JPH02203254A - Method and device for measuring photoluminescence - Google Patents

Method and device for measuring photoluminescence

Info

Publication number
JPH02203254A
JPH02203254A JP2252589A JP2252589A JPH02203254A JP H02203254 A JPH02203254 A JP H02203254A JP 2252589 A JP2252589 A JP 2252589A JP 2252589 A JP2252589 A JP 2252589A JP H02203254 A JPH02203254 A JP H02203254A
Authority
JP
Japan
Prior art keywords
time
sample
photoluminescence
light
probe light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2252589A
Other languages
Japanese (ja)
Inventor
Yoshiko Niki
仁木 由子
Masaharu Watanabe
正晴 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2252589A priority Critical patent/JPH02203254A/en
Publication of JPH02203254A publication Critical patent/JPH02203254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To analyze a sample in a depth direction without destruction by performing the pulsative irradiation of probe light and temporally separating and measuring the emitted light observed at such a time. CONSTITUTION:The probe light 5 generated from a pulse laser generating device 11 irradiates the sample 14 through a filter 12 and a mirror 13 to obtain photoluminescence. Namely, the sample 14 is irradiated with the probe light 5 and the emitted light 6 at the time of recombination is measured with time, so that the photoluminescence can be measured. After the spectrum of the emitted light 6 at the time of recombination is performed by a spectroscope 16 through a lens 15 and a filter 2, the intensity of the light is detected by a detector 17. The photocounting of the detected emitted light is performed in a digital storage oscilloscope 18 and the secular change is inputted in a computer 19, recorded in a plotter 7 and displayed on a CRT 8.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は物質の特性を示すフォトルミネッセンスを時間
分解して測定し、それによりその物性の深さ方向の変化
を測定する方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention measures photoluminescence, which indicates the properties of a substance, in a time-resolved manner, thereby measuring changes in the physical properties in the depth direction. Regarding the method.

(従来の技術) フォトルミネッセンスは、プローブ光が試料に照射され
たときに試料表面で形成される電子正孔対が試料中を移
動し、ある位置で再結合したときに観測される発光であ
る。この発光のエネルギーは再結合位置に於ける電子準
位を反映し、それによりその物性を知ることができる。
(Prior art) Photoluminescence is light emission observed when electron-hole pairs formed on the sample surface when probe light is irradiated onto the sample move through the sample and recombine at a certain position. . The energy of this light emission reflects the electronic level at the recombination site, which allows us to know its physical properties.

従来このフォトルミネッセンスの測定のためにレーザを
プローブ光として用いており、その照射面積は直径2關
程度、表面侵入深さは〜1μm程度である。しかし、半
導体材料(例えばSt。
Conventionally, a laser is used as a probe light to measure photoluminescence, and the irradiation area is about 2 diameters and the surface penetration depth is about 1 μm. However, semiconductor materials (e.g. St.

GaAs)の様に結晶性の良いものでは、プローブ光で
生成する電子正孔対の寿命が比較的長い(10μsec
 )為、生成された電子正孔対は表面から30μm程度
の深さまで移動することができる。
In materials with good crystallinity such as GaAs), the lifetime of electron-hole pairs generated by probe light is relatively long (10 μsec).
), the generated electron-hole pairs can move to a depth of about 30 μm from the surface.

その結果、得られるフォトルミネッセンスは試料の表面
から深さ30μmまでの領域の物性を表す事になり、半
導体産業で要求されるような微小領域の物性を知るため
には深さ方向分解能が不十分であった。またどうしても
深さ方向の情報が必要な場合には、第5図に示すように
、試料の表面、すなわち、半導体基板30に設けたエピ
タキシャル成長層81と共に角度研磨面32を形成する
ように、角度研磨して広がり抵抗プ°ローブ33によっ
て、矢印方向34に掃査して広がり抵抗測定をするため
、試料を破壊してしまう、あるいは測定に要する時間が
長くなると言う欠点があった。
As a result, the photoluminescence obtained represents the physical properties of a region up to a depth of 30 μm from the surface of the sample, and the depth resolution is insufficient to understand the physical properties of the microscopic region required in the semiconductor industry. Met. In addition, if information in the depth direction is absolutely necessary, as shown in FIG. Then, the spreading resistance probe 33 scans in the direction of the arrow 34 to measure the spreading resistance, which has disadvantages in that the sample may be destroyed or the time required for measurement becomes longer.

