JPH02203905A - Method for adsorbing and removing heavy metals - Google Patents

Method for adsorbing and removing heavy metals

Info

Publication number
JPH02203905A
JPH02203905A JP2265289A JP2265289A JPH02203905A JP H02203905 A JPH02203905 A JP H02203905A JP 2265289 A JP2265289 A JP 2265289A JP 2265289 A JP2265289 A JP 2265289A JP H02203905 A JPH02203905 A JP H02203905A
Authority
JP
Japan
Prior art keywords
heavy metals
contact
exudate
pref
carbonate mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2265289A
Other languages
Japanese (ja)
Inventor
Masataka Hanashima
正孝 花嶋
Shuji Nagano
修治 長野
Taju Kato
加藤 太重
Terunobu Maeda
照信 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Polymer Kasei KK
Mitsui and Co Ltd
Nissho Corp
Hazama Ando Corp
Original Assignee
Seibu Polymer Kasei KK
Hazama Gumi Ltd
Mitsui and Co Ltd
Nissho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Polymer Kasei KK, Hazama Gumi Ltd, Mitsui and Co Ltd, Nissho Corp filed Critical Seibu Polymer Kasei KK
Priority to JP2265289A priority Critical patent/JPH02203905A/en
Publication of JPH02203905A publication Critical patent/JPH02203905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To efficiently and selectively remove heavy metals by merely performing contact treatment by adsorbing heavy metals by bringing carbonate mineral into contact with the exudate of industrial waste or raw garbage containing heavy metals under an aerobic condition. CONSTITUTION:Carbonate mineral such as calcite, aragonite, baddeleyite, amorphous calcium carbonate or dolomite is brought into contact with the exudate of industrial waste or raw garbage containing heavy metals under an aerobic condition. By this method, heavy metals such as Hg, Cd, Cd, Fe, Pb or the like are adsorbed by the carbonate mineral. As the aforementioned aerobic condition, a CO2 concn. of 30ppm or less is pref. and 1ppm is more pref. and 3ppm or more is especially pref. When the exudate is brought into contact with the carbonate mineral, the aerobic condition is pref. held by performing aeration in a water diffusion bed or fixed bed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、滲出水中に含まれる重金属の吸着除去方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for adsorbing and removing heavy metals contained in exudate water.

〈従来の技術〉 従来、工業用等の廃水を含む産業又は一般廃棄物最終処
理場の滲出水から、例えばカドミウム、水銀等の重金属
を除去する方法としては、例えば重金属用キレート樹脂
又はイオン交換樹脂等に吸着させて行う方法が知られて
いる。
<Prior art> Conventionally, as a method for removing heavy metals such as cadmium and mercury from leachate of industrial or general waste final treatment plants, including industrial wastewater, for example, chelate resins for heavy metals or ion exchange resins have been used. A known method is to adsorb it onto a material such as

しかしながら前記重金属用キレート樹脂及びイオン交換
樹脂は、非常に高価であり、経済的に問題がある。
However, the chelate resins and ion exchange resins for heavy metals are very expensive and pose an economical problem.

〈発明が解決しようとする課題〉 本発明の目的は、容易にしかも効率良く滲出水から重金
属を吸着除去する方法を提供することにある。
<Problems to be Solved by the Invention> An object of the present invention is to provide a method for easily and efficiently adsorbing and removing heavy metals from exudate water.

〈課題を解決するための手段〉 本発明によれば、好気的条件下、重金属を含む滲出水に
、炭酸塩鉱物を接触させることを特徴とする重金属の吸
着除去方法が提供される。
<Means for Solving the Problems> According to the present invention, there is provided a method for adsorption and removal of heavy metals, which comprises bringing carbonate minerals into contact with exudate water containing heavy metals under aerobic conditions.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の吸着除去方法では、工業用、生ゴミ等の滲出水
等に好気的条件下、炭酸塩鉱物を接触させることを特徴
とする。
The adsorption removal method of the present invention is characterized by bringing carbonate minerals into contact with exudate water from industrial waste, garbage, etc. under aerobic conditions.

