JPH02202203A - Antenna feeder - Google Patents

Antenna feeder

Info

Publication number
JPH02202203A
JPH02202203A JP2117289A JP2117289A JPH02202203A JP H02202203 A JPH02202203 A JP H02202203A JP 2117289 A JP2117289 A JP 2117289A JP 2117289 A JP2117289 A JP 2117289A JP H02202203 A JPH02202203 A JP H02202203A
Authority
JP
Japan
Prior art keywords
antenna
conductor
feeding
circuit
ground conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2117289A
Other languages
Japanese (ja)
Other versions
JP2751303B2 (en
Inventor
Ichiro Toriyama
鳥山 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1021172A priority Critical patent/JP2751303B2/en
Priority to US07/412,167 priority patent/US5121127A/en
Priority to AU42435/89A priority patent/AU623437B2/en
Priority to DE68919323T priority patent/DE68919323T2/en
Priority to EP89402694A priority patent/EP0362079B1/en
Publication of JPH02202203A publication Critical patent/JPH02202203A/en
Application granted granted Critical
Publication of JP2751303B2 publication Critical patent/JP2751303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily and surely obtain the mechanical and electrical coupling between an antenna and a feeding circuit by mounting the feeding circuit to a rear face of the antenna via a conductive base, and connecting an output terminal of the feeding circuit and an antenna feeding point through the conductive base. CONSTITUTION:A ground conductor 11 is placed on one side of a base 1 and an antenna 10 is fitted by a screw Sa. Throughholes 3, 5 are formed to the base 1 corresponding respectively to both feeding points 13f1, 13f2 of a medium diameter disk conductor 13 of the antenna 10 and a feeding point 15f of a small diameter disk conductor 15. A hybrid circuit 30A is placed on the other face of the conductive base 1 with a screw Sb while its ground conductor 32 faces with the base 1. Thus, the ground conductor 11 of the antenna 10 and the ground conductor 32 of the hybrid circuit 30A are surely connected through the conductive base 1 inbetween and an outer conductor 24 of a coaxial feeder 22C and they are also connected surely to the ground conductor 32 of the hybrid circuit 30A similarly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、背面給電形に好適な、アンテナの給電装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an antenna power feeding device suitable for a back feeding type.

〔発明の概要〕[Summary of the invention]

本発明は、アンテナの背面に、導電性基板を介して、給
電回路を取り付け、この給電回路の出力端子とアンテナ
の給電点とを導電性基板を貫通して接続することにより
、アンテナと給電回路との機械的・電気的結合を容易か
つ確実に行なうことができるようにしたものである。
The present invention provides a method of connecting the antenna and the feeding circuit by attaching a feeding circuit to the back of the antenna via a conductive substrate, and connecting the output terminal of the feeding circuit and the feeding point of the antenna through the conductive substrate. This allows for easy and reliable mechanical and electrical connection.

〔従来の技術〕[Conventional technology]

従来、静止人工衛星を介して、基地局と多数の移動局と
の間の無線通信系が構成され、または提案されている。
Conventionally, wireless communication systems between a base station and a large number of mobile stations have been constructed or proposed via geostationary satellites.

このような無線通信系は、例えば第6図に示すように、
衛星STdを介して、基地局C3から多数の移動局Mへ
の下り回線が構成されると共に、各移動局から基地局C
8への上り回線が衛星STuを介して構成される。上り
回線及び下り回線の使用周波数は、例えばそれぞれ1.
6GHz及び4.2GHzとされる。例えば運輸会社の
ような利用者HQと基地局C3とが別の通信回線りで接
続される。
Such a wireless communication system, for example, as shown in FIG.
Downlinks are configured from the base station C3 to a large number of mobile stations M via the satellite STd, and from each mobile station to the base station C
The uplink to 8 is configured via the satellite STu. The frequencies used for uplink and downlink are, for example, 1.
6GHz and 4.2GHz. For example, a user HQ, such as a transportation company, and base station C3 are connected via separate communication lines.

