JPH02203527A - Etching process - Google Patents

Etching process

Info

Publication number
JPH02203527A
JPH02203527A JP2259689A JP2259689A JPH02203527A JP H02203527 A JPH02203527 A JP H02203527A JP 2259689 A JP2259689 A JP 2259689A JP 2259689 A JP2259689 A JP 2259689A JP H02203527 A JPH02203527 A JP H02203527A
Authority
JP
Japan
Prior art keywords
melting point
point metal
high melting
etching
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2259689A
Other languages
Japanese (ja)
Other versions
JP2923962B2 (en
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2259689A priority Critical patent/JP2923962B2/en
Publication of JPH02203527A publication Critical patent/JPH02203527A/en
Application granted granted Critical
Publication of JP2923962B2 publication Critical patent/JP2923962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable a rectangular etching process leaving no residue at all to be performed by a method wherein, when a high melting point metal film is formed by reactive ion etching process, a mixed gas of fluorine base, chlorine base and oxidizing gas is used. CONSTITUTION:A silicon oxide insulating film 3 is formed on a semiconductor substrate 4 and then a high melting point metallic film 1 comprising tungsten is formed on the film 3. Next, the whole surface is coated with a novolak base positive resist which is left conforming to a wiring pattern by lithographic process. Then, anisotropical dry etching process is performed by a reactive ion etching device. At this time, as for the applicable etching gas, a mixed gas of SF6, Cl2 and O2 is used. Through these procedures, the high melting point metal film 1 is left as a wiring pattern but leaving no undercut or normal taper cut at all thereby enabling acceptable etching process leaving no residue at all to be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置製造工程において利用される高融
点金属膜および/または高融点金属シリサイド膜のエツ
チング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of etching a high melting point metal film and/or a high melting point metal silicide film used in a semiconductor device manufacturing process.

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置製造工程において利用される高融
点金属膜および/または高融点金属シリサイド膜のエツ
チング方法に関し、更に詳しくは、エツチング後の配線
パターン等の断面形状(以下、エツチングプロファイル
という)に優れ、エツチング残渣のない異方性ドライエ
ツチング方法に関する。
The present invention relates to a method for etching a high melting point metal film and/or a high melting point metal silicide film used in a semiconductor device manufacturing process, and more specifically, to a method for etching a cross-sectional shape of a wiring pattern etc. after etching (hereinafter referred to as an etching profile). This invention relates to an anisotropic dry etching method which is excellent and does not leave etching residues.

〔従来の技術〕[Conventional technology]

LSI等の半導体装置の高集積度化の進展に伴ない、タ
ングステン(−)等の高融点金属膜および/または高融
点金属シリサイド膜は、次世代LS。
With the progress of higher integration of semiconductor devices such as LSI, high melting point metal films such as tungsten (-) and/or high melting point metal silicide films are becoming the next generation LS.

lの配線材料やゲート電極材料等として注目されている
。これは、高融点金属膜および/または高融点金属シリ
サイド膜のシート抵抗値が小さいためにLSIの高速化
が期待でき、また耐熱性に冨むため、界面における熱拡
散等の現象が少ないこと等の理由による。
It is attracting attention as a wiring material for l, a gate electrode material, etc. This is because high-melting point metal films and/or high-melting point metal silicide films have small sheet resistance values, which can be expected to increase the speed of LSIs, and because they have high heat resistance, phenomena such as thermal diffusion at interfaces are small. Due to reasons.

高融点金属膜および/または高融点金属シリサイド膜は
、通常はスパッタリングやブランケットCVDにより形
成され、所望の配線パターン等にエツチングして用いら
れる。このエツチング方法としては、サブミクロン前後
の微細加工の要求に応えるため、反応性イオンエツチン
グ(RIE)等の異方性の大きいドライエツチング技術
が用いられ、このときのエツチングガスとしては、エツ
チングレートの大きい六フッ化イオウ(SF6)等のフ
ッ素系ガスが一般的には用いられてきた。
The high melting point metal film and/or the high melting point metal silicide film is usually formed by sputtering or blanket CVD, and used by etching into a desired wiring pattern or the like. This etching method uses highly anisotropic dry etching technology such as reactive ion etching (RIE) in order to meet the demands for microfabrication around submicron. Fluorine-based gases such as large sulfur hexafluoride (SF6) have generally been used.

