Fe 2-z Ou (where M=Zn, Cu,
It is known that sulfur compounds contained in sulfur dioxide gas can be oxidized by catalytic rearrangement at 400 to 600°C in the presence of a catalyst containing an active phase consisting of a spinel-type hybrid oxide of Co, Ni, Mg, Mn or Cd). It is being
Apart from its unsatisfactory performance, such catalysts require a minimum
There are considerable inconveniences, such as the need for calcination at a temperature of 650°C for 4 hours. The inventors have developed a catalytic process that converts organosulfur compounds, optionally with sulfur and hydrogen sulfide, into fairly innocuous compounds in a single step. This method does not contain a spinel-type hybrid oxide in the active phase and
It involves the catalytic oxidation of organic sulfur compounds to sulfur dioxide in excellent yields in the presence of catalysts prepared at temperatures below 550°C. Thus, the catalyst has very high catalytic activity and also exhibits an exceptionally long lifetime. The present invention provides a catalyst for oxidizing an organic sulfur compound to sulfur dioxide together with sulfur and hydrogen sulfide as appropriate.
At least one containing magnesia, silica-zirconia or silica-titanium oxide as one component and selected from the group consisting of copper, silver, molybdenum, tungsten, iron, bismuth, lanthanide, chromium, rhodium, iridium, palladium, platinum and tin. The present invention relates to a catalyst characterized by containing one type of element as another component. The present invention also provides a method for vapor-phase oxidation of an organic sulfur compound to sulfur dioxide together with sulfur and hydrogen sulfide as appropriate, the method comprising silica, zirconium oxide, silica-magnesia, silica-zirconia or silica-titanium oxide as one component, and copper, silver, molybdenum,
On a catalyst containing as another component at least one element selected from the group consisting of tungsten, iron, bismuth, lanthanide, chromium, rhodium, iridium, palladium, platinum and tin, at least one organic sulfur compound and optionally It relates to a method characterized by passing a gas containing sulfur and hydrogen sulfide. The catalyst according to the invention can be manufactured by conventional methods. It is in particular a support based on silica, zirconium oxide, silica-magnesia, silica-zirconia or silica-titanium oxide that is impregnated with the catalytically active element or its precursor, or a support based on silica, zirconium oxide or silica-zirconia or It can be prepared by malaxating a powder of a silica-titanium oxide mixture with a precursor of the catalytically active component. The catalysts can also be prepared by coating refractory oxides with precursors of silica, zirconium oxide or silica-zirconia or silica-titanium oxide mixtures, and also with catalytically active elements or precursors thereof. . When the term precursor is used herein, it shall mean any compound capable of donating said element or the corresponding oxide upon heating. Whatever the method of production, the catalyst of the invention is, in the final step, calcined free of spinel-type hybrid oxides at temperatures below 550°C. Thus, calcination of such catalysts generally takes about
It is carried out at a temperature in the range 300°C to 550°C, preferably 350°C to 450°C. The zirconium oxide supported catalyst according to the invention preferably has a specific surface area of about 5 to 250 m 2 /g, more preferably 20 to 150 m 2 /g. Also, the silica, silica-magnesia, silica-zirconia or silica-titanium oxide supported catalyst according to the invention preferably has a
m 2 /g, more preferably 80 to 500 m 2 /g. The atomic ratio of catalytically active elements/silicon, zirconium, magnesium or silicon-magnesium or silicon-titanium mixtures present in the catalyst is approximately
It is in the range of 0.00005 to 0.1. The process for vapor phase oxidation of organosulfur compounds to sulfur dioxide, optionally with sulfur and hydrogen sulfide, in the presence of the catalysts of the invention can be carried out by contacting the effluent containing the compounds with a molecular oxygen-containing gas. This gas is generally air, but may optionally be oxygen-enriched air or pure oxygen. The gas thus contains an amount at least equal to, and preferably equal to, the stoichiometric or stoichiometric amount necessary to oxidize all the organic sulfur compounds and any sulfur and hydrogen sulfide to sulfur dioxide. Contains more oxygen. Advantageously, the amount of oxygen present in the gas is approximately 15-100% greater than the theoretical amount. The process of the invention is carried out at temperatures above about 150<0>C, preferably in the range of about 200-550<0>C. The composition of the gases that can be treated according to the method of the invention can vary over a wide range. Generally, industrial effluents that can be treated according to the present invention preferably contain about 0.1 to 5% by volume of sulfur compounds. The amount of catalyst used is preferably such that VVH (volume of gas treated per volume of catalyst per hour) is 1000
~30000, preferably in the range 1500-10000. The following examples are intended to illustrate the invention and are not intended to limit its scope. Example 1 A silica carrier manufactured by Rhone Poulenc was used. This support has a specific surface area of 480 m 2 g -1 . The carrier is impregnated with a ferrous sulfate solution that has been slightly acidified with sulfuric acid. Dry this at 150℃ for 2 hours,
Calcinate at ℃ for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 410 m 2 g -1 Atomic ratio: Fe/Si = 0.05 Example 2 The support of Example 1 was impregnated with an ammoniacal cuprous chloride solution and heated at 110°C. Dry for 8 hours and calcinate at 450℃ for 2 hours. The catalyst has the following specific values: Specific surface area: SBE = 380 m 2 g -1 Atomic ratio: Cu/Si = 0.04 Example 2 Silica content 70% by weight and titanium oxide 30% by weight
Uses a silica-titanium oxide support. This carrier is
It has a specific surface area of 350 m 2 /g. This carrier is impregnated with an ammoniacal cuprous chloride solution, dried at 150°C, further impregnated with a ferric nitrate solution, and calcined at 400°C for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 325 m 2 g -1 Atomic ratio: Cu + Fe / Si + Ti = 0.06, Cu / Fe = 2 Example 4 The catalyst of Example 1 was impregnated with iridium chloride solution and heated at 110°C. It is dried for 24 hours, then calcined at 400℃ for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 379 m 2 g -1 Atomic ratio: Cu + Ir / Si = 0.06015, Cu / Ir = 400 Example 5 The silica support used in Example 11 was impregnated with ammonium paramolybdate solution. and dried at 110℃ overnight.
Then, it is calcined at 450℃ for 2 hours. The catalyst has the following properties: Specific surface area: SBE = 370 m 2 g -1 Atomic ratio: Mo/Si = 0.06 Example 6 A silica-magnesia support with a silica content of 60% by weight and a magnesia content of 40% by weight was used. This support has a specific surface area of 240 m 2 /g. The carrier is impregnated with ammonium paramolybdate solution, dried at 150°C for 4 hours, and calcined at 400°C for 2 hours. The produced catalyst has the following characteristic values: Specific surface area: SBE = 215 m 2 g -1 Atomic ratio: Mo / Si + Mg = 0.05 Example 7 The silica support used in Example 1 was impregnated with a nitric acid solution of bismuth nitrate and heated at 110°C. It is dried for 24 hours, then calcined at 450℃ for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 373 m 2 g -1 Atomic ratio: Bi / Si = 0.04 Example 8 The catalyst of Example 7 was impregnated with a rhodium chloride solution,
Dry at 110℃ for 24 hours, then calcinate at 400℃ for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 371 m 2 g -1 Atomic ratio: Bi + Rh / Si = 0.0401, Bi / Rh = 400 Example 9 A zirconium oxide support with a specific surface area of 82 m 2 g -1 and nitric acid Impregnated with iron solution and dried at 150℃ for 8 hours,
Then, it is calcined at 450℃ for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 76 m 2 g -1 Atomic ratio: Fe / Zr = 0.04 Atomic ratio: Fe + La / Zr = 0.06, Fe / La = 1 Atomic ratio: Fe + Sn / Zr = 0.06, Fe/Sn=2

【表】【table】

【表】 例 13 本例も亦、例12と同じく、例1〜例11で得た本
発明の触媒の適用例を示す。 下記の容量組成: H2S:800ppm COS:100ppm CS2:500ppm SO2:400ppm O2:2% H2O:30% N2:67.82% を有するガスを触媒の入つた反応器に送り込む。 VVHは1800で、ガスの入口温度は380℃であ
る。 各触媒を用いて達成される結果を下記表に掲載
する:
[Table] Example 13 This example, like Example 12, also shows an application example of the catalyst of the present invention obtained in Examples 1 to 11. A gas having the following volumetric composition: H 2 S: 800 ppm COS: 100 ppm CS 2 : 500 ppm SO 2 : 400 ppm O 2 : 2% H 2 O: 30% N 2 : 67.82% is fed into the reactor containing the catalyst. VVH is 1800 and gas inlet temperature is 380℃. The results achieved with each catalyst are listed in the table below:

【表】 例 14 本例では、シリカ70重量%とジルコニア30重量
%とを含有するシリカ−ジルコニア担体を用い
る。その比表面積は260m2/gである。 この担体に酢酸クロム溶液を含浸させ、400℃
で2時間仮焼する。本触媒は下記特性値を有す
る: 比表面積:SBE=220m2-1 原子比:Cr/Si+Zr=0.05 例 15 例1で用いたシリカ担体にメタタングステン酸
溶液を含浸させ、110℃で一夜乾燥し、次いで450
℃で2時間仮焼する。本触媒は下記特性値を有す
る: 比表面積:SBE=270m2-1 原子比:W/Si=0.07 例 16 例1で用いたシリカ担体に硝酸銀溶液を含浸さ
せ、110℃で24時間乾燥し、そのあと450℃で2時
間仮焼する。本触媒は下記特性値を有する: 比表面積:SBE=373m2-1 原子比:Ag/Si=0.04 例 17 例15で得た触媒に塩化白金酸溶液を含浸させ、
110℃で24時間乾燥し、そのあと400℃で2時間仮
焼する。本触媒は下記特性値を有する: 比表面積:SBE=385m2-1 原子比:W+Pt/Si=0.11、W/Pt=3 例 18 例14で得た触媒に塩化パラジウム溶液を含浸さ
せ、110℃で24時間乾燥し、次いで450℃で2時間
仮焼する。本触媒は下記特性値を有する: 比表面積:SBE=185m2-1 原子比:Cr+Pd/Si+Zr=0.06、Cr/Pd=150 例 19 本例では、例13に記載したと同じ試験条件に従
い例14〜18で得た各触媒を用いる。その結果を下
記表に掲載する:
[Table] Example 14 In this example, a silica-zirconia support containing 70% by weight of silica and 30% by weight of zirconia is used. Its specific surface area is 260 m 2 /g. This carrier was impregnated with chromium acetate solution and heated to 400°C.
Bake for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 220 m 2 g -1 Atomic ratio: Cr/Si + Zr = 0.05 Example 15 The silica support used in Example 1 was impregnated with a metatungstic acid solution and dried at 110°C overnight. and then 450
Calcinate at ℃ for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 270 m 2 g -1 Atomic ratio: W/Si = 0.07 Example 16 The silica support used in Example 1 was impregnated with a silver nitrate solution and dried at 110°C for 24 hours. , then calcined at 450℃ for 2 hours. The present catalyst has the following characteristic values: Specific surface area: SBE = 373 m 2 g -1 Atomic ratio: Ag/Si = 0.04 Example 17 The catalyst obtained in Example 15 was impregnated with a chloroplatinic acid solution,
Dry at 110℃ for 24 hours, then calcinate at 400℃ for 2 hours. This catalyst has the following characteristic values: Specific surface area: SBE = 385 m 2 g -1 Atomic ratio: W + Pt / Si = 0.11, W / Pt = 3 Example 18 The catalyst obtained in Example 14 was impregnated with a palladium chloride solution, ℃ for 24 hours, then calcined at 450℃ for 2 hours. The catalyst has the following characteristic values: Specific surface area: SBE = 185 m 2 g -1 Atomic ratio: Cr + Pd / Si + Zr = 0.06, Cr / Pd = 150 Example 19 In this example, the same test conditions as described in Example 13 were followed. Each catalyst obtained in steps 14 to 18 is used. The results are shown in the table below:

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 硫化水素含有若しくは不含有有機硫黄化合物
を酸化させるための触媒にして、シリカ、酸化ジ
ルコニウム、シリカ−マグネシア、シリカ−ジル
コニア又はシリカ−酸化チタンを1成分として含
み且つ、銅、銀、モリブデン、タングステン、
鉄、ビスマス、ランタニド、クロム、ロジウム、
イリジウム、パラジウム、白金および錫よりなる
群から選ばれる少くとも1種の元素を他成分とし
て含むことを特徴とする触媒。 2 酸化ジルコニウムを含み、比表面積が約5〜
250m2/gであることを特徴とする特許請求の範
囲第1項記載の触媒。 3 シリカを含み、比表面積が約50〜600m2/g
であることを特徴とする特許請求の範囲第1項記
載の触媒。 4 触媒中に存在する触媒活性元素/けい素、ジ
ルコニウム、マグネシウム又はけい素−マグネシ
ウム若しくはけい素−チタン混合物の原子比が約
0.00005〜0.1であることを特徴とする特許請求の
範囲第1項記載の触媒。
[Scope of Claims] 1. A catalyst for oxidizing an organic sulfur compound containing or not containing hydrogen sulfide, containing silica, zirconium oxide, silica-magnesia, silica-zirconia, or silica-titanium oxide as one component, and containing copper as one component. , silver, molybdenum, tungsten,
iron, bismuth, lanthanides, chromium, rhodium,
A catalyst characterized by containing as another component at least one element selected from the group consisting of iridium, palladium, platinum and tin. 2 Contains zirconium oxide and has a specific surface area of approximately 5~
250 m 2 /g of the catalyst according to claim 1. 3 Contains silica and has a specific surface area of approximately 50 to 600 m 2 /g
The catalyst according to claim 1, characterized in that: 4 The atomic ratio of the catalytically active element/silicon, zirconium, magnesium or silicon-magnesium or silicon-titanium mixture present in the catalyst is approximately
The catalyst according to claim 1, characterized in that it has a molecular weight of 0.00005 to 0.1.
JP5930581A 1980-04-23 1981-04-21 Catalyst and method of oxidizing organic sulfur compound containing or not containing hydrogen sulfide Granted JPS5724638A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8009127A FR2481252B1 (en) 1980-04-23 1980-04-23 CATALYST AND METHOD FOR OXIDATION OF ORGANIC SULFUR COMPOUNDS

Publications (2)

Publication Number Publication Date
JPS5724638A JPS5724638A (en) 1982-02-09
JPH0220561B2 true JPH0220561B2 (en) 1990-05-09

Family

ID=9241266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5930581A Granted JPS5724638A (en) 1980-04-23 1981-04-21 Catalyst and method of oxidizing organic sulfur compound containing or not containing hydrogen sulfide

Country Status (2)

Country Link
JP (1) JPS5724638A (en)
FR (1) FR2481252B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224032A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Catalyst for cleaning exhaust gas

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097047A (en) * 1983-11-01 1985-05-30 Toyota Central Res & Dev Lab Inc Oxidizing catalyst
FR2598094B1 (en) * 1986-04-30 1990-11-23 Rhone Poulenc Chimie ZIRCONIUM OXIDE CATALYST AND PROCESS FOR THE TREATMENT OF INDUSTRIAL WASTE GASES CONTAINING SULFUR COMPOUNDS
FR2608458B1 (en) * 1986-12-23 1989-03-10 Rhone Poulenc Chimie CATALYST BASED ON CERIUM OXIDE AND METHOD FOR THE TREATMENT OF INDUSTRIAL GASES CONTAINING SULFUR COMPOUNDS
CA1334962C (en) * 1988-04-14 1995-03-28 Tomohisa Ohata Catalyst for purifying exhaust gas and method for production thereof
FR2658433B1 (en) * 1990-02-19 1994-05-13 Rhone Poulenc Chimie CATALYSTS FOR THE TREATMENT OF GASEOUS EFFLUENTS CONTAINING SULFUR COMPOUNDS AND METHOD FOR TREATING SUCH EFFLUENTS.
US9034527B2 (en) 2010-07-15 2015-05-19 Lg Fuel Cell Systems Inc. Fuel cell system and desulfurization system
CN102161526B (en) * 2011-03-04 2012-12-12 北京化工大学 Application of magnesium oxide-loaded ferrocobalt metal magnetic nanometer material on degrading orange colour II in wastewater
CN111545050B (en) * 2020-04-29 2022-07-22 江苏卓高环保科技有限公司 Catalytic adsorption and decomposition hydrogen sulfide composite material and wall-mounted deodorization purifier prepared from same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224032A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP4716087B2 (en) * 2005-02-18 2011-07-06 トヨタ自動車株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
FR2481252B1 (en) 1985-09-20
JPS5724638A (en) 1982-02-09
FR2481252A1 (en) 1981-10-30

Similar Documents

Publication Publication Date Title
US4937058A (en) Catalytic oxidation of sulfur compounds
SU1314949A3 (en) Method for removing sulfides from gases
US4427576A (en) Catalyst for oxidation of hydrogen sulfide and/or organosulfur compounds to SO2 and process for preparing the catalyst
US4010238A (en) Proces for selective removal of nitrogen oxides from waste gases
US4479928A (en) Catalytic process for the production of sulphur from a gas containing H.sub. S
US4160013A (en) Process for the oxidation of nitric oxide to nitrogen dioxide
EA001069B1 (en) Catalyst for the selective oxidation of sulfur compounds to elemental sulfur, method for the preparation of such catalyst, and method for the selective oxidation of sulfur compounds to elemental sulfur
US4078046A (en) Process for the catalytic oxidation of carbon monoxide with sulfur dioxide and water
JPH08192030A (en) Method and catalyst for decreasing simultaneously huydrocarbon,oxygenated organic compound,carbon monoxide andnitrogen oxide included in internal combustion engine
EP0348263B1 (en) New catalyst useful in selective nitrogen oxides reduction process
EP0208434B1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
JPH0220561B2 (en)
JPH07509436A (en) A method for directly oxidizing H↓2S present in a low concentration in a gas to sulfur with high selectivity through a catalytic route, and a catalyst for carrying out the method
CN110935470A (en) Preparation method of exhaust gas purification catalyst
GB2025386A (en) Process for oxidizing sulphur and sulphur compounds
SE462142B (en) CHROMINE-CONTAINING TENNOXIDE CATALYST COMPOSITION AND CATALYTIC CONVERTER FOR EXHAUST SYSTEM FOR VEHICLES INCLUDING THIS COMPOSITION
US4143120A (en) Method of removing nitric oxide from gases
JPH08141398A (en) Catalyst for decomposing ammonia
JPH08196871A (en) Decomposition of ammonia
JPH08269598A (en) Oxidation catalyst for gaseous sulfur compound
JPH0741313A (en) Method for selectively oxidizing carbon monoxide and catalyst used for the same method
SU1409586A1 (en) Catalyst for oxidizing hydrogen chloride
JP2619470B2 (en) Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide
JPS6147568B2 (en)
JPS6050489B2 (en) Catalyst for purifying exhaust gas containing sulfur compounds