上述のような無線通信系において、移動局側のアンテナ
としては、構成が簡単であり、形状が小さく低プロフィ
ルであること、互いにかけ離れた送信周波数帯及び受信
周波数帯において、静止衛星の仰角に適応した所望の指
向性を有すること等の諸条件を満足するものが好適であ
る。
In the above-mentioned wireless communication system, the antenna on the mobile station side has a simple configuration, a small size and a low profile, and can adapt to the elevation angle of a geostationary satellite in transmitting and receiving frequency bands that are far apart from each other. A material that satisfies various conditions such as having a desired directivity is suitable.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のような指向性と形状・構造の条件を満足するもの
として、本出願人は、特願昭63−号(昭和63年12
月29日付出願)において、接地導体上にそれぞれ誘電
体層を介して直径の大きい順に複数の円板導体を積層し
、最小径の円板導体には、その中心に給電すると共に、
他の円板導体にはオフセット給電することにより、最小
径の円板導体が最高周波数帯の放射素子となり、他の円
板導体は隣接する小径円板導体に対する接地導体となる
と共に、順次低くなる周波数帯の放射素子ともなって、
複数の周波数帯において、垂直面で主放射ビームが所要
の仰角範囲をカバーすると共に、水平面無指向性とした
背面給電型のマイクロストリップアンテナを既に提案し
ている。
The present applicant has filed Japanese Patent Application No. 1983 (December 1988) as a device that satisfies the conditions of directivity, shape, and structure as described above.
(Application filed on May 29, 2013), a plurality of disc conductors are stacked on a ground conductor in order of increasing diameter through dielectric layers, and power is supplied to the center of the disc conductor with the smallest diameter.
By supplying offset power to the other disc conductors, the disc conductor with the smallest diameter becomes the radiating element for the highest frequency band, and the other disc conductors become ground conductors for the adjacent small diameter disc conductors, and gradually become lower. It also serves as a radiating element for the frequency band,
We have already proposed a back-fed microstrip antenna whose main radiation beam covers the required elevation angle range in the vertical plane in multiple frequency bands and is omnidirectional in the horizontal plane.

まず、第4図及び第5図を参照しながら、既提案のマイ
クロストリップアンテナについて説明する。
First, the previously proposed microstrip antenna will be explained with reference to FIGS. 4 and 5.

第4図及び第5図において、(10)は既提案のマイク
ロストリップアンテナであって、いずれも円形の接地導
体(11)上に、ふっ素樹脂のような低1員失の誘電体
層(12)を介して、中径の円板導体(13)が同心に
積層配設され、この円板導体(13)上に、小径の誘電
体層(14)を介して、小径の円板導体(15)が同心
に積層配設されて構成される。各導体(11)。
In FIGS. 4 and 5, (10) is a previously proposed microstrip antenna, in which a dielectric layer (12) of low member loss such as fluororesin is formed on a circular ground conductor (11). ) A medium-diameter disc conductor (13) is concentrically stacked, and a small-diameter disc conductor ( 15) are concentrically stacked and arranged. Each conductor (11).

(13) 、 (15)の半径、誘電体層(12) 、
 (14)の誘電率及び厚さは、例えば次のように設定
される。
radius of (13), (15), dielectric layer (12),
The dielectric constant and thickness of (14) are set as follows, for example.

r + r =90mm、     r +z=55m
mr +5=26.5mm、    e、=2.61.
2=1目=3.2mm 中径の円板導体(13)には、その中心から等しくr、
だけオフセットされ、角間隔θの2ケ所に給電点(13
f、)及び(13f、)が設けられ、小径の円板導体(
15)の中心に給電点(15)が設けられる。給電点(
13f、)及び(13f z)のオフセット距離及び角
間隔は例えば次のように設定される。
r + r = 90mm, r + z = 55m
mr +5=26.5mm, e,=2.61.
2 = 1st = 3.2mm The medium diameter disc conductor (13) has r,
The feed points (13
f, ) and (13f,) are provided, and a small diameter disc conductor (
A power feeding point (15) is provided at the center of the power supply point (15). Feeding point (
The offset distance and angular interval of 13f, ) and (13f z) are set as follows, for example.

