JPH02204746A - Method for correcting chipping defect of photomask - Google Patents

Method for correcting chipping defect of photomask

Info

Publication number
JPH02204746A
JPH02204746A JP1022632A JP2263289A JPH02204746A JP H02204746 A JPH02204746 A JP H02204746A JP 1022632 A JP1022632 A JP 1022632A JP 2263289 A JP2263289 A JP 2263289A JP H02204746 A JPH02204746 A JP H02204746A
Authority
JP
Japan
Prior art keywords
defect
slit
laser
photomask
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1022632A
Other languages
Japanese (ja)
Other versions
JPH0812417B2 (en
Inventor
Yoichi Yoshino
吉野 洋一
Shingo Murakami
進午 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2263289A priority Critical patent/JPH0812417B2/en
Publication of JPH02204746A publication Critical patent/JPH02204746A/en
Publication of JPH0812417B2 publication Critical patent/JPH0812417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To facilitate the adjustment of a slit size and to enhance the efficiency of correction as well as to allow the automation of a correction stage by subjecting a chipping defect to a shaping processing to a rectangular defect by laser beam processing, then correcting the shape by a laser CVD method. CONSTITUTION:While the chipping defect 22 of a chromium pattern 21 is observed by an eyepiece optical system, the slit size is adjusted in such a manner that a slit image 23 completely covers the defect 22. A pattern 21 in the image 23 is then evaporated by a laser beam evaporation method, etc., by which the defect is shaped to the same rectangle 23' as the rectangle of the image 23. The slit size is then reduced by as much as a desired length and a deposited film 24 formed by a laser CVD method is formed; thereafter, the slit size is so widened as to overlap on the pattern 21 and the CVD is executed. Further, the slit width is stored by adopting the constitution which can automatically measure the aperture width of the slit, by which two stages of the CVD as mentioned above are executed automatically.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザCVD法によるフォトマスクの欠損欠陥
修正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for repairing defects in a photomask using a laser CVD method.

〔従来の技術〕[Conventional technology]

半導体集積回路や液晶表示素子等の製造に用いられるフ
ォトマスクには残留欠陥、欠損欠陥と呼ばれる2種類の
欠陥が存在する。前者は不要な部分に遮光膜となる金属
膜(Cr膜やFeO膜等)が残存している欠陥であり、
後者は、逆に、必要な部分の金属膜が欠落している欠陥
である。フォトマスクにこれらの欠陥が存在すると、半
導体の性能不良をひき起こし歩留りを低下させる原因と
なるため。
Photomasks used for manufacturing semiconductor integrated circuits, liquid crystal display devices, etc. have two types of defects called residual defects and missing defects. The former is a defect in which a metal film (Cr film, FeO film, etc.) that serves as a light shielding film remains in unnecessary areas.
The latter, on the other hand, is a defect in which a necessary portion of the metal film is missing. If these defects exist in a photomask, they will cause poor performance of the semiconductor and reduce yield.

これらの欠陥を無くするようフォトマスク製造プロセス
の改善がなされているが、現状では無欠陥にすることは
不可能である。そこで、これらの欠陥を修正する必要が
あるが、現在残留欠陥の修正はレーザ光を用いた修正装
置により実現され、レーザマスクリペアとして普及して
いる。
Although improvements have been made to the photomask manufacturing process to eliminate these defects, it is currently impossible to eliminate defects. Therefore, it is necessary to repair these defects, and at present, repair of the remaining defects is realized by a repair device using a laser beam, which is widely used as a laser mask repair.

一方、欠損欠陥修正の方はこれまで簡便な修正方法がな
く、煩雑なリフトオフ法に頼っていたが。
On the other hand, until now there has been no simple method for repairing missing defects, and we have relied on the complicated lift-off method.

最近になってレーザCVD法を用いた修正方法が実用化
され出した。これは、金属ガスの雰囲気中に置かれたフ
ォトマスクの欠損欠陥部にレーザ光を照射し、金属ガス
を光分解あるいは熱分解してフォトマスク上に金属膜を
堆積させ、欠損欠陥を修正する方法である。金属ガスと
しては、 Cr +M。
Recently, a repair method using a laser CVD method has been put into practical use. This method irradiates the defective parts of a photomask placed in a metal gas atmosphere with laser light, photolyzes or thermally decomposes the metal gas, deposits a metal film on the photomask, and repairs the defects. It's a method. As a metal gas, Cr + M.