(発明が解決しようとする課題) このように、従来のフォトルミネッセンス測定法におい
ては、測定試料の表面から30μm程度までのバルクの
情報を得ており、深さ方向の物性の変化を知ることがで
きないという問題があった。
(Problem to be solved by the invention) In this way, in the conventional photoluminescence measurement method, bulk information is obtained up to about 30 μm from the surface of the measurement sample, and it is difficult to know changes in physical properties in the depth direction. The problem was that I couldn't do it.

本発明は上記問題点を考慮して成されたもので、その目
的とするところはフォトルミネッセンスの測定法におい
て、試料の深さ方向の物性を知ることのできるフォトル
ミネッセンス記録方法を堤供することにある。
The present invention has been made in consideration of the above problems, and its purpose is to provide a photoluminescence recording method that can determine the physical properties of a sample in the depth direction in a photoluminescence measurement method. be.

[発明の構成] (課題を解決するための手段) 本発明の骨子は、プローブ光をパルスで照射し、それに
より形成された電子正孔対が消滅する際に放出されるフ
ォトルミネッセンスを時間分解して記録し、試料の深さ
方向での物性の変化を測定することにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to time-resolve photoluminescence emitted when electron-hole pairs formed by irradiation with pulsed probe light disappear. The objective is to measure changes in physical properties in the depth direction of the sample.

すなわち、パルスプローブ光を照射してからフォトルミ
ネッセンスが放出されるまでの時間を測定し、それによ
り電子正孔対の生成位置から再結合位置までの移動用M
(すなわち試料表面からフォトルミネッセンスの発生位
置までの深さ)を、また観測されるフォトルミネッセン
スのエネルギーから再結合位置に於ける試料の物性を知
ることができる。
That is, the time from irradiation with pulsed probe light to the emission of photoluminescence is measured, and the M for moving from the generation position of electron-hole pairs to the recombination position is measured.
(that is, the depth from the sample surface to the position where photoluminescence occurs) and the physical properties of the sample at the recombination position can be determined from the energy of the observed photoluminescence.

(作 用) レーザーにより生成する電子正孔対の寿命は〜lOμS
ecであり、この間に電子正孔対は表面より30μm程
度まで移動する。プローブ光をこれに対しテ十分に短い
(〜n5ec)パルスにして照射すると、電子正孔対は
全て同時に試料表面で生成したと見做すことが可能であ
る。生成した電子正孔対は試料中を移動し、再結合中心
に到達するとその電子準位に相当する発光を放射するが
、それらの再結合中心が表面から浅い位置に存在する場
合と深い位置に存在する場合では、電子正孔対が到達す
るまでの時間が異なる。すなわち、表面より深い位置で
再結合するものほど電子正孔対の生成(すなわちパルス
プローブ光照射)からフォトルミネッセンスの放射まで
の時間が長くなる。
(Function) The lifetime of the electron-hole pair generated by the laser is ~lOμS
ec, and during this time the electron-hole pair moves up to about 30 μm from the surface. If the probe light is irradiated with a sufficiently short pulse (~n5ec), it can be assumed that all electron-hole pairs are generated at the same time on the sample surface. The generated electron-hole pairs move through the sample, and when they reach a recombination center, they emit light corresponding to the electron level. When the electron-hole pair exists, the time taken for the electron-hole pair to arrive differs. That is, the deeper the recombination occurs than the surface, the longer the time from generation of electron-hole pairs (that is, pulsed probe light irradiation) to photoluminescence emission.

電子正孔対の移動は必ずしも表面から垂直方向にだけ起
こるとは限らないが、全ての電子正孔対が水平方向にの
み移動することはない。また、電子正孔対の広がりによ
る測定領域の広がりについては高々80μmであり、通
常のプローブ光の径が鶴オーダーである事を考慮すると
問題にならない。
Although the movement of electron-hole pairs does not necessarily occur only in the vertical direction from the surface, not all electron-hole pairs move only in the horizontal direction. Further, the expansion of the measurement region due to the expansion of electron-hole pairs is at most 80 μm, which is not a problem considering that the diameter of a normal probe light is on the order of a crane.