r t =33mm、     θ=135゜中径円板
導体(13)の再給電点(13fl)及び(13f、)
には、それぞれ同軸給電線(21)及び(22)が接続
される。この場合、再給電線(21)及び(22)の外
部導体は接地導体(11)に接続される。
r t = 33 mm, θ = 135° Refeed points (13fl) and (13f, ) of medium diameter disc conductor (13)
Coaxial feed lines (21) and (22) are connected to these, respectively. In this case, the outer conductors of the refeed lines (21) and (22) are connected to the ground conductor (11).

また、小径円板導体(15)の給電点(15f)には同
軸給電線(25)の内部導体(26)が接続され、給電
線(25)の外部導体(27)は接地導体(11)に接
続される。
Further, the inner conductor (26) of the coaxial feed line (25) is connected to the feed point (15f) of the small diameter disc conductor (15), and the outer conductor (27) of the feed line (25) is connected to the ground conductor (11). connected to.

なお、中径円板導体(13)は、その中心において、ス
ルーホール加工により接地導体(11)と電気的に接続
されており、従って、同軸給電線(25)の外部導体(
27)は中径円板導体(13)の中央部に接続されるこ
とになる。
Note that the medium-diameter disc conductor (13) is electrically connected to the ground conductor (11) by through-hole processing at its center, so that the outer conductor (13) of the coaxial feeder (25)
27) will be connected to the center of the medium diameter disc conductor (13).

既提業例の動作は次の通りである。The operation of the existing example is as follows.

小径円板導体(15)は中心給電であり、その半径はr
 +5=26.5mmであって、TM、、モードで4 
、2G Hzに共振して、垂直偏波の放射素子となる。
The small diameter disc conductor (15) is centrally fed, and its radius is r
+5=26.5mm, 4 in TM mode
, 2 GHz, and becomes a vertically polarized radiating element.

このとき、中径円板導体(13)は小径円板導体(15
)に対する接地導体として機能し、主ビームが所望の仰
角範囲となるほぼ円錐状の垂直指向性が得られる。
At this time, the medium diameter disc conductor (13) is replaced by the small diameter disc conductor (15).
), providing a nearly conical vertical directivity with the main beam having the desired elevation angle range.

一方、中径円(反導体(13)は、インピーダンスがそ
れぞれ50Ωの、第1の給電点(13f、)が基準位相
(0°)、第2の給電点(−13f2)が−90°位相
の1.6GHzの信号でT M2.モードで励振されて
、円偏波の放射素子となり、はぼ円錐状の所望の垂直指
向性が得られる。
On the other hand, the medium diameter circle (anti-conductor (13) has an impedance of 50Ω each, the first feeding point (13f,) is at the reference phase (0°), and the second feeding point (-13f2) is at the -90° phase. It is excited in the TM2. mode by a 1.6 GHz signal, and becomes a circularly polarized wave radiating element, resulting in the desired vertical directivity in the shape of a cone.

また、TMo、モード以外で放射素子の中点のインピー
ダンスは基本的に0Ωであるから、前述のように、中径
円板導体(13)の中央部を接地導体(11)に接続し
て動作の安定が図られる。
In addition, since the impedance at the center of the radiating element is basically 0Ω in modes other than TMo, it operates by connecting the center of the medium-diameter disc conductor (13) to the ground conductor (11) as described above. stability will be achieved.