本発明に用いる炭酸塩鉱物は、産業又は一般廃棄物最終
処理場の滲出水と、好気的条件下、接触させることによ
り、該滲出水中のHg、Cd、Fe、Mn、Pd等の重
金属を吸着することが可能な物質であって、具体的には
例えば、カルサイト、アラゴナイト、バテライト、不定
形等の炭酸カルシウム、ドロマイト、炭酸マグネシウム
及び珊瑚等から成る群の1種又は2種以上より選択され
ることが好ましく、特に多層構造を有する多孔質の珊瑚
を用いることが望ましい。該珊瑚とはへ方珊瑚亜絹珊瑚
科の動物の総称であり、例えばアカ珊瑚、モモイロ珊瑚
、シロ珊瑚、インパナ、ウミイチゴ等を挙げることがで
きる。
The carbonate mineral used in the present invention can remove heavy metals such as Hg, Cd, Fe, Mn, and Pd in the leachate by contacting it with leachate from an industrial or general waste final treatment plant under aerobic conditions. A substance that can be adsorbed, specifically selected from one or more of the group consisting of calcite, aragonite, vaterite, amorphous calcium carbonate, dolomite, magnesium carbonate, coral, etc. It is particularly desirable to use porous coral having a multilayer structure. The term "coral" is a general term for animals belonging to the family Coralidae, and includes, for example, red coral, white coral, white coral, impana, and sea strawberry.

本発明において、重金属を含む滲出水を前記炭酸塩鉱物
に接触させる場合には、好気的条件下にて行う必要があ
る。この際単に滲出水に炭酸塩鉱物を接触させる場合に
は、滲出水中の炭酸ガス濃度が高いために、重金属が十
分に吸着されず、重炭酸塩として再溶出する。また処理
場の供用直後の滲出水は、塩分濃度が高く、イオウ細菌
の活動を抑制することができるが、長期間の供用による
塩分濃度の低下に伴なって、イオウ細菌の活動が活発に
なり、滲出水中のイオウ分が酸化して硫酸を生じる。こ
のため該硫酸が炭酸塩鉱物と反応し、石膏又は硫酸マグ
ネシウム等を生成して、炭酸塩鉱物としての機能が低下
あるいはペースト化して流路を閉塞するのである。また
前記好気的条件下では1重金属のみならず、滲出水中の
生物処理を行うことが可能であるが、生物処理と、重金
属の吸着除去とを同時に行うと、重金属の除去効率が低
下するので、前処理において生物処理を別に行っておく
のが好ましい。
In the present invention, when the exudate water containing heavy metals is brought into contact with the carbonate mineral, it is necessary to do so under aerobic conditions. At this time, if the carbonate mineral is simply brought into contact with the exudate water, the heavy metals will not be sufficiently adsorbed due to the high concentration of carbon dioxide in the exudate water, and will be re-eluted as bicarbonate. In addition, the leachate immediately after a treatment plant is in service has a high salt concentration, which can suppress the activity of sulfur bacteria, but as the salinity decreases due to long-term operation, the activity of sulfur bacteria increases. , the sulfur content in the leachate oxidizes to produce sulfuric acid. For this reason, the sulfuric acid reacts with the carbonate mineral to produce gypsum or magnesium sulfate, which reduces its function as a carbonate mineral or turns it into a paste, blocking the flow path. Furthermore, under the aerobic conditions mentioned above, it is possible to perform biological treatment of not only one heavy metal but also the leachate water, but if biological treatment and adsorption removal of heavy metals are performed simultaneously, the removal efficiency of heavy metals will decrease. It is preferable to perform biological treatment separately in the pretreatment.

本発明において、前記好気的条件とは1例えばCO2濃
度が好ましくは3Qppm以下であり、更に好ましくは
、DO2濃度をlppm以上、特に3ppm以上にする
ことが望ましい。この際前記CO2濃度が30ppmを
超える場合には、重金属が重炭酸塩として溶出し、且つ
イオウ細菌が活発化する恐れがあるので好ましくない。
In the present invention, the aerobic conditions are 1, for example, preferably a CO2 concentration of 3 Qppm or less, and more preferably a DO2 concentration of 1 ppm or more, particularly 3 ppm or more. At this time, if the CO2 concentration exceeds 30 ppm, it is not preferable because heavy metals may be eluted as bicarbonate and sulfur bacteria may become active.

