JPH02202602A - Computing element for change rate - Google Patents

Computing element for change rate

Info

Publication number
JPH02202602A
JPH02202602A JP2242489A JP2242489A JPH02202602A JP H02202602 A JPH02202602 A JP H02202602A JP 2242489 A JP2242489 A JP 2242489A JP 2242489 A JP2242489 A JP 2242489A JP H02202602 A JPH02202602 A JP H02202602A
Authority
JP
Japan
Prior art keywords
change
rate
output
signal
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2242489A
Other languages
Japanese (ja)
Inventor
Seishiro Kawakami
川上 誠志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2242489A priority Critical patent/JPH02202602A/en
Publication of JPH02202602A publication Critical patent/JPH02202602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To obtain an output corresponding to the signal change of a long cycle with satisfactory responsibility by installing plural differentiation means which operate the change rate of measurement variables in different time intervals in changing inputs and a weight mean means which optionally weights the outputs. CONSTITUTION:When a process signal P which includes the noise of a short cycle and which increases in the long cycle is inputted, the signal P is decided in change rate decision circuits 1-4 having different time intervals. Then, the gains of attribute degrees of K1-K4 of respective change rates for a physical change are multiplied in amplifiers 5-8. Then, the signals P are added and they are divided by the addition value of the attribute degrees K1-K4 in the mean circuit 10 so as to output the change rate. In the output, the influence of the noise of the short cycle and the like included in the input process signal is removed and the output signal corresponding to the original process quantity change of the long cycle can be obtained with high responsibility.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 原子力、火力、水力等の発電プラントに採用されるプロ
セス検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a process detection device employed in power plants such as nuclear power, thermal power, and hydropower.

(従来の技術) 従来各プラントにおける各種プロセス量の変化率を適切
に検出して、これをプロセス制御に採用することは1種
々のノイズの影響を受けるため実用化が困難であった。
(Prior Art) Conventionally, it has been difficult to appropriately detect the rate of change of various process quantities in each plant and apply this to process control because it is affected by various noises.

即ち一般にプロセス量の変化率は第5図の特性図に示す
ように、横軸に時間t、縦軸をプロセス量Pとし1時刻
t1とt2の間にプロセス量がPlからP2まで変化し
たとすると。
In other words, in general, the rate of change in the process quantity is expressed as shown in the characteristic diagram in Figure 5, where the horizontal axis is time t and the vertical axis is the process quantity P, and the process quantity changes from Pl to P2 between times t1 and t2. Then.

次の0式で表すことができる。It can be expressed by the following equation 0.

(Pa−Px)/(tt−tt)    ・・・■しか
し、通常あるプロセス量の変化率と言う場合、この変化
率を求める際の時間間隔Δt(tz  tt)は、明確
に定義されていない。
(Pa - Px) / (tt - tt) ... ■ However, when talking about the rate of change of a certain process quantity, the time interval Δt (tz tt) when calculating this rate of change is not clearly defined. .

一例としてプロセス量Pの時間tに対する変化挙動が第
6図(a)の特性図のような短時間に小さい変化をした
場合と、第7図(a)の特性図のように長時間で大きく
変化した場合を各々の変化率を2つの異なる時間間隔(
長時間間隔Δtaと短時間間隔Δtb)で判定した結果
を夫々第6図(b)、(c)と第7図(b)、(0)で
示す、このように変化率検出を長時間間隔Δtaで判定
した変化率は、第6図(b)及び第7図(b)のように
微少のプロセス量変化には影響は受けないが、変化率判
定に遅れが生じる。逆に変化率検出短時間間隔Δtbで
判定した変化率は、第6図(Q)及び第7図(Q)で示
すように、判定の遅れはないものの、プロセス量の微少
変化に対しては大幅な影響を受ける。
As an example, when the change behavior of the process quantity P with respect to time t shows a small change over a short period of time as shown in the characteristic diagram in Figure 6(a), and a case where the change behavior changes significantly over a long period of time as shown in the characteristic diagram in Figure 7(a). The rate of change for each case is divided into two different time intervals (
The results of determination at long-term intervals Δta and short-term intervals Δtb are shown in Figures 6(b), (c) and 7(b), (0), respectively. Although the rate of change determined by Δta is not affected by minute changes in the process amount as shown in FIGS. 6(b) and 7(b), there is a delay in determining the rate of change. On the other hand, as shown in Figures 6 (Q) and 7 (Q), the rate of change determined using the short change rate detection interval Δtb does not have a delay in determination, but it does not respond to minute changes in the process amount. significantly affected.

(発明が解決しようとする課題) 一般に第6図(、)に示すような微少なプロセス量変化
は検出方式あるいは検出回路等に付随するノイズであり
、従ってこれ等ノイズの影響を受けることのない変化率
判定を行うためには、判定時間間隔を長くすれば良いが
、これを長くし過ぎると実際の変化の検出が遅れてしま
う、さらにこの判定のための変化率検出時間間隔に関し
ては、プロセス量が物理的に変化する周期がノイズの周
期と大きく異なっている場合には支障ないが1通常この
2つの周期は第8図の特性図に示すように互が接近1重
複している場合が多く、このため変化率検出時間間隔を
一意的に決定すると重複部分を分割してしまい、互いの
情報量の一部が失われることとなり、この判断は極めて
困難であった。実際にはある周期で検出プロセス量が変
化した場合、その変化が物理的に意味がある可能性と、
ノイズである可能性は第9図に示すように明確に1か0
かに分けられるものではなく、物理的に意味のある可能
性が0.9でノイズである可能性が0.1というような
関係となっている。なおこの各々の可能性をここでは“
帰属度”と呼ぶ、しかしこの帰属度は夫々周期によって
連続的に変化して行くものである。このため従来はある
対象を良好に制御しようとすると、その対象の状態の変
化率、即ちプロセス量を微分してこれをフィードバック
することの必要が多いにも拘らず、ノイズの影響を排除
して真の変化率のみを検知することが困難なため、微分
要素を制御に使用することができないという問題があっ
た。
(Problem to be Solved by the Invention) In general, minute process amount changes as shown in FIG. In order to perform change rate judgment, it is sufficient to make the judgment time interval long, but if this is made too long, the detection of the actual change will be delayed.Furthermore, regarding the change rate detection time interval for this judgment, There is no problem if the period at which the quantity physically changes is significantly different from the noise period, but usually these two periods are close to each other and overlap, as shown in the characteristic diagram in Figure 8. For this reason, if the change rate detection time interval is uniquely determined, the overlapping portion will be divided, and a portion of each other's information will be lost, making this determination extremely difficult. In reality, if the detected process amount changes in a certain period, the possibility that the change is physically meaningful,
The possibility that it is noise is clearly 1 or 0 as shown in Figure 9.
The relationship is such that the probability that it is physically meaningful is 0.9 and the probability that it is noise is 0.1. In addition, each of these possibilities is described here as “
However, this degree of belonging changes continuously depending on the period.For this reason, conventionally, when trying to control a certain object well, the rate of change of the state of the object, that is, the process amount Although it is often necessary to differentiate and feed back this result, it is difficult to eliminate the influence of noise and detect only the true rate of change, so the differential element cannot be used for control. There was a problem.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、変化する入力を異なる時間間隔における測定
変数の変化率を演算する複数の微分手段と、この出力に
任意の重みをつける加重平均手段により、入力信号に含
まれた短周期のノイズ等の影響を排除し、長周期の本来
の信号変化に対応した出力を応答性良く得られる変化率
演算器を提供することにある。
The present invention has been made in view of the above, and its purpose is to provide a plurality of differentiating means for calculating the rate of change of a measurement variable at different time intervals using changing inputs, and a weighting unit that applies an arbitrary weight to the output. It is an object of the present invention to provide a rate-of-change calculator that eliminates the influence of short-period noise contained in an input signal by means of an averaging means and can obtain an output corresponding to a long-period original signal change with good responsiveness.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 異なる時間間隔における測定変数の変化幅を演算する複
数の微分手段と、この微分手段の出力に任意の重みをつ
けるための加重平均手段を具備する。
(Means for Solving the Problem) A plurality of differentiating means for calculating the change range of a measured variable at different time intervals, and a weighted average means for assigning arbitrary weights to the outputs of the differentiating means are provided.

(作 用) 入力されたプロセス量の物理的に意味のある変化のみに
対して、変化率を求めるために物理的変化に対応する周
期の範囲に対し、複数の変化率演算手段を設け、その出
力に物理的変化への帰属度を基に重みづけを行って、プ
ロセス信号に含まれた短周期のノイズ等の影響を排除し
、長周期の本来のプロセス量変化に対応した出力信号を
応答性を高く得る。
(Function) In order to calculate the rate of change only for physically meaningful changes in the input process quantity, a plurality of change rate calculation means are provided for the period range corresponding to the physical change, and the Weights the output based on the degree of attribution to physical changes, eliminates the effects of short-period noise contained in the process signal, and responds with an output signal that corresponds to the original long-period change in process quantity. Get high sex.

(実施例) 本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

第1図は基本的構成図で、プロセス量の物理的に意味の
ある変化のみに対して、変化率を求めるために物理的変
化に対応する周期の範囲に対し、複数の変化率演算手段
を備え、その出力に物理的変化への帰属度を基に重みづ
けを行う、これは次の0式で表される。
Figure 1 is a basic configuration diagram. In order to calculate the rate of change only for physically meaningful changes in process quantities, multiple change rate calculation means are used for the range of cycles corresponding to physical changes. The output is weighted based on the degree of attribution to the physical change, which is expressed by the following equation 0.

kl:Δtlでの変化率が、物理的変化としてどの程度
意味があるかの帰属度、 P:プロセス量。
kl: degree of attribution of the significance of the rate of change in Δtl as a physical change, P: process amount.

また第2図はブロック構成図で、4つの異なる変化率検
出時間間隔の場合を示したものである。
FIG. 2 is a block diagram showing four different rate-of-change detection time intervals.

プロセス量Pを入力して、この変化率を検出する時間間
隔が第3図に示す、時間間隔Δt□、ΔtitΔhlΔ
t4と、夫々異なる4つの微分手段である変化率判定回
路1,2,3.4と、夫々に接続され各変化率の物理的
変化への夫々の帰属度に、、に、。
The time intervals for inputting the process quantity P and detecting the rate of change are shown in FIG.
t4, and change rate determination circuits 1, 2, and 3.4, each of which is a differentiating means, are connected to each other, and each degree of attribution of each change rate to a physical change is determined.

K3. K、を基にゲインを決定した増幅器5,6゜7
.8及びこれ等の出力を加算する加算器9と、この加算
した出力を規格化するための平均回路lOで構成されて
いる。
K3. Amplifiers 5, 6゜7 whose gains are determined based on K.
.. 8 and an adder 9 for adding these outputs, and an averaging circuit 10 for normalizing the added output.

次に上記構成による作用について説明する。第4図(a
)の特性図に示すように短周期のノイズを含む、長周期
で増加するプロセス信号が入力された場合、従来の装置
においては第4図(c)に示すように、極めて変動に富
む出力となり到底微分フィードバック制御への採用は不
可能である。しかしながら本発明によれば、第4図(a
)に示すような信号は、4つの異なる時間間隔の変化率
判定回路1,2,3.4において判定され、さらに増幅
器5,6,7.8にて夫々各変化率の物理的変化への帰
属度Ki、 K、、 K、、 K、のゲインが乗ぜられ
た後、加算器9にて加算され、さらにこれを平均回路1
0にて帰属度に、、 K、、 K、、 K、の加算値で
除して変化率を出力する。これによる出力は第4図(b
)に示すように、入力されたプロセス信号に含まれた短
周期のノイズ等の影響が排除され。
Next, the effect of the above configuration will be explained. Figure 4 (a
) When a process signal that includes short-period noise and increases over a long period is input, as shown in the characteristic diagram of Figure 4(c), the conventional device produces an extremely variable output, as shown in Figure 4(c). It is absolutely impossible to apply this method to differential feedback control. However, according to the present invention, FIG.
) is determined in four different time interval rate-of-change determination circuits 1, 2, 3.4, and further processed in amplifiers 5, 6, 7.8, respectively, to convert each rate of change into a physical change. After being multiplied by the gains of the membership degrees Ki, K, , K, , K, they are added in an adder 9, and then added to the averaging circuit 1.
At 0, the degree of belonging is divided by the addition value of , K, , K, , K, and the rate of change is output. The output from this is shown in Figure 4 (b
), the effects of short-period noise contained in the input process signal are eliminated.

長周期の本来のプロセス量変化に対応した出力信号が、
しかも応答性を高く得られる。従ってこの出力信号は微
分フィードバック制御に採用して良好な制御が行なえる
The output signal corresponding to the long-period original process quantity change is
Moreover, high responsiveness can be obtained. Therefore, this output signal can be used for differential feedback control to achieve good control.

〔発明の効果〕〔Effect of the invention〕

以上本発明によれば、その変化がノイズに起因するもの
か、また物理的変化によるものかが明確でない周期のプ
ロセス量の変化に対し、物理的変化であることへの帰属
度を判別して適切な変化率が演算することができるので
、従来実現不能であった微分フィードバック制御が可能
となり、各種プロセス制御に最適な制御システムの自由
な構築とその結果良好な制御が得られる効果がある。
As described above, according to the present invention, the degree to which a change in a process quantity with a period in which it is unclear whether the change is caused by noise or a physical change is attributed to a physical change is determined. Since an appropriate rate of change can be calculated, differential feedback control, which was previously impossible to achieve, becomes possible, and the effect is that a control system that is optimal for various process controls can be freely constructed and, as a result, good control can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成図、第2図は本発明の一実
施例のブロック構成図、第3図は周期時間に対する物理
的変化への帰属度特性図、第4図(a)は時間対プロセ
ス量特性図、第4図(b)は本発明の変化率演算器の出
力特性図、第4図(c)は従来の変化率演算器の出力特
性図、第5図はプロセス量の変化率特性図、第6図(a
)はプロセス量微少変化の特性図、第6図(b)は第6
図(a)の長時間間隔で判定したプロセス量の変化率特
性図、第6図(c)は第6図(a)の短時間間隔で判定
したプロセス量の変化率特性図、第7図(a)はプロセ
ス量長時間変化大の特性図、第7図(b)は第7図(a
)の長時間間隔で判定したプロセス量の変化率特性図、
第7図(c)は第7図(a)の短時間間隔で判定したプ
ロセス量の変化率特性図、第8図は入力信号の変化周期
特性図、第9図は変化周期に対する帰属度特性図である
。 1.2,3.4・・・変化率判定回路。 5.6,7.8・・・増幅器、 9・・・加算器、     IO・・・平均回路。 第 1 図 代理人 弁理士  大 胡 典 夫 第 2 悶 第  3  図 弔 図 第 図 ats:’tイ4.th 時間F5Pi%第 図 第 図
Fig. 1 is a basic configuration diagram of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a characteristic diagram of the degree of attribution to physical changes with respect to period time, and Fig. 4 (a) 4(b) is an output characteristic diagram of the rate-of-change calculator of the present invention, FIG. 4(c) is an output characteristic diagram of the conventional rate-of-change calculator, and FIG. Quantity change rate characteristic diagram, Figure 6 (a
) is a characteristic diagram of small changes in process amount, and Fig. 6(b) is a characteristic diagram of small changes in process amount.
Figure (a) is a characteristic diagram of the rate of change in the process quantity determined at long time intervals, Figure 6(c) is a characteristic diagram of the rate of change in the process quantity determined at short intervals in Figure 6(a), and Figure 7 (a) is a characteristic diagram with a large change in process amount over a long period of time, and Figure 7 (b) is a
) is a characteristic diagram of the rate of change of the process quantity determined at long intervals,
Figure 7(c) is a characteristic diagram of the rate of change of the process quantity determined at short intervals in Figure 7(a), Figure 8 is a characteristic diagram of the change period of the input signal, and Figure 9 is the degree of belonging characteristic for the change period. It is a diagram. 1.2, 3.4... Change rate determination circuit. 5.6, 7.8... Amplifier, 9... Adder, IO... Average circuit. Fig. 1 Agent Patent Attorney Ohu Dian Huo Fig. 2 Agony Fig. 3 Condolence Fig. ats:'tii 4. th Time F5Pi% chart chart

Claims (1)

【特許請求の範囲】[Claims]  異なる時間間隔における測定変数の変化率を演算する
複数の微分手段と、その微分手段の出力に任意の重みを
つけるための加重平均手段からなることを特徴とする変
化率演算器。
1. A rate-of-change calculator comprising a plurality of differentiating means for calculating the rate of change of a measured variable at different time intervals, and a weighted average means for assigning arbitrary weights to the outputs of the differentiating means.
JP2242489A 1989-01-31 1989-01-31 Computing element for change rate Pending JPH02202602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2242489A JPH02202602A (en) 1989-01-31 1989-01-31 Computing element for change rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242489A JPH02202602A (en) 1989-01-31 1989-01-31 Computing element for change rate

Publications (1)

Publication Number Publication Date
JPH02202602A true JPH02202602A (en) 1990-08-10

Family

ID=12082303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242489A Pending JPH02202602A (en) 1989-01-31 1989-01-31 Computing element for change rate

Country Status (1)

Country Link
JP (1) JPH02202602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548924B1 (en) * 1999-05-06 2006-02-02 에스케이 텔레콤주식회사 Piecewise linear approximated compensation scheme and method
JP6254321B1 (en) * 2017-06-30 2017-12-27 株式会社ショーワ Control device and suspension system for suspension system
WO2022070244A1 (en) * 2020-09-29 2022-04-07 日本電気株式会社 Control device, learning device, control system, control method, and non-transitory computer-readable medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548924B1 (en) * 1999-05-06 2006-02-02 에스케이 텔레콤주식회사 Piecewise linear approximated compensation scheme and method
JP6254321B1 (en) * 2017-06-30 2017-12-27 株式会社ショーワ Control device and suspension system for suspension system
WO2019003455A1 (en) * 2017-06-30 2019-01-03 株式会社ショーワ Control device for suspension device, differential calculation device, recording medium, and suspension system
JP2019010985A (en) * 2017-06-30 2019-01-24 株式会社ショーワ Control device for suspension device and suspension system
US11305601B2 (en) 2017-06-30 2022-04-19 Hitachi Astemo, Ltd. Control apparatus for suspension apparatus and suspension system
WO2022070244A1 (en) * 2020-09-29 2022-04-07 日本電気株式会社 Control device, learning device, control system, control method, and non-transitory computer-readable medium

Similar Documents

Publication Publication Date Title
Horch et al. A modified index for control performance assessment
CN111595402B (en) Constant-temperature difference type thermal gas mass flow meter
CN112578667A (en) Constant temperature difference temperature control method and system, industrial control equipment and storage medium
JPH02202602A (en) Computing element for change rate
US3569681A (en) Method and system for adaptive control
JPH02123984A (en) State observation in servo-control
JPS63259435A (en) Particle size distribution measurement
CN117848438B (en) High-precision measuring method for gas flow and thermal gas mass flowmeter
JPS5951303A (en) Sensor circuit
JPS6095363A (en) Space frequency detecting device
SU1021930A1 (en) Measuring converter
SU1560895A1 (en) Method of prompt monitoring of reserve of thermal and hydraulic stability of steam-generating system
SU1185067A1 (en) Digital strain transducer
SU498628A1 (en) Device for solving differential equations
JPH0573161B2 (en)
SU1094000A1 (en) Method of determination of measuring converter static error
SU881662A1 (en) Regulating device with relay characteristic
SU1739482A1 (en) Regularized filter
CN117146981A (en) Method and device for detecting moving object and computer readable storage medium
JPH05180855A (en) Speed detector
JPS58179364A (en) Characteristic measuring device of semiconductor element
CN112859616A (en) Sensor sampling interval fuzzy controller
JPH04370801A (en) Analog signal detector
JPH0414108A (en) Identifying device
JPS63156202A (en) Measuring method for frequency response characteristic of digital servo system