ところで、上述の既提案例では、中径円板導体(13)
 ノ給電点(13f、)及び(13fz)ニは、それぞ
れ同軸給電線(21)及び(22)によって、所定位相
差の高周波信号を供給するようにしたが、第6図に示す
ようなストリップ線路形の位相差給電回路(ハイブリッ
ド回路) (30)を用いれば、アンテナ系全体を一層
コンパクトに構成することができる。
By the way, in the previously proposed example mentioned above, the medium diameter disc conductor (13)
The feeding points (13f, ) and (13fz) were designed to supply high frequency signals with a predetermined phase difference through coaxial feeding lines (21) and (22), respectively, but strip lines as shown in FIG. By using a phase difference feeding circuit (hybrid circuit) (30), the entire antenna system can be configured even more compactly.

即ち、第6図において、例えば厚さが0 、8mmのふ
っ素樹脂層(31)を用いた両面胴貼積層板の一方の銅
箔(33)を図示のように形成する。(34,)及び(
34□)は出力端子であって、上述のアンテナ(10)
の1対の給電点(13f、)及び(13f2)にそれぞ
れ対応する。入力端子(35)から信号を供給すると、
A点から左側が上下左右とも対称となる。BC及びBD
が実効波長の略1/4に設定され、A点の信号電力は再
出力端子(34,)及び(34□)に等分されて供給さ
れると共に、出力端子(34,)の方の位相が90゜遅
れる。(36)は終端抵抗端子である。再出力端子(3
41)及び(34□)間の距離を第4図の給電点(13
f、)及び(13f2)の直線距離に等しく設定してお
けば、このハイブリッド回路(30)を接地導体(11
)に背中合せに接着し、対応する出力端子と給電点とを
線状導体(ピン)(図示せず)で簡単に接続することが
できる。
That is, in FIG. 6, one copper foil (33) of a double-sided body-bonded laminate using a fluororesin layer (31) having a thickness of 0.8 mm, for example, is formed as shown. (34,) and (
34□) is an output terminal, and the above-mentioned antenna (10)
correspond to a pair of feeding points (13f, ) and (13f2), respectively. When a signal is supplied from the input terminal (35),
The left side from point A is symmetrical both vertically and horizontally. BC and BD
is set to approximately 1/4 of the effective wavelength, and the signal power at point A is equally divided and supplied to the re-output terminal (34,) and (34□), and the phase of the output terminal (34,) is is delayed by 90°. (36) is a terminal resistance terminal. Re-output terminal (3
41) and (34□) as shown in Figure 4.
f, ) and (13f2), this hybrid circuit (30) can be connected to the ground conductor (11
), and the corresponding output terminals and feed points can be easily connected with linear conductors (pins) (not shown).

上述のようなハイブリッド回路(30)を前述のような
アンテナ(10)の背面に接着する場合、両者を機械的
及び電気的に確実に結合するために、ハイブリッド回路
(30)の他方の銅箔(接地導体)をアンテナ(10)
の接地導体(11)に半田付けするのが普通である。
When bonding the hybrid circuit (30) as described above to the back surface of the antenna (10) as described above, the other copper foil of the hybrid circuit (30) must be bonded to ensure mechanical and electrical connection between the two. (ground conductor) to the antenna (10)
It is common to solder the wire to the ground conductor (11) of the wire.

ところが、この場合、半田付けすべき部分が露出してい
ないため、通常の方法では、ハイブリッド回路(30)
の周縁部だけしか半田付けできず、作業が困難であると
いう問題があった。
However, in this case, since the parts to be soldered are not exposed, the hybrid circuit (30) cannot be soldered using the normal method.
There was a problem in that only the peripheral edge of the solder could be soldered, making the work difficult.

低融点半田を使用して、リフロー処理を行うことにより
、比較的大面積の接合部の全面にわたる半田付けは可能
であるが、かなりの時間が必要であり、アンテナ(10
)とハイブリッド回路(30)の相対位置の変動を規制
することが困難である等の問題があった。
By using a low melting point solder and performing a reflow process, it is possible to solder the entire surface of a relatively large area joint, but it takes a considerable amount of time and the antenna (10
) and the hybrid circuit (30) are difficult to control.