試料の物性を知る為に、通常はこのとき放出されるフォ
トルミネッセンスのエネルギーを測定し、更にその強度
を測定するが、本発明においては更E 10 l1se
eの電子正孔対の寿命を時間分解し、その間のフォトル
ミネッセンスのエネルギー及び強度変化を測定する。こ
の事により、従来不可能であったフォトルミネッセンス
測定による深さ方向の物性評価が可能となる。
In order to know the physical properties of a sample, the energy of the photoluminescence emitted at this time is usually measured, and its intensity is also measured.
The lifetime of the electron-hole pair of e is resolved in time, and changes in the energy and intensity of photoluminescence during that time are measured. This makes it possible to evaluate physical properties in the depth direction by photoluminescence measurement, which was previously impossible.

(実施例) 以下、本発明の実施例について、詳細に説明する。第1
図は本発明のフォトルミネッセンスAll]定装置を示
す図で、主に、パルスレーザ−発生装置11、分光器1
6およびコンピュータ19とで構成されている。パルス
レーザ−発生装置11は、8 n5ec。
(Example) Examples of the present invention will be described in detail below. 1st
The figure shows a photoluminescence device according to the present invention, which mainly includes a pulse laser generator 11, a spectrometer 1
6 and a computer 19. The pulse laser generator 11 is 8n5ec.

1011zのYAGパルスレーザ−をプローブ光5とし
て発振する。このプローブ光5はフィルター12および
ミラー13を介してD]定すべき試料14に照射してフ
ォトルミネッセンスを発光させる。試料14は、デユア
−びん3内に設置されており、目的に応じた試料温度に
変えてM1定できるようになっている。
A 1011z YAG pulse laser is oscillated as the probe light 5. This probe light 5 passes through a filter 12 and a mirror 13 and irradiates the sample 14 to be determined to emit photoluminescence. The sample 14 is placed in the dual bottle 3, and M1 can be fixed by changing the sample temperature depending on the purpose.

すなわち、パルスレーザ−発生装置11の発生するパル
スレーザ−が8 n5ecのパルス間隔に対し、形成さ
れる電子正孔対の寿命は〜10nsocであり、また、
パルスレーザ−が10Hzであることから、電子正孔対
の再結合を時間分解して観測する二とができる。そこで
、試料14にプローブ光5を照射してこの再結合時の発
光6を経時的に計1定することにより、フォトルミネッ
センスを測定することができる。この再結合時の発光6
は、レンズ15、フィルター2を介して、分光器16で
分光された後、検出器17でその強度が検出される。こ
の時に検出される発光はその強度が微弱であるため、分
光器IBの波数を固定して、その出力を積算して検出す
る。
That is, when the pulsed laser generated by the pulsed laser generator 11 has a pulse interval of 8 n5ec, the lifetime of the electron-hole pair formed is ~10nsoc, and
Since the pulse laser frequency is 10 Hz, it is possible to observe the recombination of electron-hole pairs in a time-resolved manner. Therefore, photoluminescence can be measured by irradiating the sample 14 with the probe light 5 and measuring the luminescence 6 at the time of recombination over time. Luminescence during this recombination 6
is separated into spectra by a spectrometer 16 via a lens 15 and a filter 2, and then its intensity is detected by a detector 17. Since the intensity of the emitted light detected at this time is weak, the wave number of the spectrometer IB is fixed, and its output is integrated and detected.

そのために、検出した発光のフォトンカウンティングを
デジタルストレージオシロ18で行い、その経時変化を
コンピュータ19に入力して、プロッター7に記録した
り、CRT8で表示する。なお、分光器1Bは、コンピ
ュータ19の指令により、ドライバー9によって駆動さ
れる。
For this purpose, photon counting of the detected light emission is performed using a digital storage oscilloscope 18, and its change over time is input to a computer 19 and recorded on a plotter 7 or displayed on a CRT 8. Note that the spectrometer 1B is driven by the driver 9 according to instructions from the computer 19.