等の金属カルがニルが主として用いられる。またレーザ
光の照射法としては、可視レーザ光をスポット状に集光
して欠損欠陥部を走査する方法と。
etc., are mainly used. The laser beam irradiation method is to focus visible laser beam into a spot and scan the defective part.

紫外レーザ光を結像光学法により欠損欠陥部全体に一括
して照射する方法がある。
There is a method in which the entire defective portion is irradiated with ultraviolet laser light at once using an imaging optical method.

第3図は上記の結像光学法による後者の場合の装置の一
般的構成の一例を示す。1はレーザ光源で、レーザ光源
1としては、 Nd :YAGレーザの第4高調波や、
 Arレーザの第2高調波等が用いられる。このレーザ
光はビームエキスパンダ2にヨリビーム径を拡大され、
且つコリメートされた後。
FIG. 3 shows an example of the general configuration of an apparatus in the latter case using the above-mentioned imaging optical method. 1 is a laser light source, and as the laser light source 1, the fourth harmonic of Nd:YAG laser,
A second harmonic of an Ar laser or the like is used. The beam diameter of this laser beam is expanded by the beam expander 2,
And after being collimated.

開口幅可変の矩形スリット4に入射する。このスリット
4により所望の形状に整形されたレーザ光はグイクロイ
ックミラー6で反射されて対物レンズ10に入射する。
The light enters a rectangular slit 4 whose opening width is variable. The laser beam, which has been shaped into a desired shape by the slit 4, is reflected by the guichroic mirror 6 and enters the objective lens 10.

対物レンズ10はこのレーザ光をウィンドー11を通し
てフォトマスク14上に集光する。なお、スリットとフ
ォトマスクは対物レンズに対して物点と像点の関係にな
るように配置され、スリットの像がフォトマスク上に縮
小して結像されるようになっている。これは、いわゆる
結像光学法と呼ばれる。従って、フォトマスク上にはス
リットで制限された矩形状のレーザ光が照射されること
になる。但し、レーザ光は不可視なためこの矩形スリッ
トの形を観察することはできない。そこで、別の可視光
の照明光源5によりスリットを照明してレーザ光と同様
にフォトマスク上に結像することにより、スリットの形
状を観察できるようになっている。このスリット像及び
フォトマスクの観察のために本構成例では反射照明光源
8.透過照明光源20及び接眼光学系9を備えている。
The objective lens 10 focuses this laser light onto a photomask 14 through a window 11. Note that the slit and the photomask are arranged so as to have an object point and image point relationship with respect to the objective lens, so that the image of the slit is reduced and formed on the photomask. This is called an imaging optical method. Therefore, the photomask is irradiated with a rectangular laser beam limited by the slit. However, since the laser beam is invisible, the shape of this rectangular slit cannot be observed. Therefore, the shape of the slit can be observed by illuminating the slit with another illumination light source 5 of visible light and forming an image on the photomask in the same manner as laser light. In order to observe this slit image and photomask, in this configuration example, a reflected illumination light source 8. It includes a transmitted illumination light source 20 and an eyepiece optical system 9.

フォトマスク14はチェンバ19内のXYスラージ15
上に載置される。本チェンバ19には金属ガス供給装置
16及び排気装置18が接続されており、フォトマスク
表面に金属ガスを供給できるようになっている。通常用
いられる金属ガスは有毒であるため、外部へ排気する前
に無毒化するためのトラップ17を備えて回収するよう
にしている。排気装置18としては通常ロータリーポン
プ等が用いられる。
The photomask 14 is attached to the XY sludge 15 in the chamber 19.
placed on top. A metal gas supply device 16 and an exhaust device 18 are connected to the main chamber 19, so that metal gas can be supplied to the surface of the photomask. Since commonly used metal gases are toxic, a trap 17 is provided to detoxify them before exhausting them to the outside. As the exhaust device 18, a rotary pump or the like is usually used.