本発明において、滲出水を炭酸塩鉱物に接触させる際に
、好気的条件を保つには、例えば散水口床法又は固定床
において湯気する方法、即ち滲出水を集水し、生物処理
後若しくは前に、炭酸塩鉱物を口床とした散水口床又は
槽に炭酸塩鉱物を充填した後、滲出水を流通あるいは回
分させ湯気する方法等を好ましく挙げることができる。
In the present invention, in order to maintain aerobic conditions when leachate is brought into contact with carbonate minerals, for example, the water sprinkling bed method or the method of steaming in a fixed bed are used, in other words, the leachate is collected, and after biological treatment or Preferred methods include filling a water spout bed or a tank with carbonate minerals with carbonate minerals, and then circulating or batching the exudate water to generate steam.

本発明において、前記炭酸塩鉱物を滲出水に接触させる
時間は5分〜1週間の範囲であることが好ましい。この
際5分未満の場合には、重金属を十分に除去することが
できず、また1週間を超えて接触させても除去効果の向
上が期待できないので経済的に好ましくない。この際炭
酸塩鉱物は単独で使用する他、例えばレキ、砂等を混合
して用いることができ、更に前記接触方法において炭酸
塩鉱物を多層に分けて接触させることも可能である。
In the present invention, the time period for which the carbonate mineral is brought into contact with the exudate water is preferably in the range of 5 minutes to 1 week. In this case, if the contact time is less than 5 minutes, the heavy metals cannot be removed sufficiently, and even if the contact time exceeds 1 week, no improvement in the removal effect can be expected, which is economically undesirable. In this case, the carbonate mineral can be used alone or in combination with, for example, limestone, sand, etc. Furthermore, in the above-mentioned contact method, it is also possible to contact the carbonate mineral in multiple layers.

〈発明の効果〉 本発明の吸着除去方法では、滲出液を好気的条件下にお
いて単に炭酸塩鉱物に接触させるのみで、高率よく、且
つ選択的に重金属を除去することができるので、工業的
に非常に有用である。
<Effects of the Invention> The adsorption removal method of the present invention can remove heavy metals at a high rate and selectively by simply bringing the exudate into contact with carbonate minerals under aerobic conditions. very useful.

〈実施例〉 以下本発明を実施例及び比較例により更に詳細に説明す
るが、本発明はこれらに限定されるものではない。
<Examples> The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

失嵐■↓ ・埋立処理後8年を経過した産業廃棄物処分場の滲出水
をバイパスし、下部に散気管を備え、且つカルサイト及
びアラゴナイトの混合物コーラル20電を充填した20
cmφX100CII+のカラムに、IQ/分の速度で
8力月間通水した。その結果コーラルの石膏化は全く起
らなかった。流入時及び流出時における前記滲出水中の
重金属量及びDO1CO2量を表1に示す。
Lost Storm■↓ ・20 by-passing the leachate from an industrial waste disposal site that has been landfilled for 8 years, equipped with an aeration pipe at the bottom, and filled with Coral 20, a mixture of calcite and aragonite.
Water was passed through the cmφX100CII+ column at a rate of IQ/min for 8 months. As a result, no gypsumization of coral occurred. Table 1 shows the amounts of heavy metals and DO1CO2 in the leachate at the time of inflow and outflow.

表   1 カラムに散気管を取り付けなかった以外は、実施例1と
同様に行ったところ、8力月後にコーラルは石膏化し、
ペースト状になって、通水不能となった。
Table 1 The same procedure as in Example 1 was carried out except that a diffuser pipe was not attached to the column. After 8 months, the coral turned into gypsum.
It became paste-like and water could not pass through it.

失庭桝裟 滲出水に人工滲出水としてHg、C,d、Fe及びMn
夫々を1100pp並びにCO2:300 p p m
を含む人工滲出水を用いた以外は、実施例1と同様に行
った。流出時における滲出水の水質を表2に示す。
Hg, C, d, Fe, and Mn as artificial exudate water in the exudate water
1100 pp each and CO2: 300 pp m
The same procedure as in Example 1 was conducted except that artificial exudate water containing . Table 2 shows the quality of the exudate water at the time of the outflow.

坦較孤又 滲出水に人工滲出水として、Hg、Cd、Fe及びMn
夫々を1100pp含む人工滲出水を用いた以外は、比
較例]、と同様に行った。流出時における滲出水の水質
を表2に示す。
As artificial exudate water, Hg, Cd, Fe and Mn are added to exudate water.
Comparative Example] was carried out in the same manner as in [Comparative Example] except that artificial exudate water containing 1100 pp of each was used. Table 2 shows the quality of the exudate water at the time of the outflow.

表   2 以上の結果より、好気的条件下で行なわれた本発明の実
施例では、単に、炭酸塩鉱物に滲出水を接触させた比較
例に比して、重金属を効率良く吸着除去できることが判
った。
Table 2 From the above results, it was found that in the examples of the present invention carried out under aerobic conditions, heavy metals could be adsorbed and removed more efficiently than in the comparative examples in which exudate water was simply brought into contact with carbonate minerals. understood.

Claims (1)

【特許請求の範囲】[Claims] 好気的条件下、重金属を含む滲出水に、炭酸塩鉱物を接
触させることを特徴とする重金属の吸着除去方法。
A method for adsorption and removal of heavy metals, which comprises bringing carbonate minerals into contact with exudate water containing heavy metals under aerobic conditions.
JP2265289A 1989-02-02 1989-02-02 Method for adsorbing and removing heavy metals Pending JPH02203905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2265289A JPH02203905A (en) 1989-02-02 1989-02-02 Method for adsorbing and removing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2265289A JPH02203905A (en) 1989-02-02 1989-02-02 Method for adsorbing and removing heavy metals

Publications (1)

Publication Number Publication Date
JPH02203905A true JPH02203905A (en) 1990-08-13

Family

ID=12088776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2265289A Pending JPH02203905A (en) 1989-02-02 1989-02-02 Method for adsorbing and removing heavy metals

Country Status (1)

Country Link
JP (1) JPH02203905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2235663A1 (en) * 2003-12-23 2005-07-01 Universidad De Oviedo Removal of bivalent metals dissolved in aqueous medium comprises sorption by biogenic calcium carbonate to reduce e.g. cadmium levels
CN107935300A (en) * 2017-11-22 2018-04-20 沈阳艾柏瑞环境科技有限公司 A kind of process unit and method of non-embrane method processing landfill leachate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2235663A1 (en) * 2003-12-23 2005-07-01 Universidad De Oviedo Removal of bivalent metals dissolved in aqueous medium comprises sorption by biogenic calcium carbonate to reduce e.g. cadmium levels
CN107935300A (en) * 2017-11-22 2018-04-20 沈阳艾柏瑞环境科技有限公司 A kind of process unit and method of non-embrane method processing landfill leachate
CN107935300B (en) * 2017-11-22 2020-03-06 沈阳艾柏瑞环境科技有限公司 Process device and method for treating landfill leachate by non-membrane method

Similar Documents

Publication Publication Date Title
CZ20004170A3 (en) Treatment process of water, soils, sediments and/or sludges
JPS6295194A (en) Mineral water producing agent
KR100644236B1 (en) Activated carbon body column for water purification plant and purifying methods using the same
JPS6369598A (en) Treatment of organic sewage containing phosphorus
JPH02203905A (en) Method for adsorbing and removing heavy metals
JP2015077551A (en) Phosphorus elimination-type wastewater treatment process, and phosphorus elimination-type wastewater treatment system
JP2004016921A (en) Water purification method and its system
JP2002079051A (en) Method for deodorizing hydrogen sulfide containing gas
JPH10277541A (en) Zeolite type water purifying agent
EP0737650A2 (en) Method and plant for treating water for drinking or for industrial use
CN209428285U (en) Containing Phenol cyanide wastewater treatment system
CN209113685U (en) A kind of black and odorous water processing unit
KR20220128540A (en) Water infiltration system having improved denitrification effeciency
RU2056358C1 (en) Water treatment and conditioning plant
JPH11197675A (en) Functional ceramics water catalytic treatment apparatus, functional ceramics, water treatment system utilizing the same and catalytic water use method
JPH06206066A (en) Water purifying agent and water treatment device using the same
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JPH02258097A (en) Removal of iron ion and/or manganese ion
JPH08267053A (en) Method of removing arsenic by electrolytic manganese dioxide adsorbent and arsenic removing adsorbent
JPH04334593A (en) Advanced water treatment system and method for starting up the same
JPH01104343A (en) Adsorbent for removing contaminant in water or air and use thereof
RU2238788C1 (en) Method of production of filter material for water purification
JPH0719549Y2 (en) Combined processing device for malodorous gas and sewage
JP2008012489A (en) Biological desulfurization method
JPH0336592B2 (en)