試料として、第2図に示すような、抵抗率0.002Ω
Gのボロンドープシリコン単結晶基板20上にアンドー
プ(undope)層21をエピタキシャル成長で成長
したものと、第2図に示すような、別の抵抗率0.(1
(12Ωlのアンチモンドープシリコン単結晶基板22
上にアンドープ(undope)層23をエピタキシャ
ル成長で成長したウェハについて、第1図に示した時間
分解フォトルミネッセンス装置で測定評価した。
As a sample, the resistivity is 0.002Ω as shown in Figure 2.
An undoped layer 21 is grown by epitaxial growth on a boron-doped silicon single crystal substrate 20 of G, and another layer with a resistivity of 0.G as shown in FIG. (1
(12Ωl antimony-doped silicon single crystal substrate 22
A wafer on which an undoped layer 23 was grown by epitaxial growth was measured and evaluated using a time-resolved photoluminescence apparatus shown in FIG.

先ず第2図の基板を測定した。分光器の成長を1132
3Aのボロン発光を検出するように固定した。
First, the substrate shown in FIG. 2 was measured. Spectrometer growth 1132
It was fixed to detect 3A boron emission.

約1 n5ecの間、プローブ光を照射し、ボロンの発
光の時間変化を測定したところ第4図に示すような結果
を得た。測定は繰り返し行い、その平均値をとった。更
に第3図に示すアンチモンドープシリコン単結晶基板2
2上にアンドープ(undope) 層23をエピタキ
シャル成長した試料についても同様の測定を行った。こ
の時得られた結果も第4図に示した。第4図の結果より
ボロンの方がアンチモンよりも早く発光強度が最大とな
る。これはボロンのほうが表面に近いところに分布して
いることを示している。このように、試料を破壊するこ
と無く試料内部のボロンとアンチモン分布の差を評価で
きる。
When the probe light was irradiated for about 1 n5 ec and the time change of boron emission was measured, the results shown in FIG. 4 were obtained. The measurements were repeated and the average value was taken. Furthermore, an antimony-doped silicon single crystal substrate 2 shown in FIG.
Similar measurements were also carried out on a sample in which an undoped layer 23 was epitaxially grown on top of the undoped layer 23. The results obtained at this time are also shown in FIG. From the results shown in Figure 4, the luminescence intensity of boron reaches its maximum earlier than that of antimony. This indicates that boron is distributed closer to the surface. In this way, the difference in boron and antimony distribution inside the sample can be evaluated without destroying the sample.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、フォトルミネッセ
ンスの測定方法において、プローブ光をパルス照射しそ
の時観測される発光を時間分解して11定することによ
り、試料を非破壊かつ短時間で深さ方向分析することが
可能となる。
As described in detail above, according to the present invention, in the photoluminescence measuring method, a sample can be measured at a deep depth non-destructively and in a short time by irradiating pulses of probe light and time-resolving the observed luminescence. This makes it possible to perform direction analysis.

【図面の簡単な説明】 第1図は本発明の装置の構成図、第2図および第3図は
本発明の一実施例を説明するための試料断面図、第4図
は本発明を用いた方法でフォトルミネッセンスを測定し
た結果得られた第1図、及び第2図で示した試料の特性
図、第5図は従来の方法を示す模式図である。 5・・・プローブ光、 11・・・YAGパルスレーザ−発生装置、1G・・・
分光器、     21・・・アンドープ層、22・・
・アンチモンドープシリコン単結晶基板。 代理人 弁理士 則 近 憲 佑 同  松山光之
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a configuration diagram of the apparatus of the present invention, FIGS. 2 and 3 are cross-sectional views of a sample for explaining an embodiment of the present invention, and FIG. FIG. 1 and FIG. 2 are characteristic diagrams of the samples obtained as a result of measuring photoluminescence using a conventional method, and FIG. 5 is a schematic diagram showing a conventional method. 5... Probe light, 11... YAG pulse laser generator, 1G...
Spectrometer, 21... Undoped layer, 22...
・Antimony-doped silicon single crystal substrate. Agent Patent Attorney Noriyuki Chika Yudo Mitsuyuki Matsuyama

Claims (2)

【特許請求の範囲】[Claims] (1)パルス化したプローブ光を試料に照射し、この照
射して観測される発光を1パルスごとに時間分解してそ
の強度を測定して物性の深さ方向の変化を測定するフォ
トルミネッセンスの測定方法。
(1) Photoluminescence, in which a sample is irradiated with pulsed probe light, and the observed luminescence is time-resolved for each pulse and its intensity is measured to measure changes in physical properties in the depth direction. Measuring method.
(2)パルス化したプローブ光を発生するパルス光発生
手段と、このパルス光発生手段で発生したパルス光を試
料に照射して得られる発光を時間分解して時間分解強度
を測定する手段とを具備してなるフォトルミネッセンス
測定装置。
(2) A pulsed light generating means for generating pulsed probe light, and a means for time-resolving the luminescence obtained by irradiating the sample with the pulsed light generated by the pulsed light generating means and measuring the time-resolved intensity. A photoluminescence measurement device equipped with:
JP2252589A 1989-02-02 1989-02-02 Method and device for measuring photoluminescence Pending JPH02203254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252589A JPH02203254A (en) 1989-02-02 1989-02-02 Method and device for measuring photoluminescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252589A JPH02203254A (en) 1989-02-02 1989-02-02 Method and device for measuring photoluminescence

Publications (1)

Publication Number Publication Date
JPH02203254A true JPH02203254A (en) 1990-08-13

Family

ID=12085204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252589A Pending JPH02203254A (en) 1989-02-02 1989-02-02 Method and device for measuring photoluminescence

Country Status (1)

Country Link
JP (1) JPH02203254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281141A (en) * 1992-03-30 1993-10-29 Mitsui Mining & Smelting Co Ltd Method and apparatus for photoluminescence measurement in crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281141A (en) * 1992-03-30 1993-10-29 Mitsui Mining & Smelting Co Ltd Method and apparatus for photoluminescence measurement in crystal

Similar Documents

Publication Publication Date Title
US6534774B2 (en) Method and apparatus for evaluating the quality of a semiconductor substrate
EP1373869B1 (en) Detection and classification of micro-defects in semi-conductors
US6118533A (en) Method and apparatus for measuring the concentration of ions implanted in semiconductor materials
JP3917154B2 (en) Defect evaluation method and apparatus for semiconductor sample
EP0470692A2 (en) Method and apparatus for measuring a deep inpurity level of a semiconductor crystal
EP2622330B1 (en) Deconvolution of time-gated cathodoluminescence images
EP1491880B1 (en) Method and apparatus for inspecting semiconductor device
JPH05281141A (en) Method and apparatus for photoluminescence measurement in crystal
MacDonald et al. Time‐resolved scanning electron microscopy and its application to bulk‐effect oscillators
JP2003523628A (en) Surface passivation method and apparatus for measuring minority carrier lifetime of semiconductor
JPH02203254A (en) Method and device for measuring photoluminescence
Zhang et al. Simple near-infrared time-correlated single photon counting instrument with a pulsed diode laser and avalanche photodiode for time-resolved measurements in scanning applications
US20060237811A1 (en) Non-destructive, in-line characterization of semiconductor materials
CN1829909A (en) Optical waveform measurement device and measurement method thereof, complex refractive index measurement device and measurement method thereof, and computer program recording medium containing the pro
JP3661767B2 (en) Quality evaluation method of silicon wafer
Angell et al. Charge collection ion microscopy: Imaging of defects in semiconductors with a positive ion microbeam
Rodolfa et al. Capabilities of surface composition analysis using a long laser-induced breakdown spectroscopy spark
JP3661998B2 (en) Method and apparatus for evaluating semiconductor device using X-ray
JP2004233279A (en) Evaluation method of semiconductor wafer and manufacturing method of semiconductor device
JP3275022B2 (en) Photoluminescence measurement device in crystal
Rodrıguez et al. Infrared photothermal radiometry of deep subsurface defects in semiconductor materials
JPH0419585A (en) Measuring instrument for magnetic resonance phenomenon
JPS63293936A (en) Electron beam testing method and electron beam tester
JPS63121740A (en) Surface analyzing method and its device
JP5659902B2 (en) Method for measuring cathodoluminescence characteristics