従来において、この装置による欠損欠陥修正は次のよう
にしてなされる。まず、フォトマスクの欠損欠陥部を接
眼光学系で観察しながら、フォトマスクを移動させて欠
陥部をレーザ光照射位置。
Conventionally, defect correction using this apparatus is performed as follows. First, while observing the defective part of the photomask using the eyepiece optical system, move the photomask and place the defective part in the laser beam irradiation position.

すなわちスリット像の位置に目合せする。次にスリット
像が欠陥部を完全に覆うようにスリットサイズを調節す
る。
That is, it is aligned to the position of the slit image. Next, the slit size is adjusted so that the slit image completely covers the defective part.

第4図はこの時の観察像を示す。第4図において21は
クロムノ9タン、22は欠損欠陥、23はスリット像で
ある。このようにした後、レーザ光を所定時間照射する
と、スリット像の範囲内に金属膜が堆積し、修正が完了
する。金属ガスとしてクロムカ/L/ボニルを、レーザ
光としてNd : YAGレーザの第4高調波(波長0
.266μm)を用いた場合。
Figure 4 shows the observed image at this time. In FIG. 4, 21 is a chromium 9 tan, 22 is a defect, and 23 is a slit image. After doing this, when the laser beam is irradiated for a predetermined period of time, a metal film is deposited within the range of the slit image, and the correction is completed. Chromium carbonate/L/bonyl was used as the metal gas, and Nd:YAG laser's fourth harmonic (wavelength 0) was used as the laser beam.
.. 266 μm).

100μm 程度の欠陥を10秒程度で修正することが
できる。その場合の膜厚は1500λ程度であり。
Defects of about 100 μm can be repaired in about 10 seconds. The film thickness in that case is about 1500λ.

通常のクロム・ぐターンの膜厚と同程度である。The film thickness is about the same as that of normal chromium gas.

第5図は上記の修正後のフォトマスクの断面形状を示す
。この種の装置では、1回で可能な堆積サイズはレーザ
パワーと対物レンズの性能から制限され、現状では25
μm2程度である。従って、これより大きい欠陥に対し
ては、上記の修正を何回か繰シ返して修正がなされる。
FIG. 5 shows the cross-sectional shape of the photomask after the above modification. With this type of equipment, the deposit size that can be deposited at one time is limited by the laser power and the performance of the objective lens, and currently 25
It is about μm2. Therefore, defects larger than this are corrected by repeating the above correction several times.

第6図は堆積膜の付着強度を一層高めたい場合を示すも
ので、修正を2つの工程に分けて行なう方が良いことが
分っている。これは、(al)に平面図、(a2)に断
面図を示すよう罠、欠陥部の1.27面25上にCVD
を行、ない、堆積膜24を形成する第1の工程と、(b
l)に平面図、(b2)に断面図を示すようスリットサ
イズを広げて、欠陥部22を完全に覆うようにしてCV
Dを行ない。
FIG. 6 shows a case where it is desired to further increase the adhesion strength of the deposited film, and it has been found that it is better to carry out the correction in two steps. This is shown in the plan view in (al) and the cross-sectional view in (a2).
a first step of forming a deposited film 24, (b
The slit size is enlarged to completely cover the defective part 22 as shown in the top view in l) and the cross-sectional view in b2.
Do D.

再度堆積膜24を形成する第2の工程から成る。This consists of a second step of forming the deposited film 24 again.

ただし、この場合堆積膜の付着強度を高めるために第1
の工程でのレーザパワーを第2のそれよシ2〜3倍程度
高くしている。なお、第1の工程での膜形成範囲は、可
能な限シエッジ部に近づけて。
However, in this case, in order to increase the adhesion strength of the deposited film, the first
The laser power in the second process is about two to three times higher than that in the second process. Note that the film formation area in the first step is as close as possible to the edge portion.

隙間を少なくした方が良いこと、膜厚は必ずしも完全に
遮光性を有するまで厚くする必要はなく。
It is better to reduce the gap, and the film does not necessarily need to be thick enough to completely block light.

500λ程度以上あれば十分なことが実験の結果分って
いる。従って、第1の工程でのレーザ光照対時間は、第
2のそれの猶程度でよい。
Experiments have shown that approximately 500λ or more is sufficient. Therefore, the laser beam irradiation time in the first step may be about the same as that in the second step.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のレーザCVD法によるフォトマスク欠損
欠陥修正法では、 CVD工程を2つに分けることによ
り付着強度を高めることができる。しかしながら、欠陥
形状は必ずしも矩形でなく、複雑な形状をしている場合
があシ、幾つかの課題点がある。栂#4;λ 第7図はその一例を示すものであって、(a)に示すよ
うに、エツジ部の隙間がどうしても大きくなって付着強
度を十分確保できなかったり、(b)に示すように、第
1の工程をスリットサイズを種々変えて何回も実行しな
ければならないため、修正工程が煩雑になったりするこ
とである。また、スリットサイズの調整はオペレータの
判断にまかされているので、付着強度がオペレータの癖
や熟練度に依存する危険性もある。
In the conventional photomask defect repair method using the laser CVD method described above, the adhesion strength can be increased by dividing the CVD process into two. However, the defect shape is not necessarily rectangular and may have a complicated shape, which poses several problems. Toga #4;λ Figure 7 shows an example of this.As shown in (a), the gap between the edges becomes too large to ensure sufficient adhesion strength, or as shown in (b), Another problem is that the first step has to be performed many times with various slit sizes, making the correction step complicated. Furthermore, since adjustment of the slit size is left to the judgment of the operator, there is a risk that the adhesion strength depends on the operator's habits and skill level.

本発明は従来のもののこのような課題を解決しようとす
るもので、修正の能率を向上し、またオペレータによる
ミスが発生しないフォトマスク欠損欠陥修正方法を提供
するものである。
The present invention aims to solve the above-mentioned problems of the conventional methods, and provides a photomask defect repair method that improves repair efficiency and eliminates operator errors.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のフォトマスクの欠損欠陥修正方法は。 A method for repairing defects in a photomask according to the present invention is as follows.

レーザ光をフォトマスクの欠損欠陥部に集光して。A laser beam is focused on the defective part of the photomask.

レーザCVD法により前記欠損欠陥部に金属膜を堆積さ
せ欠損欠陥を修正する方法において、最初に欠損欠陥を
レーザ加工により矩形の欠陥に整形処理し1次にレーザ
CVD法により該矩形状欠損欠陥を修正することを特徴
とする。
In the method of repairing the defect by depositing a metal film on the defective part by laser CVD, the defect is first shaped into a rectangular defect by laser processing, and then the rectangular defect is removed by laser CVD. It is characterized by correction.

〔実施例〕〔Example〕

次に1本発明について図面を参照して説明する。 Next, one embodiment of the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す工程図である。FIG. 1 is a process diagram showing an embodiment of the present invention.

(、)は欠損欠陥を観察して、この欠陥を完全に覆うよ
うにスリットサイズを調整した状態を示す。伽)はこの
状態で所定のレーザ光を照射して、スリッ示している。
(,) shows the state in which a missing defect was observed and the slit size was adjusted to completely cover the defect. In this state, a predetermined laser beam is irradiated to show the slit.

(c)はスリットサイズを少し縮小して。In (c), the slit size is slightly reduced.

上記欠陥内のガラス面上にCVDを実施する第2の工程
を示している。そして、(d)は最後に上記欠陥を完全
に覆ってクロムパターンとオーバラップするようにスリ
ットサイズを広げてCVDを実施する第3の工程を示し
ている。第2.第3の工程は従来法で述べた第1.第2
の工程と同じである。従来法と異なる点は、欠陥を矩形
に整形する工程がCVDの前に追加されていることであ
る。
A second step of performing CVD on the glass surface within the defect is shown. Finally, (d) shows the third step of enlarging the slit size and performing CVD so as to completely cover the defect and overlap the chrome pattern. Second. The third step is the first step described in the conventional method. Second
The process is the same as that of The difference from the conventional method is that a step of shaping the defect into a rectangle is added before CVD.

ここで、欠陥を矩形に整形する方法について以下に説明
する。これは、フォトマスクの残留欠陥修正時に用いら
れるレーザ蒸発法による。つまり。
Here, a method for shaping a defect into a rectangle will be described below. This is based on the laser evaporation method used when repairing residual defects on photomasks. In other words.

パルス幅が数ns乃至数十nsで、エネルギーが数百μ
Jの・母ミスレーザ光を、前述の結像光学法を用いてフ
ォトマスク上に照射すると、スリット像内のクロムパタ
ーンが瞬時に溶融・蒸発して除去されるという加工法に
基づくものである。一般に、レーザ光を用いたフォトマ
スク欠陥修正装置では。
The pulse width is several ns to several tens of ns, and the energy is several hundred μ.
This is based on a processing method in which when a photomask is irradiated with J's laser beam using the above-mentioned imaging optical method, the chromium pattern within the slit image is instantly melted and evaporated and removed. Generally, photomask defect repair equipment uses laser light.

残留欠陥と欠損欠陥の両方を修正できるように。Ability to correct both residual and missing defects.

上記のパルスレーザ光源とCWレーザ光源(場合によっ
てはCW励起Qスイッチ・母ミスレーザ光源)の2種類
のレーザ光源を備えておシ、随時光路を切換えられるよ
うに構成されている。従って、上述したように欠損欠陥
を矩形に整形することには何ら問題は生じない。
It is equipped with two types of laser light sources, the above-mentioned pulse laser light source and a CW laser light source (in some cases, a CW excitation Q-switch/mother-miss laser light source), and is configured so that the optical path can be switched at any time. Therefore, there is no problem in shaping the missing defect into a rectangular shape as described above.

次に1本発明によれば、 CVDを行なう際のスリット
調整を自動化できるという利点について述べる。ここで
、スリットはモータ駆動されており。
Next, an advantage of the present invention in that slit adjustment during CVD can be automated will be described. Here, the slit is driven by a motor.

たとえば駆動・ぐミスでその開口幅を認識することがで
きるか、あるいは他の検知法により開口幅が自動的に測
定できるものとする。このようにしておけば、まず第1
の工程でスリットサイズを記憶しておき、第2の工程で
はスリットサイズを自動的に1μm程度小さくしてCV
Dを行ない、第3の工程では逆に自動的に5肉程度大き
くしてCVDを行なえばよい。勿論、レーザ・やワーや
照射時間もスリットサイズに合せてプログラムしておく
ことができる。このように、第1の工程で一度オペレー
タによりスリットサイズを設定した後はすべてを自動化
することができる。
For example, it is assumed that the opening width can be recognized by driving/mistaking, or that the opening width can be automatically measured by other detection methods. If you do this, the first
The slit size is memorized in the second step, and the slit size is automatically reduced by about 1 μm in the second step.
D, and in the third step, the thickness is automatically increased by about 5 and CVD is performed. Of course, the laser beam and irradiation time can also be programmed according to the slit size. In this way, once the slit size is set by the operator in the first step, everything can be automated.

第2図は本発明の第2の実施例を示す工程図である。こ
れは、欠陥サイズが大きい場合、つまシ欠陥サイズが1
回で可能な最大CVD面積(従来装部側では約25μm
2程度)を超えた場合の実施例である。例えば、今欠陥
サイズが約50層であるとする。この場合、第1の工程
は4回に分けて実施する。
FIG. 2 is a process diagram showing a second embodiment of the present invention. This means that if the defect size is large, the pick defect size is 1.
Maximum CVD area possible in one cycle (approximately 25 μm on the conventional mounting side)
This is an example in the case of exceeding 2). For example, assume that the defect size is approximately 50 layers. In this case, the first step is performed in four steps.

すなわち、スリットサイズを25μm2程度にして。That is, the slit size is set to about 25 μm2.

順番にレーザ加工を行なう。(b)図にこの工程の途中
段階を示す。このようにして、4回の加工が終了したら
2次に第2の工程のCVDを行なう。この場合はスリッ
トサイズを23μm程度にして4回に分けて順次実施す
る。(C)はこの第2の工程の終了時を示す。そして最
後に、第3の工程を行なう。
Perform laser processing in order. Figure (b) shows an intermediate stage of this process. In this manner, after completing four processing steps, the second step of CVD is performed. In this case, the slit size is set to about 23 μm, and the process is divided into four steps and carried out sequentially. (C) shows the end of this second step. Finally, perform the third step.

この場合は、スリットサイズを20μm2程度にして。In this case, the slit size should be about 20 μm2.

9回に分けて欠陥全体にCVDを実施する。(d)図に
第3の工程の途中段階を示す。なお、この工程では、隣
接する堆積膜は隙間が生じないように少しずつ重なり合
って形成されねばならない。
CVD is performed on the entire defect in 9 times. Figure (d) shows an intermediate stage of the third process. In this step, adjacent deposited films must be formed so as to overlap little by little so that no gaps are formed.

次に1本実施例においても工程の自動化が計れることを
説明する。まず、第2図(、)に示すように欠陥の大き
さを知るためにレーザ加工の中心位置(普通は接眼レン
ズのクロスライン位置)を欠陥の対角位置P1とp2に
合わせて、その座標値から欠陥サイズを計算する。しか
る後に、その面積を小領域に等分割し、各小領域の中心
座標を計算しておく。次に、この小領域サイズにスリッ
トサイズを自動的に調整し、XYステージをその中心位
置に自動的に移動させてレーザ加工を実行して第1の工
程を終了する。次の第2の工程では、各小領域の中心位
置を同じにしてスリットサイズを第1の工程よシ1ρm
程度小さくして、順次CVDを実行する。第3の工程で
は、欠陥全体の大きさと形から判断して最適なスリット
サイズと各小領域の中心座標を計算し、第2の工程と同
様に順次(至)を実行する。このために、あらかじめ欠
陥の大きさと最適な小領域サイズの関係式をコンピュー
タに記憶させておく必要がある。
Next, it will be explained that the process can be automated in this embodiment as well. First, as shown in Figure 2 (,), in order to find out the size of the defect, the center position of laser processing (usually the cross line position of the eyepiece) is aligned with the diagonal positions P1 and p2 of the defect, and its coordinates are Calculate the defect size from the value. Thereafter, the area is equally divided into small regions, and the center coordinates of each small region are calculated. Next, the slit size is automatically adjusted to this small area size, the XY stage is automatically moved to its center position, laser processing is performed, and the first step is completed. In the next second step, the center position of each small region is made the same and the slit size is changed from the first step to 1μm.
CVD is performed one after another by reducing the amount. In the third step, the optimum slit size and the center coordinates of each small region are calculated based on the size and shape of the entire defect, and the steps are sequentially executed in the same way as the second step. For this purpose, it is necessary to store in advance a relational expression between the size of the defect and the optimum small area size in the computer.

以上述べたように2本発明によれば、したがって、最初
に欠陥の大きさを知るための作業をオペレータが行なえ
ば、その後の工程は完全に自動化できる。
As described above, according to the present invention, if the operator first performs the work to find out the size of the defect, the subsequent steps can be completely automated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、欠損欠陥をあらかじめレ
ーザ加工により矩形に整形した後、レーザCVD法によ
り修正を実施するので、 CVDを実施する際のスリッ
トサイズの調整が容易となり、ひいてはオペレータによ
るばらつきを軽減できて。
As explained above, in the present invention, the defect is shaped into a rectangle by laser processing in advance and then corrected by the laser CVD method. This makes it easy to adjust the slit size when performing CVD, and this also reduces operator variations. I was able to reduce this.

修正の信頼性が向上するという効果がある。さらに、欠
陥が大きい場合従来法では修正の手間が煩雑となるが9
本発明によれば修正工程を自動化できるので、修正の能
率が上がるばかりでなく、オペレータによるミスが発生
しないという利点がある。
This has the effect of improving the reliability of correction. Furthermore, if the defect is large, the conventional method requires a lot of trouble to correct it.
According to the present invention, since the correction process can be automated, there is an advantage that not only the efficiency of correction is improved, but also mistakes by operators do not occur.

ット、5・・・スリット照明光源、6・・・グイクロイ
ックミラー、8・・・反射照明光源、9・・・接眼光学
系。
5... Slit illumination light source, 6... Guicroic mirror, 8... Reflective illumination light source, 9... Eyepiece optical system.