一方、本出願人は、特開昭63−33903号(特願昭
61−178179号)において、独立の接地導体の両
面にアンテナと給電用の同軸コネクタとを取り付け、結
合部材を介して着脱自在に接続し得る「アンテナの給電
機構」を提案している。この給電機構は、アンテナの接
地導体とコネクタのフランジとの半田付けを必要とせず
、作業性が改善される。しかしながら、上述のような問
題の解消のために、この機構を適用することはできない
On the other hand, in Japanese Patent Application Laid-Open No. 63-33903 (Japanese Patent Application No. 61-178179), the present applicant attached an antenna and a coaxial connector for power feeding to both sides of an independent ground conductor, and attached and detached the antenna and the coaxial connector via a coupling member. We are proposing an ``antenna power feeding mechanism'' that can be connected to. This power feeding mechanism does not require soldering between the ground conductor of the antenna and the flange of the connector, improving workability. However, this mechanism cannot be applied to solve the above-mentioned problems.

かかる点に鑑み、本発明の目的は、比較的大面積の接合
部の半田付けを必要とせず、アンテナと給電回路との機
械的・電気的結合を容易かつ確実に行なうことができる
アンテナの給電装置を提供するところにある。
In view of the above, an object of the present invention is to provide a feeding system for an antenna that can easily and reliably connect the antenna and the feeding circuit mechanically and electrically without requiring soldering of joints having a relatively large area. It is located where the equipment is provided.

(課題を解決するための手段〕 本発明は、背面給電形のアンテナ(10)を導電性基板
(1)の−面に取り付けると共に、この導電性基板の他
面にストリップ線路形の給電回路(30)を取り付け、
この給電回路の出力端子(34りとアンテナの給電点(
13b)とを導電性基板を貫通して接続したアンテナの
給電装置である。
(Means for Solving the Problems) The present invention provides a back-feed type antenna (10) that is attached to the negative side of a conductive substrate (1), and a strip-line type feed circuit ( 30) Attach
The output terminal of this feeder circuit (the feeding point of the antenna)
13b) is connected to the antenna by penetrating the conductive substrate.

〔作用〕[Effect]

かかる構成によれば、アンテナと給電回路とが、機械的
にも電気的にも、容易かつ確実に結合される。
According to this configuration, the antenna and the feeding circuit are easily and reliably coupled both mechanically and electrically.

〔実施例〕〔Example〕

以下、第1図及び第2図を参照しながら、本発明による
アンテナの給電装置の一実施例について説明する。
Hereinafter, an embodiment of an antenna power feeding device according to the present invention will be described with reference to FIGS. 1 and 2.

本発明の一実施例の構成を第1図及び第2図に示す、こ
の両図において、前出第4図〜第6図に対応する部分に
は同一の符号を付して重複説明を省略する。
The configuration of an embodiment of the present invention is shown in FIGS. 1 and 2. In both figures, parts corresponding to those in FIGS. 4 to 6 are given the same reference numerals and redundant explanations will be omitted. do.

第1図及び第2図において、(1)は導電性基板であっ
て、例えば厚さが3nn+のアルニミウム材が用いられ
、その周縁部に複数のねじ孔(2)が穿設されて、基板
(1)の−面に接地導体(11)を対接させて、アンテ
ナ(10)がねじSaにより取り付けられる。
In FIGS. 1 and 2, (1) is a conductive substrate, for example, an aluminum material with a thickness of 3 nn+ is used, and a plurality of screw holes (2) are bored in the periphery of the substrate. The antenna (10) is attached with a screw Sa with the ground conductor (11) facing the negative side of (1).

アンテナ(10)の中径円板導体(13)の再給電点(
13f、)及び(13fz)と、小径円板導体(15)
の給電点(15f)とにそれぞれ対応して、基板(1)
に透孔(3)と(5)とが穿設される。
Refeed point (
13f, ) and (13fz) and small diameter disc conductor (15)
The board (1) corresponds to the feeding point (15f) of
Through-holes (3) and (5) are bored in the holes (3) and (5).

導電性基板(1)の他面には、ハイブリッド回路(30
A)が、その接地導体(32)を基板(1)に対接させ
て、ねじsbにより取り付けられる。ハイブリッド回路
(30A)の一方の出力端子(34□)と中径円板導体
(13)の一方の給電点(13f2)とが、基板(1)
の透孔(3)を貫通するピン(4)の両端にそれぞれ半
田付けされて、相互に接続される。図示しないが、他方
の給電点(13f、)及び出力端子(34+)も同様に
して接続される。ハイブリッド回路(3〇八)の入力端
子(35)にはセミリジットの同軸給電線(22C)の
内部導体(23)が半田付けされる。この同軸給電線(
22C)は保持金具(7)、ねじSc等によって基板(
1)に取り付けられる。
On the other side of the conductive substrate (1), a hybrid circuit (30
A) is attached by screws sb with its ground conductor (32) facing the substrate (1). One output terminal (34□) of the hybrid circuit (30A) and one feed point (13f2) of the medium diameter disc conductor (13) are connected to the board (1).
They are connected to each other by soldering to both ends of pins (4) passing through the through holes (3). Although not shown, the other feed point (13f,) and output terminal (34+) are also connected in the same way. The inner conductor (23) of the semi-rigid coaxial feed line (22C) is soldered to the input terminal (35) of the hybrid circuit (308). This coaxial feed line (
22C) is attached to the board (
1).

なお、小径円板導体(15)の給電点(15f)も基板
(1)の透孔(5)を貫通するビン(6)によって、ス
トリップ線路型の整合回路に接続されるが、簡単のため
に、その図示は省略する。
Note that the feed point (15f) of the small-diameter disc conductor (15) is also connected to the strip line matching circuit by a via (6) that passes through the through hole (5) of the board (1), but for simplicity However, illustration thereof is omitted.

上述のように構成されるので、本実施例においては、ア
ンテナ(10)の接地導体(11)と、ハイブリッド回
路(30A)の接地導体(32)とが、導電性基板(1
)を介して確実に接続されると共に、同軸給電線(22
C)の外部導体(24)とハイブリッド回路(30A)
の接地導体(32)とも同様に確実に接続される。
As configured as described above, in this embodiment, the ground conductor (11) of the antenna (10) and the ground conductor (32) of the hybrid circuit (30A) are connected to the conductive substrate (1).
), and the coaxial feed line (22
C) outer conductor (24) and hybrid circuit (30A)
It is also securely connected to the ground conductor (32).

そして、両横地導体(11)及び(32)の結合は、と
もにねじSa及びsbと基板(1)とによるため、きわ
めて容易であり、作業性が向上する。
Since both the horizontal ground conductors (11) and (32) are connected by the screws Sa and sb and the substrate (1), it is extremely easy and the workability is improved.

上述の実施例では、アンテナ(1o)及びハイブリッド
回路(30A)がいずれも接地導体(11)及び(32
)を備えるが、前出特開昭63−33903号にも開示
したように、この接地導体(11)及び(32)を省略
することも可能である。
In the above embodiment, both the antenna (1o) and the hybrid circuit (30A) are connected to the ground conductors (11) and (32).
), but it is also possible to omit these ground conductors (11) and (32), as disclosed in the aforementioned Japanese Patent Application Laid-Open No. 63-33903.

また、導電性基板(1)のハイブリッド回路(30A)
が取り付けられる側の面は、このハイブリッド回路(3
0A)に対接する部分と周縁のねし孔(2)の近傍等を
除いて、適宜に肉を削ぎ、軽量とすることができる。ア
ンテナ(10)が接地導体(11)を備える場合は、基
板(1)のアンテナ(10)側の面も、ハイブリッド回
路(30A)の対向領域内で透孔(3)及び(5)とね
1; S b用のねし孔(図示せず)との各近傍を除い
て、同様に肉を削ぐことができる。
In addition, the hybrid circuit (30A) of the conductive substrate (1)
This hybrid circuit (3
It is possible to reduce the weight by appropriately cutting off the thickness except for the part facing the 0A) and the vicinity of the perforated hole (2) on the periphery. When the antenna (10) is provided with a ground conductor (11), the surface of the substrate (1) on the antenna (10) side also connects with the through holes (3) and (5) in the opposing area of the hybrid circuit (30A). 1; The meat can be shaved in the same manner except for the vicinity of the Sb screw hole (not shown).

なお、上述の実施例では、ハイブリッド回路(30A)
として、非シールド・ストリップ線路形のものを用いた
が、シールド・ストリップ線路形であってもよい。
In addition, in the above-mentioned example, the hybrid circuit (30A)
Although a non-shielded strip line type is used, a shielded strip line type may also be used.

[発明の効果] 以上詳述のように、本発明によれば、アンテナの背面に
、導電性基板を介して、給電回路を取り付け、この給電
回路の出力端子とアンテナの給電点とを導電性基板を貫
通して接続するようにしたので、アンテナと給電回路と
の機械的・電気的結合を容易かつ確実に行なうことがで
きるアンテナの給電装置が得られる。
[Effects of the Invention] As detailed above, according to the present invention, a feeding circuit is attached to the back surface of the antenna via a conductive substrate, and the output terminal of the feeding circuit and the feeding point of the antenna are connected to each other through a conductive substrate. Since the connection is made through the substrate, it is possible to obtain an antenna power feeding device in which the antenna and the power feeding circuit can be mechanically and electrically coupled easily and reliably.

(15f)は給電点、(22C)は同軸給電線、(30
) 、 (304)は位相差給電回路、(34□) 、
 (34□)は出力端子、(35)は入力端子である。
(15f) is the feed point, (22C) is the coaxial feed line, (30
), (304) is a phase difference feeding circuit, (34□),
(34□) is an output terminal, and (35) is an input terminal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明によるアンテナの給電装置の
一実施例の構成を示す断面図及び平面図、第3図は本発
明の説明のための概念図、第4図及び第5図は既提案に
よる背面給電形のアンテナの構成例を示す平面図及び断
面図、第6図は本発明の説明のための給電回路の構成例
を示す平面図である。 (10)は背面給電形のマイクロストリップアンテナ、
(11)、(32)は接地導体、(12) 、 (14
) 、 (31)は誘電体層、(13) 、 (15)
は円板導体、(13r+)、 (tJz) 。
1 and 2 are a sectional view and a plan view showing the structure of an embodiment of an antenna power supply device according to the present invention, FIG. 3 is a conceptual diagram for explaining the present invention, and FIGS. 4 and 5. 6 is a plan view and a sectional view showing an example of the configuration of a back-feeding type antenna according to an existing proposal, and FIG. 6 is a plan view showing an example of the configuration of a feeding circuit for explaining the present invention. (10) is a back-feeding microstrip antenna,
(11), (32) are ground conductors, (12), (14
), (31) are dielectric layers, (13), (15)
is a disk conductor, (13r+), (tJz).

Claims (1)

【特許請求の範囲】 背面給電形のアンテナを導電性基板の一面に取り付ける
と共に、 この導電性基板の他面にストリップ線路形の給電回路を
取り付け、 この給電回路の出力端子と上記アンテナの給電点とを上
記導電性基板を貫通して接続したことを特徴とするアン
テナの給電装置。
[Claims] A back-feeding type antenna is attached to one side of a conductive substrate, and a strip line type feeding circuit is attached to the other side of the conductive substrate, and the output terminal of this feeding circuit and the feeding point of the antenna are connected to each other. A power feeding device for an antenna, characterized in that: and are connected to each other through the conductive substrate.
JP1021172A 1988-09-30 1989-01-31 Antenna feeder Expired - Fee Related JP2751303B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1021172A JP2751303B2 (en) 1989-01-31 1989-01-31 Antenna feeder
US07/412,167 US5121127A (en) 1988-09-30 1989-09-25 Microstrip antenna
AU42435/89A AU623437B2 (en) 1988-09-30 1989-09-29 Microstrip antenna
DE68919323T DE68919323T2 (en) 1988-09-30 1989-09-29 Microstrip antenna.
EP89402694A EP0362079B1 (en) 1988-09-30 1989-09-29 Microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021172A JP2751303B2 (en) 1989-01-31 1989-01-31 Antenna feeder

Publications (2)

Publication Number Publication Date
JPH02202203A true JPH02202203A (en) 1990-08-10
JP2751303B2 JP2751303B2 (en) 1998-05-18

Family

ID=12047502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021172A Expired - Fee Related JP2751303B2 (en) 1988-09-30 1989-01-31 Antenna feeder

Country Status (1)

Country Link
JP (1) JP2751303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208151A (en) * 2002-12-26 2004-07-22 Dx Antenna Co Ltd Two-frequency shared antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243906A (en) * 1985-08-21 1987-02-25 Toyo Commun Equip Co Ltd Microstrip antenna
JPS62124073A (en) * 1985-11-22 1987-06-05 Hitachi Ltd Soldering device
JPS6333903A (en) * 1986-07-29 1988-02-13 Sony Corp Feeding mechanism for antenna
JPS63227103A (en) * 1987-03-17 1988-09-21 Nec Corp Feeding structure for microstrip antenna
JPH02109405A (en) * 1988-10-19 1990-04-23 Toyo Commun Equip Co Ltd Mount structure of array antenna
JPH02162804A (en) * 1988-12-16 1990-06-22 Nissan Motor Co Ltd Flat plate antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243906A (en) * 1985-08-21 1987-02-25 Toyo Commun Equip Co Ltd Microstrip antenna
JPS62124073A (en) * 1985-11-22 1987-06-05 Hitachi Ltd Soldering device
JPS6333903A (en) * 1986-07-29 1988-02-13 Sony Corp Feeding mechanism for antenna
JPS63227103A (en) * 1987-03-17 1988-09-21 Nec Corp Feeding structure for microstrip antenna
JPH02109405A (en) * 1988-10-19 1990-04-23 Toyo Commun Equip Co Ltd Mount structure of array antenna
JPH02162804A (en) * 1988-12-16 1990-06-22 Nissan Motor Co Ltd Flat plate antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208151A (en) * 2002-12-26 2004-07-22 Dx Antenna Co Ltd Two-frequency shared antenna

Also Published As

Publication number Publication date
JP2751303B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US5121127A (en) Microstrip antenna
US5886671A (en) Low-cost communication phased-array antenna
US5539414A (en) Folded dipole microstrip antenna
US11165158B2 (en) Integrated antenna element, antenna unit, multi-array antenna, transmission method and receiving method of same
KR950013143B1 (en) Micro wave antenna
JPH01196902A (en) Coplanar patch antenna
WO2019208140A1 (en) Conductor, antenna, and communication device
JP2001156544A (en) Antenna system
JP2580604B2 (en) Microwave integrated circuit with integrated antenna
JPH02202203A (en) Antenna feeder
JP2751304B2 (en) Antenna feeder
JP3006399B2 (en) Dual band antenna
JP2000114848A (en) Diversity antenna
JP2001024426A (en) Antenna element and circularly polarized antenna system using the same
JPH09321536A (en) Device in antenna unit
JP3047896B2 (en) Helical antenna and method of manufacturing the same
JPH02179102A (en) Microstrip antenna
KR100991823B1 (en) Cross Polarization Phase Compensation Patch Antenna
JPH02209002A (en) Antenna system
JPH1188016A (en) Triplet planar antenna
JPH1188038A (en) Antenna
JPH09270636A (en) Two-stage antenna
JP3856741B2 (en) Electromagnetic coupling type 4-point feed loop antenna and electromagnetic coupling type 3-point feed loop antenna
JP2023505332A (en) Omnidirectional horizontally polarized antenna with high current protection
JPH09223922A (en) Power feeding structure for microstrip antenna

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees