JPH0220413B2 - - Google Patents

Info

Publication number
JPH0220413B2
JPH0220413B2 JP56002649A JP264981A JPH0220413B2 JP H0220413 B2 JPH0220413 B2 JP H0220413B2 JP 56002649 A JP56002649 A JP 56002649A JP 264981 A JP264981 A JP 264981A JP H0220413 B2 JPH0220413 B2 JP H0220413B2
Authority
JP
Japan
Prior art keywords
tubular body
mold
neck portion
bottomed parison
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56002649A
Other languages
Japanese (ja)
Other versions
JPS57116618A (en
Inventor
Keisuke Nakada
Jinichi Yazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP56002649A priority Critical patent/JPS57116618A/en
Publication of JPS57116618A publication Critical patent/JPS57116618A/en
Publication of JPH0220413B2 publication Critical patent/JPH0220413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/18Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using several blowing steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は多層延伸吹込ボトルの製造方法に関
し、さらに詳しくは底部接合部にピンホールの形
成されるおそれのない延伸吹込成形により分子配
向された多層プラスチツクボトルの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer stretch blow molding bottle, and more particularly to a method for manufacturing a molecularly oriented multilayer plastic bottle by stretch blow molding without the possibility of forming pinholes at the bottom joint. .

内外層がポリオレフイン樹脂、中間層がエチレ
ン―ビニルアルコール共重合体あるいはポリアミ
ド樹脂(必要に応じ内層と中間層および外層と中
間層の間に例えばカルボキシル基変性ポリオレフ
イン樹脂よりなる接着剤層が介挿された)よりな
る積層体などのように、耐透湿性の優れた樹脂と
耐酸素透過性の大きい樹脂の組合せよりなる積層
体によつて形成された容器は優れた容器特性を有
しているが、このような容器を延伸吹込成形法に
よつて形成して樹脂を分子配向させることによ
り、透明性、強度、耐衝撃性、ガスバリヤー性等
の容器特性をさらに向上させることができる。
The inner and outer layers are made of polyolefin resin, and the middle layer is made of ethylene-vinyl alcohol copolymer or polyamide resin (if necessary, an adhesive layer made of, for example, carboxyl group-modified polyolefin resin is interposed between the inner layer and the middle layer and between the outer layer and the middle layer). Containers formed from laminates made of a combination of resins with excellent moisture permeability and resins with high oxygen permeability, such as laminates made of By forming such a container by a stretch blow molding method and molecularly orienting the resin, container properties such as transparency, strength, impact resistance, and gas barrier properties can be further improved.

このような多層延伸吹込成形容器の製造法とし
て、例えば特開昭49−32962号に開示されている
ように、ポリプロピレンを主体とする多層の溶融
押出し管状体を急冷し、所定の長さに切断してか
ら、これを分子配向温度(ポリプロピレンの晶質
溶融温度と熱的融点の間の温度)において管軸方
向に延伸配向させ、次いで金型内で吹込成形する
方法が知られている。この方法の場合、容器底部
の形成は、分子配向温度の管軸方向に延伸された
管状体の一端部を半割金型1の底部の対向する面
1aの間で押圧する(第1図)ことによつて行な
われ、底部には突出した接合部2が形成される。
この場合接合部2にピンホールが生じ、内容液の
漏洩が起ることがある。その理由については必ず
しも明らかでないが、およそ次のように推測され
る:(1)融点以下での接合であるため、接合面2a
が完全に一体化接合されない。(2)内層3a、外層
3b(例えばポリプロピレン層)と中間層3c(例
えばエチレン―ビニルアルコール共重合体)の延
伸温度における変形強度が異なるため、特に中間
層3cの方が変形強度が大きい場合は、内層3a
の変形が中間層3cの変形に追従出来ず矢印4方
向に延びるような亀裂(ピンホール)を生ずる。
さらに内層3aと中間層3cの接合部2における
界面にもスリツプ等による(内層3aと中間層3
cの間に図示されない接着剤層(例えばカルボキ
シル基変性ポリプロピレンよりなる)が介挿され
ている場合でも)ピンホールが生じ易い。従つて
矢印4および矢印5方向に沿つてピンホールが貫
通し易い。
As a manufacturing method for such a multilayer stretch blow-molded container, for example, as disclosed in JP-A-49-32962, a multilayer melt-extruded tubular body mainly made of polypropylene is rapidly cooled and then cut into a predetermined length. There is a known method in which this is then stretched and oriented in the tube axis direction at a molecular orientation temperature (a temperature between the crystalline melting temperature and the thermal melting point of polypropylene), and then blow molded in a mold. In this method, the bottom of the container is formed by pressing one end of a tubular body stretched in the tube axis direction at a molecular orientation temperature between opposing surfaces 1a of the bottom of the half-split mold 1 (Fig. 1). A protruding joint 2 is formed at the bottom.
In this case, a pinhole may be formed in the joint 2, and the liquid content may leak. The reason for this is not necessarily clear, but it is estimated as follows: (1) Since the bonding is performed below the melting point, the bonding surface 2a
are not completely integrated. (2) Since the deformation strength of the inner layer 3a, the outer layer 3b (e.g. polypropylene layer) and the intermediate layer 3c (e.g. ethylene-vinyl alcohol copolymer) at the stretching temperature is different, especially when the deformation strength of the intermediate layer 3c is higher, , inner layer 3a
The deformation of the intermediate layer 3c cannot follow the deformation of the intermediate layer 3c, resulting in a crack (pinhole) extending in the direction of arrow 4.
Furthermore, the interface at the joint 2 between the inner layer 3a and the intermediate layer 3c is also caused by slips, etc. (the inner layer 3a and the intermediate layer 3c
Pinholes are likely to occur even if an adhesive layer (not shown) (made of carboxyl group-modified polypropylene, for example) is interposed between c. Therefore, pinholes can easily penetrate along the directions of arrows 4 and 5.

さらに上記製造法の場合、(1)成形温度が低いた
めネツク部のネジの形状が正確に出難い、(2)接合
部2におけるガスバリヤ性が劣る(第3図のよう
に中間層3c(例えば耐酸素透過性の大きいエチ
レン―ビニルアルコール共重合体よりなる)によ
つて完全に閉塞されていないから)、(3)金型の構
造上、炭酸ガス飲料用容器等の場合に要求される
耐圧性のすぐれた半球状の底形状とすることがほ
とんど不可能である、(4)ネツク部のネジ谷径によ
り管状体の外径が規制されるため、管状体を肉厚
としなければならず、そのため延伸温度までの加
熱に時間がかかり、壁断面の温度差も大きくなり
易い、等の問題点を有する。
Furthermore, in the case of the above manufacturing method, (1) the shape of the thread at the neck part is difficult to accurately form due to the low molding temperature, (2) the gas barrier properties at the joint part 2 are poor (as shown in Fig. 3, the intermediate layer 3c (for example, (3) Due to the structure of the mold, the pressure resistance required for carbonated beverage containers, etc. (4) Since the outer diameter of the tubular body is regulated by the thread diameter of the neck, the tubular body must be thick. Therefore, there are problems such as it takes time to heat up to the stretching temperature and the temperature difference in the wall cross section tends to become large.

本発明は以上に述べたような従来技術の問題点
の解決を図ることを目的とする。
The present invention aims to solve the problems of the prior art as described above.

本発明の多層延伸吹込ボトルの製造方法は、ね
じ部を有するネツク部を備える多層延伸吹込ボト
ルの製造方法において、多層押出しダイスによ
り、多層のプラスチツク管状体を溶融押出し、溶
融状態の該管状体の一部分の上下端を、該ねじ部
に対応する形状の周溝を内面上方に有し、かつ冷
却された、1対の半割金型によつて閉じ、直ちに
閉じられた該管状体の部分の該周溝のレベルより
上方の部分に中空針を貫入して、該中空針を通つ
て加圧気体を閉じられた該管状体部分内に吹込ん
で、該管状体部分を該金型内面に密接せしめて、
該管状体を主として構成する層のプラスチツクス
の結晶化開始温度以下に急冷し、その後該金型を
開いて該ネツク部の上端において該管状体部分を
切断して、該ネツク部を有する有底パリソンを形
成し、該有底パリソンを該ネツク部を除いて延伸
成形可能な温度に均一に加熱した後、該有底パリ
ソンを延伸吹込成形金型に装入し、該ネツク部を
固定した状態で軸方向に延伸と同時に、または僅
かに遅れて加圧気体を該有底パリソン内に吹込む
ことを特徴とする。
The method for manufacturing a multilayer stretched blow bottle of the present invention includes melting and extruding a multilayer plastic tubular body using a multilayer extrusion die, and extruding the multilayer plastic tubular body in a molten state. The upper and lower ends of the part are closed by a pair of cooled half molds, which have a circumferential groove on the inner surface upper part of the shape corresponding to the threaded part, and the part of the tubular body is immediately closed. A hollow needle is inserted into a portion above the level of the circumferential groove, and pressurized gas is blown into the closed tubular body portion through the hollow needle to bring the tubular body portion into close contact with the inner surface of the mold. Please,
The tubular body is rapidly cooled to a temperature below the crystallization start temperature of the plastic layer mainly constituting the tubular body, and then the mold is opened and the tubular body portion is cut at the upper end of the neck portion to form a bottomed body having the neck portion. After forming a parison and uniformly heating the bottomed parison except for the neck portion to a temperature at which stretch molding is possible, the bottomed parison is charged into a stretch blow molding mold, and the neck portion is fixed. It is characterized in that pressurized gas is blown into the bottomed parison at the same time as or slightly after the stretching in the axial direction.

さらに本発明は、上記製造方法に加えて、(1)溶
融状態の該管状体の一部分の上下端を、一対の内
面に垂下部と該垂下部に連接して内下方向に延び
るテーパ部を有する下部突出部を有する冷却され
た半割金型によつて閉じること、もしくは(2)該管
状体部分を該金型内面に密接せしめ、密接とほぼ
同時に該管状体部分の該周溝のレベルより上方の
部分に第2の中空針を貫入して、第2の中空針を
通つて冷水を該管状体部分内に送入することを特
徴とする多層延伸吹込ボトルの製造方法を提供す
るものである。
Furthermore, in addition to the above manufacturing method, the present invention provides the following features: (1) The upper and lower ends of a portion of the tubular body in a molten state are provided with a hanging portion on a pair of inner surfaces and a tapered portion connected to the hanging portion and extending inwardly and downwardly. or (2) bringing the tubular body portion into close contact with the inner surface of the mold, and approximately at the same time as the close contact, the level of the circumferential groove of the tubular body portion is closed. Provided is a method for producing a multilayer stretched blow bottle, characterized in that a second hollow needle is inserted into the upper part and cold water is fed into the tubular body part through the second hollow needle. It is.

以下実施例を説明するための図面を参照しなが
ら、本発明について説明する。
The present invention will be described below with reference to drawings for explaining embodiments.

第2図において、6は多層押出しダイスであつ
て、ノズル(図示されない)から多層のプラスチ
ツク管状体7(以下管状体とよぶ)が溶融押出し
される。管状体7の構成として、第3図に示され
るような、内層7a、外層7bがポリプロピレン
(本明細書においては結晶性ホモポリプロピレン
もしくはプロピレンを主体とする結晶性コポリマ
ー、および上記を主体とする結晶性ブレンド等を
指称する)、中間層7cがエチレン―ビニルアル
コール共重合体(例えばビニルアルコール含有率
約40〜80モル%)よりなり、内層7aと中間層7
cとの間および外層7bと中間層7cとの間にカ
ルボキシル基グラフト変性ポリプロピレンの接着
剤層7dが介挿された5層構造(厚さ比は例えば
内層7a、外層7b:中間層7c:接着剤層7d
=100:2:4)等が挙げられるが、本発明は上
記構成に限定されるものでなく、例えば中間層7
cはポリアミド樹脂(例えばナイロン6とナイロ
ン66よりなる共重合体)であつてもよい。また
内層、7aおよび外層7bはポリプロピレン以外
のポリオレフイン樹脂であつてもよい。さらに内
層と外層がカルボキシル基変性ポリオレフイン樹
脂(例えばカルボキシル基変性ポリプロピレン)、
中間層がエチレン―ビニルアルコール共重合体も
しくはポリアミド樹脂よりなる3層構造であつて
もよい。
In FIG. 2, reference numeral 6 denotes a multilayer extrusion die, from which a multilayer plastic tubular body 7 (hereinafter referred to as tubular body) is melt-extruded from a nozzle (not shown). The structure of the tubular body 7 is as shown in FIG. 3, in which the inner layer 7a and the outer layer 7b are made of polypropylene (herein, crystalline homopolypropylene or a crystalline copolymer mainly composed of propylene, and crystals mainly composed of the above). The intermediate layer 7c is made of an ethylene-vinyl alcohol copolymer (for example, vinyl alcohol content is about 40 to 80 mol%), and the inner layer 7a and the intermediate layer 7
A five-layer structure in which an adhesive layer 7d of carboxyl group-grafted polypropylene is interposed between the outer layer 7b and the intermediate layer 7c and between the outer layer 7b and the intermediate layer 7c (the thickness ratio is, for example, inner layer 7a, outer layer 7b:intermediate layer 7c:adhesion). agent layer 7d
= 100:2:4), but the present invention is not limited to the above configuration; for example, the intermediate layer 7
c may be a polyamide resin (for example, a copolymer of nylon 6 and nylon 66). Moreover, the inner layer 7a and the outer layer 7b may be made of polyolefin resin other than polypropylene. Furthermore, the inner layer and outer layer are made of carboxyl group-modified polyolefin resin (for example, carboxyl group-modified polypropylene),
The intermediate layer may have a three-layer structure made of ethylene-vinyl alcohol copolymer or polyamide resin.

8は押出しダイス6のノズルの直下に設けられ
たパリソン形成用の金型であつて、対向する一対
の半割金型8aよりなる。半割金型8aは上部お
よび底部に夫々突出部9および10を有し、その
中間に管状体7により若干内径の大きいキヤビテ
イ11(対向する上部突出部9および下部突出部
10により管状体7のパリソンとなるべき部分を
含む所定部分7′の上下端を押圧融着させた状態
において)を有している。半割金型8aの内面上
部には、パリソンのネジ部に対応する形状の周溝
12が形成されている。また半割金型8aには冷
却孔13が設けられており、内部を例ええば5〜
10℃の冷却水が貫流している。
A mold 8 for forming a parison is provided directly below the nozzle of the extrusion die 6, and is composed of a pair of half-split molds 8a facing each other. The half-split mold 8a has protrusions 9 and 10 at the top and bottom, respectively, and a cavity 11 with a slightly larger inner diameter is provided in the middle by the tubular body 7 (the opposing upper protrusion 9 and lower protrusion 10 allow the tubular body 7 to (in a state in which the upper and lower ends of a predetermined portion 7' including a portion to become a parison are pressed and fused). A circumferential groove 12 having a shape corresponding to the threaded portion of the parison is formed in the upper part of the inner surface of the half-split mold 8a. In addition, cooling holes 13 are provided in the half-split mold 8a, and the inside of the mold is, for example, 5 to 5.
Cooling water at 10℃ flows through it.

第3図に示されるように、下部突出部10の内
面は紙面に対し直角方向に延びる垂下部14(好
ましくは高さ約3〜4mm)と、その下方に連接す
る内下方に延びるテーパ部15(対向するテーパ
部間のなす角度は好ましくは約60〜90度)を備え
ることが望ましい。このようにすることにより、
第3図に示されるように管状体7の両側の中間層
7cが下端において接合し、接合部16の下部は
中間層7cによつて閉塞されるので、中間層7c
によるガスバリヤーが確保されるからである。
As shown in FIG. 3, the inner surface of the lower protrusion 10 includes a hanging portion 14 (preferably about 3 to 4 mm in height) extending perpendicular to the plane of the paper, and a tapered portion 15 extending inwardly downward and connected to the lower part. (The angle between the opposing tapered portions is preferably about 60 to 90 degrees). By doing this,
As shown in FIG. 3, the intermediate layers 7c on both sides of the tubular body 7 are joined at the lower end, and the lower part of the joint 16 is closed by the intermediate layer 7c.
This is because a gas barrier is ensured.

一方の半割金型8aの周溝12の若干上方に透
孔17が設けられ、透孔17内を中空針18が摺
動可能に挿通している。19は中空針18を透孔
17に沿つて摺動させるためのエアシリンダーで
あつて、導管20より加圧空気が供給されると中
空針18は図の左方へ進行して、管状体の所定部
分7′(以下管状体部分とよぶ)の壁部を穿孔し
て、その先端18aは第4図に示されるように管
状体部分7′の内部に貫入し、一方導管21より
加圧空気が供給されると、第2図に示されるよう
に先端18aは原位置に復帰するように構成され
ている。22は中空針18内にパリソン吹込成形
用の加圧空気を送るための加圧空気源であり、2
3は方向切替電磁弁である。半割金型8aの周溝
12の若干上方に第2の透孔24および、透孔2
4を摺動可能に挿通する第2の中空針25が設け
られており、中空針25はエアシリンダー19と
同様の構成の図示されないエアシリンダーによつ
て透孔24内を往復動する。中空針25は図示さ
れない電磁弁を介して図示されない冷却水源に連
通する。そして中空針18および25の往復動な
らびに電磁弁23の切替えは、図示されない制御
機構により後記のタイミングで行われるように構
成されている。
A through hole 17 is provided slightly above the circumferential groove 12 of one half mold 8a, and a hollow needle 18 is slidably inserted through the through hole 17. Reference numeral 19 denotes an air cylinder for sliding the hollow needle 18 along the through hole 17. When pressurized air is supplied from the conduit 20, the hollow needle 18 advances to the left in the figure and slides through the tubular body. A hole is made in the wall of a predetermined portion 7' (hereinafter referred to as the tubular body portion), and its tip 18a penetrates into the interior of the tubular body portion 7' as shown in FIG. When supplied, the tip 18a is configured to return to its original position as shown in FIG. 22 is a pressurized air source for sending pressurized air for parison blow molding into the hollow needle 18;
3 is a direction switching solenoid valve. A second through hole 24 and a through hole 2 are formed slightly above the circumferential groove 12 of the half mold 8a.
A second hollow needle 25 is provided which is slidably inserted through the hole 24, and the hollow needle 25 is reciprocated within the through hole 24 by an air cylinder (not shown) having the same configuration as the air cylinder 19. The hollow needle 25 communicates with a cooling water source (not shown) via a solenoid valve (not shown). The reciprocating movement of the hollow needles 18 and 25 and the switching of the solenoid valve 23 are configured to be performed at timings described later by a control mechanism (not shown).

以上の装置により、有底パリソン26(第5
図、第6図参照)の形成は次のようにして行われ
る。溶融状態にある管状体部分7′の上下端を金
型8によつて第2図に示されるように閉じ、底部
に接合部16を形成し、直ちに中空針18を第2
図の左方に進行させ、先端18aが管状体部分
7′内に入ると同時に電磁弁23を切替え、加圧
空気を管状体部分7′内に吹込んで、第4図に示
すように管状体部分7′をキヤビテイ11の内壁、
すなわち金型8の内面に密接せしめて冷却し、同
時にネジ部27を形成し、パリソンブランク2
6′を形成する。延伸性と透明性の見地からパリ
ソンブランク26′には巨大な球晶を発達せしめ
ない必要がある。そのため上記冷却は少なくとも
パリソンブランク26′を主として構成する層の
プラスチツクス、例えば前記の例の場合はポリプ
ロピレンの結晶化開始温度(通常約100〜120℃)
以下まで急冷するような状態で行なう必要があ
る。パリソンブランク26′の壁厚が厚く、外面
のみよりの冷却ではパリソンブランク26′の内
面側が十分に急冷されない場合は、パリソンブラ
ンク26′内に冷水を送入すればよい。すなわち
前記密接によりパリソンブランク26′が形成さ
れると直ちに中空針25をパリソンブランク2
6′内に貫入せしめ、同時に中空針25より冷水
をパリソンブランク26′内に送入し(例えば霧
状に噴射することにより)、同時に電磁弁23を
切替える。冷水のためバリソンブランク26′内
は急冷され、内部の空気および発生した水蒸気は
中空針18を通つて電磁弁23の放出口23aか
ら大気中に放出される。次に中空針18および2
5を原位置に復帰させてから金型8を開く。その
後またはそれ以前の適当な時期にカツター28に
より管状体7の未成形部分の下端部を切断する。
次にパリソンブランク26′のネジ部27の上部
と中空針18による穿孔部の中間の所定位置にお
いてパリソンブランク26′を直径方向に切断し
て、ネツク部29および底部30を有する有底パ
リソン26を形成する。必要に応じバリ等を除く
機械仕上を行なつてから、以下に例示されるよう
な方法で有底パリソン26を2軸延伸吹込成形す
る。なお有底パリソン26の胴部31および底部
30の直径がネツク部29のそれより若干大きく
なるように金型8のキヤビテイ11の形状を定め
てもよい。かくすることにより、円周方向の延伸
倍率は若干小さくなるが、パリソン胴部の壁厚が
薄くなるので急冷がより容易になり、かつ延伸吹
込成形のための加熱時間が短縮されるので、粗大
な球晶の生成の防止がより容易になる。
With the above device, the bottomed parison 26 (fifth
6) is formed in the following manner. The upper and lower ends of the molten tubular body portion 7' are closed by the mold 8 as shown in FIG. 2, a joint 16 is formed at the bottom, and the hollow needle 18 is immediately inserted into the second
As soon as the tip 18a enters the tubular body portion 7', the solenoid valve 23 is switched to blow pressurized air into the tubular body portion 7', and the tubular body 7' is moved to the left as shown in FIG. The part 7' is the inner wall of the cavity 11,
That is, the parison blank 2 is cooled by being brought into close contact with the inner surface of the mold 8, and at the same time the threaded portion 27 is formed.
6' is formed. From the viewpoint of stretchability and transparency, it is necessary that the parison blank 26' not develop large spherulites. Therefore, the above-mentioned cooling is performed at least to the crystallization initiation temperature (usually about 100 to 120°C) of the plastic layer mainly constituting the parison blank 26', for example, polypropylene in the above example.
It is necessary to carry out the process in such a way that it is rapidly cooled to below. If the parison blank 26' has a thick wall and the inner surface of the parison blank 26' is not sufficiently rapidly cooled by cooling only the outer surface, cold water may be introduced into the parison blank 26'. That is, as soon as the parison blank 26' is formed by the above-mentioned close contact, the hollow needle 25 is inserted into the parison blank 2.
At the same time, cold water is introduced into the parison blank 26' through the hollow needle 25 (for example, by spraying it in the form of a mist), and at the same time, the solenoid valve 23 is switched. The interior of the balisong blank 26' is rapidly cooled by the cold water, and the air inside and the generated water vapor are discharged into the atmosphere from the discharge port 23a of the electromagnetic valve 23 through the hollow needle 18. Next, hollow needles 18 and 2
5 is returned to its original position, and then the mold 8 is opened. After that or at an appropriate time, the cutter 28 cuts the lower end of the unformed portion of the tubular body 7.
Next, the parison blank 26' is cut in the diametrical direction at a predetermined position between the upper part of the threaded part 27 of the parison blank 26' and the perforated part by the hollow needle 18, to obtain a bottomed parison 26 having a neck part 29 and a bottom part 30. Form. After performing mechanical finishing to remove burrs and the like as necessary, the bottomed parison 26 is biaxially stretched and blow molded by a method as exemplified below. Note that the shape of the cavity 11 of the mold 8 may be determined so that the diameters of the body portion 31 and bottom portion 30 of the bottomed parison 26 are slightly larger than those of the neck portion 29. By doing this, the stretching ratio in the circumferential direction becomes slightly smaller, but the wall thickness of the parison body becomes thinner, so rapid cooling becomes easier, and the heating time for stretch blow molding is shortened, so it is possible to This makes it easier to prevent the formation of spherulites.

第7図において、32は延伸吹込成形用金型の
胴型、33はネツク部、34は底型であり、夫々
図示されない導孔内を貫流する液体によつて内面
は所定温度に保持されている。35は延伸棒であ
り、内部に吹込気体を導くための導孔35aが設
けられている。有底パリソン26はネツク部29
を除いて延伸成形可能温度に望ましくは回転され
ながら赤外線加熱等により均一に加熱された後、
ネツク部29をネツク型33に挾持されて胴型3
2および底型34で形成されるキヤビテイ36内
に装入される。延伸成形可能温度は有底パリソン
26を構成する各層のプラスチツクスの融点もし
くは軟化点によつて支配されるので、その範囲は
非常に狭く、例えば内外層がポリプロピレン、中
間層がエチレン―ビニルアルコール共重合体より
なる場合の例では156〜161℃(前記共重合体のビ
ニルアルコール含有率によつてこの温度は異な
る)というように極端に範囲が狭い。上記温度の
上限より温度が高いと成形中にエチレン―ビニル
アルコール層が流動し、一方低いと該層が伸びな
いで切断するからである。
In FIG. 7, 32 is a body mold of a stretch blow molding mold, 33 is a neck part, and 34 is a bottom mold, each of which has an inner surface maintained at a predetermined temperature by a liquid flowing through a conduit hole (not shown). There is. Reference numeral 35 denotes an elongated rod, into which a guide hole 35a for guiding the blown gas is provided. The bottomed parison 26 has a neck part 29
After being heated uniformly by infrared heating etc. while preferably being rotated to a temperature that allows stretching and forming,
The neck part 29 is held between the neck mold 33 and the body mold 3
2 and a bottom mold 34. The temperature at which stretch-forming is possible is controlled by the melting point or softening point of the plastic in each layer constituting the bottomed parison 26, so its range is very narrow. For example, if the inner and outer layers are polypropylene and the middle layer is ethylene-vinyl alcohol, In the case of a polymer, the range is extremely narrow, such as 156 to 161°C (this temperature varies depending on the vinyl alcohol content of the copolymer). This is because if the temperature is higher than the above upper limit, the ethylene-vinyl alcohol layer will flow during molding, whereas if it is lower, the layer will not stretch and will be cut.

以上のような延伸可能温度に胴部31および底
部30を均一に加熱され、キヤビテイ36内に装
入された有底パリソン26は、直ちに延伸棒35
によつて接合部16が底型34の内面に接触する
まで管軸方向に延伸され、同時にもしくは僅かに
遅れて導孔35aを通つて送入される加圧気体
(例えば空気)によつて吹込成形されて、第8図
に示されるように、多層の延伸吹込成形ボトル3
7に形成される。そのさい接合部16は第8図に
示されるように折込まれる。次いでネツク型33
および胴型32を開いてボトル37は金型より取
出される。以上の例ではボトル37の底部37a
は半球状をしているが、用途によつては周辺環状
突部を有し、該突部の内側はほぼ平坦な正立安定
性のある底部であつてもよい。また2軸延伸吹込
成形法ならびにそれに用いる金型は上記の例に限
定されるものでなく、公知の任意の手段を採用し
うるものである。
The bottomed parison 26, whose body part 31 and bottom part 30 are uniformly heated to the above-described stretching temperature and which is charged into the cavity 36, is immediately moved to the drawing rod 35.
The joint 16 is stretched in the axial direction of the tube until it comes into contact with the inner surface of the bottom mold 34, and is blown in by pressurized gas (for example, air) introduced through the guide hole 35a at the same time or with a slight delay. The multi-layer stretch blow molded bottle 3 is molded as shown in FIG.
7 is formed. The joint 16 is then folded in as shown in FIG. Next, Netsuku type 33
Then, the barrel mold 32 is opened and the bottle 37 is taken out from the mold. In the above example, the bottom 37a of the bottle 37
Although it has a hemispherical shape, depending on the application, it may have a peripheral annular protrusion, and the inner side of the protrusion may be a substantially flat bottom part that provides erecting stability. Further, the biaxial stretch blow molding method and the mold used therein are not limited to the above examples, and any known means may be employed.

本発明によればパリソン底部の接合部の形成が
融点より高い温度で行なわれるので、内層同士は
完全に熱融着し、上記形成のさいの内層の亀裂も
生じないので、接合部にピンホールが発生するお
それがないという利点を有する。同様にしてネジ
部の形状も正確なものを得ることが容易である。
さらにパリソン形成用金型の下部突出部内面に垂
下部と垂下部に連接して内下方向に延びるテーパ
部を形成することによつて、上記接合部をガス
(例えば酸素)バリヤー性の高い中間層で完全に
閉塞することが可能で、それによつてボトルの高
いガスバリヤー性を確保することができる。さら
にパリソン成形のさい冷却された金型と密接せし
め、密接とほぼ同時に内部に冷水を送入すること
によつてパリソンを容易に急冷することができる
という利点を有する。また有底パリソンを延伸吹
込成形するのであるから、任意の形状の底部を有
するボトルを製造することが可能である。さらに
パリソン形成用金型のキヤビテイ形状は自由に選
択することができるから、ネツク部よりも直径の
大きい胴部を有する有底パリソンを形成すること
も可能であり、従つて胴部の壁厚を比較的薄くす
ることによつて、延伸温度までの加熱時間の短縮
(球晶の発達による白化防止に寄与する)や壁断
面の温度差の減少を実現することも可能である。
さらにパリソンを構成する層材料の適当な選択、
例えば内外層をポリプロピレン、中間層をエチレ
ン―ビニルアルコール共重合体とすることによつ
て、耐水蒸気透過性と耐酸素透過性、ならびに透
明性や強度に優れ、しかも殺菌温度(約80〜130
℃)で熱収縮変形の生じないという優れた容器特
性を有する延伸吹込ボトルを製造することができ
るというメリツトを有する。
According to the present invention, since the joint at the bottom of the parison is formed at a temperature higher than the melting point, the inner layers are completely thermally fused to each other, and no cracks occur in the inner layer during the formation, so there is no pinhole in the joint. This has the advantage that there is no risk of this occurring. Similarly, it is easy to obtain an accurate shape for the threaded portion.
Furthermore, by forming a tapered part on the inner surface of the lower protruding part of the parison forming mold and extending inwardly and downwardly in connection with the hanging part, the above-mentioned joint part can be made into an intermediate layer with high gas (e.g. oxygen) barrier properties. It is possible to completely occlude the layer, thereby ensuring a high gas barrier property of the bottle. Furthermore, it has the advantage that the parison can be easily quenched by bringing it into close contact with a cooled mold during parison molding, and by feeding cold water into the interior almost simultaneously with the close contact. Furthermore, since a bottomed parison is stretch-blow molded, it is possible to manufacture a bottle having a bottom of any shape. Furthermore, since the cavity shape of the parison-forming mold can be freely selected, it is also possible to form a bottomed parison with a body section that has a larger diameter than the neck section, and therefore the wall thickness of the body section can be reduced. By making it relatively thin, it is also possible to shorten the heating time to the drawing temperature (which contributes to preventing whitening due to the development of spherulites) and to reduce the temperature difference in the wall cross section.
Furthermore, appropriate selection of layer materials constituting the parison;
For example, by using polypropylene for the inner and outer layers and ethylene-vinyl alcohol copolymer for the middle layer, it has excellent water vapor permeability and oxygen permeability, as well as transparency and strength.
It has the advantage that it is possible to produce a stretched blown bottle having excellent container properties such as no heat shrinkage deformation at temperatures (°C).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の成形法による多層延伸吹込ボト
ルの底部接合部の縦断面図、第2図は本発明の方
法による有底パリソンを形成するための金型を含
む装置の例の縦断面図であつて、溶融管状体の上
下端が該金型によつて閉じられた直後の状態を示
す図面、第3図は第2図の装置によつて形成され
た底部接合部の縦断面図、第4図は第2図の装置
によつて有底パリソンブランクが形成された状態
を示す縦断面図、第5図は第2図の装置によつて
形成された有底パリソンの例の縦断面図、第6図
は第5図の有底パリソンを第5図に対し直角方向
から見た側面図、第7図は第5図の有底パリソン
を2軸延伸吹込成形金型に装入した状態の例を示
す縦断面図、第8図は第7図の有底パリソンの延
伸吹込成形が終了した状態を示す縦断面図であ
る。 6…多層押出しダイス、7…多層のプラスチツ
ク管状体、7′…管状体部分(管状体の1部分)、
8a…半割金型、12…周溝、18…(第1の)
中空針、25…(第2の)中空針、26…有底パ
リソン、27…ねじ部、29…ネツク部、32…
胴型、33…ネツク型、34…底型、37…多層
延伸吹込ボトル。
FIG. 1 is a longitudinal cross-sectional view of the bottom joint of a multilayer stretched blown bottle produced by a conventional molding method, and FIG. 2 is a longitudinal cross-sectional view of an example of an apparatus including a mold for forming a bottomed parison by the method of the present invention. FIG. 3 is a longitudinal cross-sectional view of the bottom joint formed by the apparatus of FIG. 2; Fig. 4 is a longitudinal cross-sectional view showing a bottomed parison blank formed by the apparatus shown in Fig. 2, and Fig. 5 is a longitudinal cross-section of an example of a bottomed parison blank formed by the apparatus shown in Fig. 2. Fig. 6 is a side view of the bottomed parison shown in Fig. 5 viewed from a direction perpendicular to Fig. 5, and Fig. 7 shows the bottomed parison shown in Fig. 5 inserted into a biaxial stretch blow molding mold. FIG. 8 is a vertical cross-sectional view showing an example of the state after the stretch blow molding of the bottomed parison of FIG. 7 has been completed. 6...Multilayer extrusion die, 7...Multilayer plastic tubular body, 7'... Tubular body part (one part of the tubular body),
8a...Half mold, 12...Peripheral groove, 18...(first)
Hollow needle, 25...(second) hollow needle, 26...bottomed parison, 27...screw part, 29...net part, 32...
Body type, 33...Net type, 34...Bottom type, 37...Multilayer stretched blown bottle.

Claims (1)

【特許請求の範囲】 1 ねじ部を有するネツク部を備える多層延伸吹
込ボトルの製造方法において、多層押出しダイス
により、多層のプラスチツク管状体を溶融押出
し、溶融状態の該管状体の一部分の上下端を、該
ねじ部に対応する形状の周溝を内面上方に有し、
かつ冷却された、1対の半割金型によつて閉じ、
直ちに閉じられた該管状体の部分の該周溝のレベ
ルより上方の部分に中空針を貫入して、該中空針
を通つて加圧気体を閉じられた該管状体部分内に
吹込んで、該管状体部分を該金型内面に密接せし
めて、該管状体を主として構成する層のプラスチ
ツクスの結晶化開始温度以下に急冷し、その後該
金型を開いて該ネツク部の上端において該管状体
部分を切断して、該ネツク部を有する有底パリソ
ンを形成し、該有底パリソンを該ネツク部を除い
て延伸成形可能な温度に均一に加熱した後、該有
底パリソンを延伸吹込成形金型に装入し、該ネツ
ク部を固定した状態で軸方向に延伸と同時に、ま
たは僅かに遅れて加圧気体を該有底パリソン内に
吹込むことを特徴とする多層延伸吹込ボトルの製
造方法。 2 ねじ部を有するネツク部を備える多層延伸吹
込ボトルの製造方法において、多層押出しダイス
により、多層のプラスチツク管状体を溶融押出
し、溶融状態の該管状体の一部分の上下端を、該
ねじ部に対応する形状の周溝を内面上方に有し、
また内面に垂下部と該垂下部に連接して内下方向
に延びるテーパ部を有する下部突出部を備え、か
つ冷却された、1対の半割金型によつて閉じ、直
ちに閉じられた該管状体の部分の該周溝のレベル
より上方の部分に中空針を貫入して、該中空針を
通つて加圧気体を閉じられた該管状体部分内に吹
込んで、該管状体部分を該金型内面に密接せしめ
て、該管状体を主として構成する層のプラスチツ
クスの結晶化開始温度以下に急冷し、その後該金
型を開いて該ネツク部の上端において該管状体部
分を切断して、該ネツク部を有する有底パリソン
を形成し、該有底パリソンを該ネツク部を除いて
延伸成形可能な温度に均一に加熱した後、該有底
パリソンを延伸吹込成形金型に装入し、該ネツク
部を固定した状態で軸方向に延伸と同時に、また
は僅かに遅れて加圧気体を該有底パリソン内に吹
込むことを特徴とする多層延伸吹込ボトルの製造
方法。 3 垂下部の長さが約3〜4mmで、対向するテー
パ部間のなす角度が約60〜90度となるように該テ
ーパ部は該垂下部に対して傾いている特許請求の
範囲第2項記載の多層延伸吹込ボトルの製造方
法。 4 ねじ部を有するネツク部を備える多層延伸吹
込ボトルの製造方法において、多層押出しダイス
により、多層のプラスチツク管状体を溶融押出
し、溶融状態の該管状体の一部分の上下端を、該
ねじ部に対応する形状の周溝を内面上方に有し、
かつ冷却された、1対の半割金型によつて閉じ、
直ちに閉じられた該管状体の部分の該周溝のレベ
ルより上方の部分に第1の中空針を貫入して、第
1の中空針を通つて加圧気体を閉じられた該管状
体部分内に吹込んで、該管状体部分を該金型内面
に密接せしめ、密接とほぼ同時に該管状体部分の
該周溝のレベルより上方の部分に第2の中空針を
貫入して、第2の中空針を通つて冷水を該管状体
部分に内に送入して、該管状体を主として構成す
る層のプラスチツクスの結晶化開始温度以下に急
冷し、その後該金型を開いて該ネツク部の上端に
おいて該管状体部分を切断して、該ネツク部を有
する有底パリソンを形成し、該有底パリソンを該
ネツク部を除いて延伸成形可能な温度に均一に加
熱した後、該有底パリソンを延伸吹込成形金型に
装入し、該ネツク部を固定した状態で軸方向に延
伸と同時に、または僅かに遅れて加圧気体を該有
底パリソン内に吹込むことを特徴とする多層延伸
吹込ボトルの製造方法。
[Claims] 1. In a method for manufacturing a multilayer stretched blow bottle having a neck portion having a threaded portion, a multilayer plastic tubular body is melt-extruded using a multilayer extrusion die, and the upper and lower ends of a portion of the molten tubular body are , having a circumferential groove on the upper inner surface with a shape corresponding to the threaded portion;
and closed by a pair of cooled half molds,
immediately inserting a hollow needle into a portion of the closed tubular body section above the level of the circumferential groove and blowing pressurized gas through the hollow needle into the closed tubular body section; The tubular body portion is brought into close contact with the inner surface of the mold and rapidly cooled to below the crystallization starting temperature of the plastic layer mainly constituting the tubular body, and then the mold is opened and the tubular body is placed at the upper end of the neck portion. The portion is cut to form a bottomed parison having the neck portion, and the bottomed parison is heated uniformly to a temperature that allows stretch molding except for the neck portion, and then the bottomed parison is placed in a stretch blow molding mold. A method for producing a multilayer stretched blown bottle, which comprises charging the bottle into a mold, and blowing pressurized gas into the bottomed parison at the same time as stretching in the axial direction with the neck portion fixed, or after a slight delay. . 2. In a method for manufacturing a multilayer stretched blow bottle with a neck portion having a threaded portion, a multilayered plastic tubular body is melt-extruded using a multilayer extrusion die, and the upper and lower ends of a portion of the molten tubular body are aligned with the threaded portion. It has a circumferential groove shaped like this on the upper inner surface,
The inner surface is provided with a lower protrusion having a hanging part and a tapered part connected to the hanging part and extending inward and downward. A hollow needle is inserted into a portion of the tubular body section above the level of the circumferential groove, and pressurized gas is blown into the closed tubular body section through the hollow needle to close the tubular body section. The material is brought into close contact with the inner surface of the mold and rapidly cooled to below the crystallization starting temperature of the plastic layer mainly constituting the tubular body, and then the mold is opened and the tubular body portion is cut at the upper end of the neck portion. After forming a bottomed parison having the neck portion and uniformly heating the bottomed parison except for the neck portion to a temperature at which stretch molding is possible, the bottomed parison is charged into a stretch blow molding mold. A method for producing a multilayer stretched blow bottle, characterized in that pressurized gas is blown into the bottomed parison at the same time as or slightly after stretching in the axial direction while the neck portion is fixed. 3. The length of the hanging portion is about 3 to 4 mm, and the tapered portion is inclined with respect to the hanging portion so that the angle between the opposing tapered portions is about 60 to 90 degrees. A method for producing a multilayer stretched blow bottle as described in Section 1. 4. In a method for manufacturing a multilayer stretched blow bottle having a neck portion having a threaded portion, a multilayer plastic tubular body is melt-extruded using a multilayer extrusion die, and the upper and lower ends of a portion of the molten tubular body are aligned with the threaded portion. It has a circumferential groove shaped like this on the upper inner surface,
and closed by a pair of cooled half molds,
A first hollow needle is immediately inserted into a portion of the closed tubular body section above the level of the circumferential groove, and pressurized gas is passed through the first hollow needle into the closed tubular body section. The tubular body portion is brought into close contact with the inner surface of the mold by blowing into the mold, and almost simultaneously with the close contact, a second hollow needle is inserted into a portion of the tubular body portion above the level of the circumferential groove to form a second hollow Cold water is introduced into the tubular body section through a needle to rapidly cool it below the crystallization temperature of the plastic in the layers that mainly make up the tubular body, after which the mold is opened and the neck section is cooled down. The tubular body portion is cut at the upper end to form a bottomed parison having the neck portion, and after uniformly heating the bottomed parison except for the neck portion to a temperature at which stretch molding is possible, the bottomed parison is is charged into a stretch blow molding mold, and pressurized gas is blown into the bottomed parison at the same time as stretching in the axial direction with the neck portion fixed, or after a slight delay. How to make a blow bottle.
JP56002649A 1981-01-13 1981-01-13 Production of multilayer blown bottle Granted JPS57116618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56002649A JPS57116618A (en) 1981-01-13 1981-01-13 Production of multilayer blown bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002649A JPS57116618A (en) 1981-01-13 1981-01-13 Production of multilayer blown bottle

Publications (2)

Publication Number Publication Date
JPS57116618A JPS57116618A (en) 1982-07-20
JPH0220413B2 true JPH0220413B2 (en) 1990-05-09

Family

ID=11535197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002649A Granted JPS57116618A (en) 1981-01-13 1981-01-13 Production of multilayer blown bottle

Country Status (1)

Country Link
JP (1) JPS57116618A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612753B2 (en) * 1988-10-31 1997-05-21 日本プラスト株式会社 Hollow molding method
JPH0382522A (en) * 1989-08-25 1991-04-08 Dainippon Printing Co Ltd Method and device for molding bottle with hole
FR2917381B1 (en) 2007-06-15 2009-10-16 Ceva Sante Animale Sa MULTILAYER PLASTIC PACKAGING FOR PRESERVING A PHARMACEUTICAL COMPOSITION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712619A (en) * 1980-06-26 1982-01-22 Toppan Printing Co Ltd Stretched laminate hollow container and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712619A (en) * 1980-06-26 1982-01-22 Toppan Printing Co Ltd Stretched laminate hollow container and production thereof

Also Published As

Publication number Publication date
JPS57116618A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
US5647930A (en) Method for forming a layered preform and container
CA2547638C (en) Arrangement and method of injection blow molding a pet bottle with handle
JP2922029B2 (en) Method for forming thermoplastic tube with head and thermoplastic tube with head
US4590028A (en) Process for making a multilayered parison of thermoplastic material
US4116607A (en) Thread forming and neck finishing apparatus
JPS63194912A (en) Preform for biaxially orienting container and molding method thereof
JPH0471698B2 (en)
JPH01166930A (en) Manufacture of blow molded vessel from thermoplastic polyester
JPS6159896B2 (en)
US4992230A (en) Method for making a hollow polyethylene terephthalate blow molded article with an integral external projection such as a handle
JPH0220413B2 (en)
JPS62164504A (en) Manufacture of preform for oriented polyester vessel
JPS5949896B2 (en) Method for manufacturing multilayer stretched hollow containers
JP2002172681A (en) Orientation blown container and molding method therefor
EP0241040A1 (en) Manufacture of plastic bottles
JPS634493B2 (en)
JPS6251423A (en) Manufacture of oriented polyester container
US11428367B2 (en) Biaxially oriented blow-molded pressure vessels
JPH0392326A (en) Preparation of stretched blow bottle fitted with handle
JP2001113589A (en) Thin-wall bottle and method of manufacturing the same
JPH0414607B2 (en)
JPS61268426A (en) Manufacture of oriented polyester container with resistance to heat shrinkage
JPS62270315A (en) Manufacture of oriented polyester vessel
JPH0371008B2 (en)
JPS61146521A (en) Preparation of multi-layered stretched polyester container