10・・・対物レンズ、14・・・フォトマスク、16
・・・金属ガス供給装置、19・・・チェンバ、20・
・・透過照明光源、21・・・クロムパターン、22・
・・欠損欠陥、23・・・スリット像、 24−・・堆
積膜、25・・・ガラス基板。
10... Objective lens, 14... Photomask, 16
...Metal gas supply device, 19...Chamber, 20.
...Transmitted illumination light source, 21...Chrome pattern, 22.
... Loss defect, 23... Slit image, 24-... Deposited film, 25... Glass substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す工程図。 第2図は第2の実施例を示す工程図、第3図は従来装置
の一般的構成図、第4図はフォトマスクの観察像、第5
図は欠損欠陥修正後のフォトマスク断面図、第6図及び
第7図は従来法による修正工程図である。 記号の説明:1・・・レーザ光源、2・・・ビームエキ
スパンダ、3・・・グイクロイックミラー、4・・・ス
リ〇− (b) (C) (d) 第4図 (α1) 第6図 (α2) (bl) (b2) 第7区 (α) (b)
FIG. 1 is a process diagram showing a first embodiment of the present invention. Fig. 2 is a process diagram showing the second embodiment, Fig. 3 is a general configuration diagram of a conventional device, Fig. 4 is an observed image of a photomask, and Fig. 5 is a process diagram showing the second embodiment.
The figure is a cross-sectional view of a photomask after defect correction, and FIGS. 6 and 7 are correction process diagrams using a conventional method. Explanation of symbols: 1...Laser light source, 2...Beam expander, 3...Gicroic mirror, 4...Suri〇- (b) (C) (d) Figure 4 (α1) Figure 6 (α2) (bl) (b2) Ward 7 (α) (b)

Claims (1)

【特許請求の範囲】[Claims] 1、レーザ光をフォトマスクの欠損欠陥部に集光してレ
ーザCVD法により該欠損欠陥部に金属膜を堆積させて
欠損欠陥を修正する方法において、最初に欠損欠陥をレ
ーザ加工により矩形の欠陥に整形処理し、次にレーザC
VD法により該矩形状欠損欠陥を修正することを特徴と
するフォトマスクの欠損欠陥修正方法。
1. In a method of repairing a defect by focusing a laser beam on a defective part of a photomask and depositing a metal film on the defective part by laser CVD method, the defect is first processed into a rectangular defect by laser processing. Shaped, then laser C
A photomask defect repair method comprising repairing the rectangular defect using a VD method.
JP2263289A 1989-02-02 1989-02-02 Photomask defect defect correction method Expired - Lifetime JPH0812417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263289A JPH0812417B2 (en) 1989-02-02 1989-02-02 Photomask defect defect correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263289A JPH0812417B2 (en) 1989-02-02 1989-02-02 Photomask defect defect correction method

Publications (2)

Publication Number Publication Date
JPH02204746A true JPH02204746A (en) 1990-08-14
JPH0812417B2 JPH0812417B2 (en) 1996-02-07

Family

ID=12088205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263289A Expired - Lifetime JPH0812417B2 (en) 1989-02-02 1989-02-02 Photomask defect defect correction method

Country Status (1)

Country Link
JP (1) JPH0812417B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350219A (en) * 2005-06-20 2006-12-28 Sii Nanotechnology Inc Method for correcting defect in gray tone pattern film
JP2007123534A (en) * 2005-10-27 2007-05-17 Sony Corp Method and device for correcting defect in wiring pattern
JP2007232964A (en) * 2006-02-28 2007-09-13 Laserfront Technologies Inc Method for correcting defect of photomask and defect correcting device
JP2008058943A (en) * 2006-08-02 2008-03-13 Sk Electronics:Kk Defect correction method for halftone mask and halftone mask with corrected defect
JP2009014934A (en) * 2007-07-03 2009-01-22 Hoya Corp Method for correcting defect of gray tone mask, method for manufacturing gray tone mask, gray tone mask, and method for transferring pattern
CN101745743A (en) * 2008-12-11 2010-06-23 奥林巴斯株式会社 Laser repair apparatus, laser repair method, and information processing apparatus
US7771899B2 (en) 2006-09-29 2010-08-10 Hynix Semiconductor Inc. Method for repairing photomask pattern defects
JP2011238801A (en) * 2010-05-11 2011-11-24 Dainippon Printing Co Ltd Manufacturing method of reflective mask
JP2012073553A (en) * 2010-09-30 2012-04-12 Hoya Corp Defect correcting method of photomask, manufacturing method of photomask, photomask, and pattern transfer method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693323A (en) * 1979-12-26 1981-07-28 Nec Corp Correcting method for photomask using laser beam and device thereof
JPS5785228A (en) * 1980-11-17 1982-05-27 Nec Corp Defect correction of photo mask using laser
JPS60140825A (en) * 1983-12-28 1985-07-25 Hitachi Ltd Method and apparatus for correcting defect of photo- mask
JPS6418149A (en) * 1987-07-14 1989-01-20 Nec Corp Device for correcting white defect of photomask

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693323A (en) * 1979-12-26 1981-07-28 Nec Corp Correcting method for photomask using laser beam and device thereof
JPS5785228A (en) * 1980-11-17 1982-05-27 Nec Corp Defect correction of photo mask using laser
JPS60140825A (en) * 1983-12-28 1985-07-25 Hitachi Ltd Method and apparatus for correcting defect of photo- mask
JPS6418149A (en) * 1987-07-14 1989-01-20 Nec Corp Device for correcting white defect of photomask

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350219A (en) * 2005-06-20 2006-12-28 Sii Nanotechnology Inc Method for correcting defect in gray tone pattern film
JP4559921B2 (en) * 2005-06-20 2010-10-13 エスアイアイ・ナノテクノロジー株式会社 Gray tone pattern film defect correction method
JP2007123534A (en) * 2005-10-27 2007-05-17 Sony Corp Method and device for correcting defect in wiring pattern
JP2007232964A (en) * 2006-02-28 2007-09-13 Laserfront Technologies Inc Method for correcting defect of photomask and defect correcting device
JP2008058943A (en) * 2006-08-02 2008-03-13 Sk Electronics:Kk Defect correction method for halftone mask and halftone mask with corrected defect
US7771899B2 (en) 2006-09-29 2010-08-10 Hynix Semiconductor Inc. Method for repairing photomask pattern defects
JP2009014934A (en) * 2007-07-03 2009-01-22 Hoya Corp Method for correcting defect of gray tone mask, method for manufacturing gray tone mask, gray tone mask, and method for transferring pattern
CN101745743A (en) * 2008-12-11 2010-06-23 奥林巴斯株式会社 Laser repair apparatus, laser repair method, and information processing apparatus
JP2011238801A (en) * 2010-05-11 2011-11-24 Dainippon Printing Co Ltd Manufacturing method of reflective mask
JP2012073553A (en) * 2010-09-30 2012-04-12 Hoya Corp Defect correcting method of photomask, manufacturing method of photomask, photomask, and pattern transfer method

Also Published As

Publication number Publication date
JPH0812417B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US7994450B2 (en) Debris minimization and improved spatial resolution in pulsed laser ablation of materials
KR100937767B1 (en) Apparatus for modifying a metal patterning using the laser and method therefor
JP2785803B2 (en) Method and apparatus for correcting white spot defect on photomask
JPH02204746A (en) Method for correcting chipping defect of photomask
EP0504850B1 (en) Laser machining method and apparatus therefor
JP2007185664A (en) Laser beam inside-scribing method
JPH05192779A (en) Laser beam machine
JP3784543B2 (en) Pattern correction apparatus and correction method
JP2697026B2 (en) Photomask defect defect repair method
US20070032050A1 (en) Mask for sequential lateral solidification and method of manufacturing the same
JPS6220871A (en) Deposition device for metallic thin film
JP3063677B2 (en) Laser processing apparatus and laser processing method
JPS63155145A (en) Correcting method for white spot defect of mask
JPH04356393A (en) Laser beam machining optical system and laser beam machining method
JP2639346B2 (en) Photomask defect defect repair method and apparatus
Oprysko et al. Visible-laser repair of clear defects in photomasks
JP2001018086A (en) Method and device for laser beam machining
WO2020209004A1 (en) Laser repair method and laser repair device
JPH05237676A (en) Laser beam machine
JPH08160600A (en) Method for correcting chipping and defect of photomask and device therefor
JP2003311457A (en) Laser beam machining method and device
JPS627691B2 (en)
JPH0857678A (en) Laser beam processing machine
JPH01309245A (en) Pattern film correction method in focusing ion beam device
JPH10333319A (en) Laser black defect correcting device