この場合問題となるのは、−等の高融点金属膜および/
または高融点金属シリサイド膜とフッ素ラジカルとの反
応により、エツチングプロファイルに逆テーバ状にアン
ダカットが入ることであった。
In this case, the problem is that the high melting point metal film and/or
Alternatively, the reaction between the high melting point metal silicide film and fluorine radicals caused an undercut in the etching profile to have a reverse tapered shape.

そこで本発明者は、先にフッ素系ガスに塩素系ガスを加
えた混合ガスをエツチングガスとして用いる方法を提示
した(特願昭63−185244号)。この方法は、−
等の高融点金属のフッ化物(WF、 )に比べて、蒸気
圧の小さな塩化物(WCl、 )を生成させ、これをエ
ツチング進行中のパターンの側壁に再付着させ、側壁保
護膜として作用させることで異方性ドライエツチングを
達成しようというものであった。
Therefore, the present inventor previously proposed a method of using a mixed gas of fluorine gas and chlorine gas as an etching gas (Japanese Patent Application No. 185244/1983). This method is -
It generates chloride (WCl, ) which has a lower vapor pressure than the fluoride (WF, ) of high-melting point metals such as fluorides, and re-deposit it on the sidewalls of the pattern that is being etched to act as a sidewall protective film. The idea was to achieve anisotropic dry etching.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した高融点金属膜および/または高融点金属シリサ
イド膜のエツチング方法によれば、アンダカットを防ぐ
ことが可能となるが、蒸気圧の小さな塩化物を生成する
ため、これが残渣として残り易く、またエツチングプロ
ファイルが、若干ではあるが逆に順テーパ状になり易い
ことがあった。
According to the above-mentioned method of etching a high melting point metal film and/or a high melting point metal silicide film, it is possible to prevent undercutting, but since chloride is generated with a low vapor pressure, this tends to remain as a residue. In some cases, the etching profile tends to become tapered, albeit slightly.

そこで本発明の課題は、−等の高融点金属膜および/ま
たは高融点金属シリサイド膜を異方性ド。
Therefore, an object of the present invention is to form a high melting point metal film and/or a high melting point metal silicide film in an anisotropic manner.

ライエツチングするにあたり、エツチングプロファイル
にアンダカットが入らず、順テーパ状にもならず、はぼ
矩形にエツチングされ、しかも残渣の発生のないエツチ
ング方法を提供することである。
To provide an etching method in which an etching profile is not undercut, does not have a tapered shape, is etched into a substantially rectangular shape, and does not generate any residue.

〔課題を解決するための手段] フッ素系ガスと塩素系ガスの混合ガスに、新たに酸化性
ガスを添加した混合ガスにより、高融点金属膜および/
または高融点シリサイド膜をRIE法等により異方性ド
ライエツチングすることにより、前記課題が達成される
[Means for solving the problem] A mixed gas of a fluorine-based gas and a chlorine-based gas with a newly added oxidizing gas is used to form a high melting point metal film and/or a mixed gas.
Alternatively, the above object can be achieved by anisotropically dry etching the high melting point silicide film by RIE method or the like.

本発明に用いる酸化性ガスとしては、酸素(0□)、オ
ゾン(03)またはこれらの混合ガスを用いることがで
きる。
As the oxidizing gas used in the present invention, oxygen (0□), ozone (03), or a mixed gas thereof can be used.

フッ素系ガスと塩素系ガスの混合ガスへの前記酸化性ガ
スの添加割合は、フッ素系ガスと塩素系ガスの混合ガス
の和体積を100とした場合、1体積以上50体積以下
が望ましく、2体積以上IO体積以下が更に望ましい。
The addition ratio of the oxidizing gas to the mixed gas of fluorine-based gas and chlorine-based gas is preferably 1 volume or more and 50 volumes or less, when the total volume of the mixed gas of fluorine-based gas and chlorine-based gas is 100. More preferably, the volume is greater than or equal to IO volume.

フッ素系ガスとしては前述したSF6の他に、四フッ化
炭素(CF4)、三フッ化窒素(Nh) 、六フッ化エ
タン(CzF6)、フッ素(F2)等が用いられ、また
塩素系ガスとしては塩素(CIり 、四塩化炭素(CC
14)、三塩化ホウ素(BCl2)等を使用することが
できる。フッ素系ガスと塩素系ガスの混合体積比は30
15〜30/45であり、30/28程度が特に好まし
いことは先発明(特願昭63−185244号)と同じ
である。
In addition to SF6 mentioned above, carbon tetrafluoride (CF4), nitrogen trifluoride (Nh), hexafluoroethane (CzF6), fluorine (F2), etc. are used as fluorine-based gases, and chlorine-based gases include is chlorine (CI), carbon tetrachloride (CC)
14), boron trichloride (BCl2), etc. can be used. The mixing volume ratio of fluorine gas and chlorine gas is 30
It is the same as the previous invention (Japanese Patent Application No. 63-185244) that the ratio is 15 to 30/45, and about 30/28 is particularly preferable.

〔作用〕[Effect]

フッ素系ガス、塩素系ガスおよび酸化性ガスの混合ガス
により一等高融点金属膜および/または高融点金属シリ
サイド膜をエツチングすることにより、讐等高融点金属
のオキシ塩化物(WOCly)が生成し、これがエツチ
ング進行中のパターンの側壁に再付着して側壁保護膜と
して作用する。
By etching a high melting point metal film and/or a high melting point metal silicide film with a mixed gas of fluorine gas, chlorine gas, and oxidizing gas, oxychlorides of high melting point metals (WOCly) are generated. , which re-attaches to the sidewalls of the pattern that is being etched and acts as a sidewall protective film.

WOCIyはy−1,2および3の化合物の混合物であ
ることがマススペクトルの分析結果より確認されている
(第35回応用物理学関係連合講演会講演予稿集、31
a−シー3.1988年春季)。これらオキシ塩化物は
、同じ一等高融点金属の塩化物(WCl、 )よりも若
干高い蒸気圧を持つ(例えば第30回応用物理学関係連
合講演会講演予稿集、5a−V−3,1983年春季)
。このため側壁保護膜としての作用は、WCIXより−
ocxyO方が若干小さく、このためエツチングプロフ
ァイルが順テーバ状となることがない。 また同じ理由
により、エツチング残渣が生成することがない。
It has been confirmed from the mass spectrum analysis results that WOCIy is a mixture of compounds y-1, 2, and 3 (Proceedings of the 35th Applied Physics Association Conference, 31
a-C 3. Spring 1988). These oxychlorides have a slightly higher vapor pressure than chloride (WCl), which is the same primary high-melting point metal (e.g., Proceedings of the 30th Applied Physics Association Conference, 5a-V-3, 1983). spring)
. Therefore, the action as a sidewall protective film is lower than that of WCIX.
ocxyO is slightly smaller, so the etching profile does not become tapered. Furthermore, for the same reason, no etching residue is generated.

以上の作用により、エツチングプロファイルの矩形性に
優れ、エツチング残渣発生のトラブルのない一等高融点
金属膜および/または高融点金属シリサイド膜の異方性
ドライエツチングが可能となる。
The above-described effects enable anisotropic dry etching of a primary high melting point metal film and/or a high melting point metal silicide film with excellent rectangularity of the etching profile and without the problem of generation of etching residue.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しながら説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

失11上 第1図a −cは本発明の第1の実施例によるエツチン
グ工程を示す図である。
Figures 1a-c are diagrams illustrating an etching process according to a first embodiment of the present invention.

第1図aにおいて、シリコン等の半導体基板4上に酸化
シリコン(Sing)のごとき絶縁膜3を形成し、次に
例えば賀による高融点金属膜1を2500人の厚さに、
例えばDCマグネトロンスパッタリング法により形成す
る。次にノボラック系ポジ型レジスト5をスピンコーテ
ィングし乾燥する。
In FIG. 1A, an insulating film 3 such as silicon oxide (Sing) is formed on a semiconductor substrate 4 such as silicon, and then a high-melting point metal film 1 made by, for example, Kaga is formed to a thickness of 2500 mm.
For example, it is formed by a DC magnetron sputtering method. Next, a novolak positive type resist 5 is spin coated and dried.

次に第1図すに示すごと(、リソグラフィ工程によりレ
ジスト5を配線パターン通りに残す。
Next, as shown in FIG. 1, the resist 5 is left in accordance with the wiring pattern by a lithography process.

さらに13.56MHzのRF励起方式の平行平板型R
IE装置により、異方性ドライエツチングを行う。
In addition, a parallel plate type R with 13.56 MHz RF excitation method
Anisotropic dry etching is performed using an IE device.

エツチングガスとしてSF、 30sccmSC1t2
8scca+およびOx 2sccmの混合ガスを用い
、エツチングチャンバ内圧力6.7PaSRF出力80
mW/cn+”の条件によった。
SF as etching gas, 30sccmSC1t2
Using a mixed gas of 8 scca+ and Ox 2 sccm, the etching chamber internal pressure was 6.7 Pa and the SRF output was 80
mW/cn+'' condition.

以上の工程により、第1図Cに示されるように、高融点
金属膜1は配線パターンとして残される。
Through the above steps, the high melting point metal film 1 is left as a wiring pattern, as shown in FIG. 1C.

同図より明らかなように、高融点金属膜1のエツチング
プロファイルはほぼ矩形に近く、エツチング残渣は見ら
れなかった。
As is clear from the figure, the etching profile of the high melting point metal film 1 was nearly rectangular, and no etching residue was observed.

実施■又 本実施例は、高融点金属膜の下層として、高融点金属シ
リサイド膜を設け、下地絶縁膜との密着性を改善した、
高融点金属多層膜の異方性ドライエツチングの例である
Implementation ■Also, in this example, a high melting point metal silicide film was provided as a lower layer of the high melting point metal film to improve the adhesion with the underlying insulating film.
This is an example of anisotropic dry etching of a high melting point metal multilayer film.

本発明の第2の実施例によるエツチング工程を示す第2
図a −cにおいて、まず同図aに示すごとく、シリコ
ン等の半導体基板4上に5int等のごとき絶縁膜3を
形成する0次にブランケットC■Dにより、例えば−S
ix等の高融点金属シリサイド膜2を500人の厚さに
、続けて−による高融点金属膜1を2000人の厚さに
形成して高融点金属多層膜とする。この形成法としては
、ソースガスとして六フッ化タングステン(WF6) 
とシラン(SiHn)、キャリアガスとして水素(Fl
りを用いて高融点金属シリサイド膜2を、次に朴、とH
2を用いて高融点金属膜1を、それぞれ減圧CVD法に
より形成した。このあとノボラック系ポジ型レジスト5
をスピンコーティングして乾燥した。
A second diagram illustrating an etching process according to a second embodiment of the present invention.
In Figures a to c, first, as shown in Figure a, an insulating film 3 of 5 int or the like is formed on a semiconductor substrate 4 of silicon or the like using a zero order blanket C■D, for example -S
A high melting point metal silicide film 2 such as ix is formed to a thickness of 500 mm, followed by a high melting point metal film 1 of - to a thickness of 2000 mm to form a high melting point metal multilayer film. This formation method uses tungsten hexafluoride (WF6) as a source gas.
and silane (SiHn), and hydrogen (Fl) as a carrier gas.
The high melting point metal silicide film 2 was coated using
A high melting point metal film 1 was formed using each of the above materials by low pressure CVD method. After this, novolac positive resist 5
was spin coated and dried.

次に第2図すに示すように、リソグラフィ工程によりレ
ジスト5を配線パターン通りに残す。
Next, as shown in FIG. 2, the resist 5 is left in accordance with the wiring pattern by a lithography process.

次に実施例1と全く同様のRIE装置、エツチングガス
およびエツチング条件により、第2図Cのごとく高融点
金属多層膜を配線パターンとして残す。同図より明らか
なように、高融点金属多層膜のエツチングプロファイル
はほぼ矩形に近く、またエツチング残渣は見られなかっ
た。
Next, using the same RIE apparatus, etching gas, and etching conditions as in Example 1, a high melting point metal multilayer film is left as a wiring pattern as shown in FIG. 2C. As is clear from the figure, the etching profile of the high melting point metal multilayer film was nearly rectangular, and no etching residue was observed.

迄較去上 本比較例では、エツチングガスとして従来例によるフッ
素系ガスと塩素系ガスのみの混合ガスを用いた他は、実
施例1と全く同様にして例えばイによる高融点金属膜工
をエツチングした例である。
Previous Comparisons In this comparative example, a high melting point metal film, for example, was etched in the same manner as in Example 1, except that a mixed gas of only fluorine gas and chlorine gas according to the conventional example was used as the etching gas. This is an example.

エツチングガスとして、SFh 30secmと、C1
t28secmの混合ガスを流した。RIBによる異方
性ドライエツチング終了後のエツチングプロファイルを
第3図に示す、同図に見られるように、高融点金属膜l
はやや順テーバ状のエツチングプロファイルであり、ま
た蒸気圧の小さな−C1,からなる残渣6が認められた
As etching gas, SFh 30sec and C1
A mixed gas of t28 sec was flowed. Figure 3 shows the etching profile after the anisotropic dry etching by RIB.
The etching profile was slightly forward-tapered, and residue 6 consisting of -C1, which had a small vapor pressure, was observed.

本比較例の結果は、高融点金属膜1の下層とし。The results of this comparative example are based on the lower layer of the high melting point metal film 1.

て高融点金属シリサイド膜を設けた高融点金属多層膜に
おいても、同じ結果であった。
The same results were obtained for a high melting point metal multilayer film in which a high melting point metal silicide film was provided.

止較■又 本比較例では、エツチングガスとして従来例通りフッ素
系ガスのみを使用し、他は実施例1と全く同様にして、
例えば−による高融点金属膜1をエツチングした例であ
る。
Comparative Example ■In addition, in this comparative example, only fluorine-based gas was used as the etching gas as in the conventional example, and the other conditions were exactly the same as in Example 1.
For example, this is an example in which the high melting point metal film 1 is etched by -.

エツチングガスとしては、SFa 30sccmのみを
流した。RIEによる異方性ドライエツチング終了後の
エツチングプロファイルを第4図に示す。同図に見られ
るように、高融点金属膜1は逆テーパ状にアンダカット
の入ったエツチングプロファイルであった。
As the etching gas, only SFa at 30 sccm was flowed. FIG. 4 shows an etching profile after completion of anisotropic dry etching by RIE. As seen in the figure, the high melting point metal film 1 had an etched profile with an undercut in a reverse tapered shape.

本比較例の結果は、高融点金属膜1の下層として高融点
金属シリサイド膜を設けた高融点金属多層膜においても
同じ結果であった。
The results of this comparative example were the same for a refractory metal multilayer film in which a refractory metal silicide film was provided as the lower layer of the refractory metal film 1.

以上、本発明の実施例について詳述したが、本発明に用
いられる酸化性ガスの添加割合は、フッ素系ガスと塩素
系ガスの混合ガスの和体積をlOOとした場合、1体積
以上50体積以下が望ましく、2体積以上10体積以下
が更に好ましい。1体積に満たないと高融点金属膜およ
び/または高融点金属シリサイド膜のエツチングプロフ
ァイルがやや順テーパ状のままに留まり易く、また残渣
の発生を抑えることが難しい。一方、50体積を越える
と、レジストの膜減りが大きくなり、実用性に劣る。
Although the embodiments of the present invention have been described in detail above, the addition ratio of the oxidizing gas used in the present invention is 1 volume or more and 50 volumes when the total volume of the mixed gas of fluorine gas and chlorine gas is lOO. The following is desirable, and the volume is more preferably 2 or more and 10 or less. If the volume is less than 1 volume, the etching profile of the high melting point metal film and/or the high melting point metal silicide film tends to remain slightly tapered, and it is difficult to suppress the generation of residue. On the other hand, if the volume exceeds 50, the resist film will be reduced significantly and will be impractical.

要はエツチングプロファイルの形状と残渣の発生を観察
しながら、前記添加割合の範囲内で酸化性ガスを適宜添
加すればよい。
In short, the oxidizing gas may be appropriately added within the range of the above-mentioned addition ratio while observing the shape of the etching profile and the generation of residue.

本発明によるエツチング方法は、実施例で取り上げたー
の他にモリブデン(Mo)、タンタル(Ta)、チタン
(Ti) 、ジルコニウム(Zr) 、ハフニウム(I
f)等による高融点金属膜および/または高融点金属シ
リサイド膜に適用することができる。これら高融点金属
の単体膜、高融点金属シリサイドの単体膜、また下地絶
縁膜との密着性改善のため、高融点金属シリサイド膜の
上に高融点金属膜を設けた2層膜、更にこの上に酸化防
止のために高融点金属シリサイド膜を設けた3層膜等、
高融点金属多層膜に本発明のエツチング方法を適用して
好結果をおさめることができた。
The etching method according to the present invention can be applied to etching materials such as molybdenum (Mo), tantalum (Ta), titanium (Ti), zirconium (Zr), and hafnium (I) in addition to those mentioned in the examples.
f) etc. can be applied to a high melting point metal film and/or a high melting point metal silicide film. These single-layer films of high-melting point metals, single-layer films of high-melting-point metal silicides, double-layer films in which a high-melting-point metal film is provided on a high-melting-point metal silicide film, and furthermore, to improve adhesion with the underlying insulating film. 3-layer film with a high melting point metal silicide film to prevent oxidation, etc.
The etching method of the present invention was applied to a high melting point metal multilayer film with good results.

〔発明の効果〕〔Effect of the invention〕

高融点金属膜および/または高融点金属シリサイド膜を
RIE法等により異方性ドライエツチングするにあたり
、フッ素系ガス、塩素系ガスおよび酸化性ガスの混合ガ
スをエツチングガスとして用いることにより、従来のエ
ツチング方法で問題とされ未解決であったアンダカット
や順テーパ状カット、あるいは残渣の発生等のトラブル
が解決できた。
When performing anisotropic dry etching of a high melting point metal film and/or a high melting point metal silicide film by RIE method etc., by using a mixed gas of fluorine gas, chlorine gas and oxidizing gas as the etching gas, conventional etching can be performed. Problems such as undercuts, forward tapered cuts, and the generation of residues, which were unresolved problems with the method, were resolved.

すなわち、矩形状であって、しかも残渣発生のない優れ
たエツチングプロファイルをもつ高融点金属膜および/
または高融点金属シリサイド膜の配線パターン等が得ら
れるので、次世代LSI等の半導体装置製造における寄
与は大きい。
In other words, a high melting point metal film and/or a rectangular shape with an excellent etching profile without generating any residue.
Alternatively, wiring patterns of high-melting point metal silicide films can be obtained, making a large contribution to the production of semiconductor devices such as next-generation LSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例によるエツチング工程を
示す図、第2図は本発明の第2の実施例によるエツチン
グ工程を示す図、第3図は比較例1によるエツチングプ
ロファイルを示す図、第4図は比較例2によるエツチン
グプロファイルを示す図である。 1  −高融点金属膜 2    高融点金属シリサイド膜 3−・  −絶縁膜 4    半導体基板 5−−−−−−−−−−−−・−レジスト6・−・−・
−一−−−−−−−・残渣エッチング二ノ呈と示す図 比較(グlJl+:J:るエツチングプロファイ/L、
と示す図第3図 比較例2によるエツチングプロファイルと示す図第4図
FIG. 1 is a diagram showing an etching process according to a first embodiment of the present invention, FIG. 2 is a diagram showing an etching process according to a second embodiment of the present invention, and FIG. 3 is a diagram showing an etching profile according to Comparative Example 1. FIG. 4 is a diagram showing an etching profile according to Comparative Example 2. 1 - High-melting point metal film 2 High-melting point metal silicide film 3 - - Insulating film 4 Semiconductor substrate 5 ---------------Resist 6 - - -
−1−−−−−−・Residue etching 2. Figure comparison (Gl Jl+: J: Etching profile/L,
Figure 3 shows the etching profile of Comparative Example 2. Figure 4 shows the etching profile of Comparative Example 2.

Claims (1)

【特許請求の範囲】[Claims] フッ素系ガス、塩素系ガスおよび酸化性ガスからなる混
合ガスにより、高融点金属膜および/または高融点金属
シリサイド膜をエッチングすることを特徴とするエッチ
ング方法。
An etching method characterized by etching a high melting point metal film and/or a high melting point metal silicide film with a mixed gas consisting of a fluorine gas, a chlorine gas, and an oxidizing gas.
JP2259689A 1989-02-02 1989-02-02 Etching method Expired - Fee Related JP2923962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2259689A JP2923962B2 (en) 1989-02-02 1989-02-02 Etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2259689A JP2923962B2 (en) 1989-02-02 1989-02-02 Etching method

Publications (2)

Publication Number Publication Date
JPH02203527A true JPH02203527A (en) 1990-08-13
JP2923962B2 JP2923962B2 (en) 1999-07-26

Family

ID=12087221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2259689A Expired - Fee Related JP2923962B2 (en) 1989-02-02 1989-02-02 Etching method

Country Status (1)

Country Link
JP (1) JP2923962B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254326A (en) * 1991-02-06 1992-09-09 Nec Corp Dry etching method of silicide film
US5871659A (en) * 1995-06-19 1999-02-16 Nippondenso Co., Ltd. Dry etching process for semiconductor
KR100445060B1 (en) * 1997-06-30 2004-11-16 주식회사 하이닉스반도체 Method of forming metal line of semiconductor device for securing process margin
JP2014075593A (en) * 2013-11-22 2014-04-24 Semiconductor Energy Lab Co Ltd Method for manufacturing wiring
US9045831B2 (en) 1999-07-22 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254326A (en) * 1991-02-06 1992-09-09 Nec Corp Dry etching method of silicide film
US5871659A (en) * 1995-06-19 1999-02-16 Nippondenso Co., Ltd. Dry etching process for semiconductor
KR100445060B1 (en) * 1997-06-30 2004-11-16 주식회사 하이닉스반도체 Method of forming metal line of semiconductor device for securing process margin
US9045831B2 (en) 1999-07-22 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method
JP2014075593A (en) * 2013-11-22 2014-04-24 Semiconductor Energy Lab Co Ltd Method for manufacturing wiring

Also Published As

Publication number Publication date
JP2923962B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP3330554B2 (en) Etching method
JPH0493022A (en) Method of etching silicon
WO2002065539A1 (en) Method of etching tungsten or tungsten nitride electrode gates in semiconductor structures
JPH1064889A (en) Method for etching semiconductor device
JP2809087B2 (en) Wiring formation method
US7413992B2 (en) Tungsten silicide etch process with reduced etch rate micro-loading
KR100280866B1 (en) Manufacturing Method of Semiconductor Device
KR19990065188A (en) Multilayer Dry Etching Method of Semiconductor Devices
JPH02203527A (en) Etching process
KR100252492B1 (en) Method of fabricating semiconductor device
JPH10178014A (en) Method for manufacturing semiconductor device
JP3277414B2 (en) Dry etching method
JPH11145112A (en) Patterning method
JPH10189594A (en) Method of forming metal wiring of semiconductor device
JP2004207327A (en) Semiconductor device and its manufacturing method
JP3696655B2 (en) Wiring formation method
JP3326868B2 (en) Method of forming aluminum-based pattern
JP2574868B2 (en) Reactive ion etching method for laminated metal
JPS62154628A (en) Dry etching method
JPH0722391A (en) Dry etching method
JPH06163479A (en) Dry etching method
Peccoud et al. Plasma etching of silicides and polycides in very-large-scale integration technology
JP3187020B2 (en) Method for manufacturing semiconductor device
JPH07254606A (en) Fabrication of semiconductor device
JP2002313786A (en) Etching method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees