JPS6243906A - Microstrip antenna - Google Patents

Microstrip antenna

Info

Publication number
JPS6243906A
JPS6243906A JP18327785A JP18327785A JPS6243906A JP S6243906 A JPS6243906 A JP S6243906A JP 18327785 A JP18327785 A JP 18327785A JP 18327785 A JP18327785 A JP 18327785A JP S6243906 A JPS6243906 A JP S6243906A
Authority
JP
Japan
Prior art keywords
antenna
impedance
circuit
radiator
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18327785A
Other languages
Japanese (ja)
Other versions
JPH0562481B2 (en
Inventor
Yuujirou Taguchi
田口 裕二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP18327785A priority Critical patent/JPS6243906A/en
Publication of JPS6243906A publication Critical patent/JPS6243906A/en
Publication of JPH0562481B2 publication Critical patent/JPH0562481B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attain a broad band for an applied frequency band as an antenna by causing impedance mismatching between a radiation element formed by a microstrip pattern and a feeding circuit to the element. CONSTITUTION:A circular conductor pattern of a diameter 64.72mm as the radiation element 2 is formed on the surface of a 'Teflon(R)' base 1 in a thickness of 4mm and a conductor pattern 3 as an earth is formed to the entire rear face to constitute a radiator 4. Then an antenna feeding circuit 9 where a full face earth pattern 6 is formed on one face of a 'Teflon(R)' base 5 in a thickness of 0.8mm and a 3dB hybrid circuit 7 comprising the microstrip line pattern and an impedance matching circuit 8 are formed on the other side, and the radiation element 2 of the radiator 4 are overlapped while contacting the earth faces 3 and 6. Then the impedance of the radiator input and the feeding circuit output are made different by intention, the transmission characteristic of the impedance conversion circuit of the strip line is lowered slightly to cause slight mismatching thereby ensuring a broad band.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマイクロストリップアンテナ、殊に円偏波方式
に於いて広帯域化をはかったマイクロストリップアンテ
ナに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a microstrip antenna, and particularly to a microstrip antenna that achieves a wide band in a circularly polarized wave system.

(従来技術) マイクロストリップアンテナ(Micro 5trip
Antenna−以下M 8 Aと略称する)は平面回
路の放射損失を利用した送受信アンテナを構成したもの
であって、その構造が薄形軽量かつアンテナバタンが低
姿勢である利点全もつことからU HF帯乃至8HF帯
に於いて、殊に航空機等の搭載アンテナ或は衛星を介し
たテレビ放送受信用アンテナ等として注目されている。
(Prior art) Microstrip antenna (Micro 5trip
Antenna (hereinafter abbreviated as M 8 A) is a transmitting/receiving antenna that utilizes the radiation loss of a planar circuit, and its structure has the advantages of being thin and lightweight, and the antenna button has a low profile. In the 8HF band to 8HF band, it is attracting attention especially as an antenna mounted on an aircraft or the like, or as an antenna for receiving television broadcasting via a satellite.

しかし、MSAは原理上アンテナとしての周波数帯域が
極めて狭く、上述した各システムのアンテナとして使用
するためにはその広帯域化が重要課題である。
However, in principle, MSA has an extremely narrow frequency band as an antenna, and widening the frequency band is an important issue in order to use it as an antenna for each of the above-mentioned systems.

従来この広帯域化の手法として種々の提案がなされてい
るが、大別すればアンテナ素子自前の広帯域化と多素子
の配列及びその信号の合成手法上広帯域化をはかるもの
とに分けられる。
Various proposals have been made in the past as methods for widening the band, but they can be roughly divided into those that aim to widen the band of the antenna element itself, and those that aim to widen the band by arranging multiple elements and combining their signals.

両者のうち多素子配列による方法では比較的容易に広帯
域化が可能であるが制御が複雑かつ大型化する欠点があ
り、航空機搭載には不向きであって、アンテナ素子自身
の広帯域化をはかる必要がある。
Of the two, methods using multi-element arrays can relatively easily achieve a wide band, but have the drawbacks of complicated control and large size, making them unsuitable for installation on aircraft, and requiring the antenna elements themselves to have a wide band. be.

一般にMSAの周波数帯域幅BWは次式8式%) 但し BW;アンテナ周波数帯域 S ;アンテナ給電点に於ける定在波比Q ;アンテナ
素子自身のQファクタ で与えられ、帯域幅BWを大きくするにはアンテナ素子
自身のQファクタを小さくすればよい。
In general, the frequency bandwidth BW of an MSA is calculated using the following formula (8%). However, BW: Antenna frequency band S: Standing wave ratio Q at the antenna feeding point: Given by the Q factor of the antenna element itself, increasing the bandwidth BW For this purpose, the Q factor of the antenna element itself can be reduced.

又、M8AのQは基板の比誘電率(sr)に比例し基板
の厚さ即ちアンテナバタンとアース板との距離に反比例
することが知られている。
It is also known that the Q of M8A is proportional to the dielectric constant (sr) of the substrate and inversely proportional to the thickness of the substrate, that is, the distance between the antenna baton and the ground plate.

そこで従来のMSAの広帯域化方法としてこの理論に基
づき、アンテナバタンとアース板との間にペーパハニカ
ム板を挿入して軽量化をはかりつつ基板の比誘電率を低
下しかつその厚さを大きくしてQ’に小さくしもってア
ンテナ周波数帯域を大きくしたものが提案されている。
Therefore, based on this theory, as a method for widening the band of conventional MSA, a paper honeycomb plate is inserted between the antenna baton and the ground plate to reduce the weight, lower the dielectric constant of the substrate, and increase its thickness. It has been proposed to increase the antenna frequency band by decreasing Q'.

第4図(alは従来のペーパハニカム基板を用いた円偏
波MSAの具体的構造例を示す図であってその特性、殊
にインピーダンス整合性をリターンロス(dB)で評価
した結果が同図(blである。
Figure 4 (al) is a diagram showing a specific structural example of a circularly polarized MSA using a conventional paper honeycomb substrate, and the results of evaluating its characteristics, especially impedance matching, in terms of return loss (dB) are shown in the figure. (It is bl.

即ち、このアンテナの使用条件は受信周波数帯域が1.
545(G)Iz)〜1.650(mlz) 、送信周
波数が1.647((3)−h)〜1.650(Gll
z)即ち1.6(GHz)l中心として約100 (M
llz )の周波数帯域に於いて用いるアンテナとして
設計されたものであって各部寸法は図中に示す通りであ
る。
That is, the usage conditions for this antenna are that the reception frequency band is 1.
545 (G) Iz) ~ 1.650 (mlz), the transmission frequency is 1.647 ((3) - h) ~ 1.650 (Gll
z), that is, about 100 (M
It is designed as an antenna for use in the frequency band llz), and the dimensions of each part are as shown in the figure.

伺、アンテナのリターンロス(TLL)とけ放射素子に
供給した電力に対する反射電力の比であってこれと通常
使用される定在波比8(8WR,)との関係は周知の如
く次式で表わされる。
The return loss (TLL) of an antenna is the ratio of the reflected power to the power supplied to the radiating element, and the relationship between this and the commonly used standing wave ratio of 8 (8WR) is expressed by the following equation, as is well known. It will be done.

R,L = −101og(8−1/S+t ) ” 
(dB) −・−=121同図から明らかな如く、従来
のハニカへ基板を用いたマイクロストリップアンテナで
は中心周波数f o= 1.6 (OHz )にてリタ
ー7 o x −33dB (S?1.05 )を得る
ものの所望帯域内(1,545〜1.650GHz)両
端付近でははV−10dB(S!−12)とその差が大
きく、所望帯域内で均一かつ充分な特性が得られないも
のであった。
R,L = -101og(8-1/S+t)"
(dB) -・-=121 As is clear from the same figure, the conventional microstrip antenna using a honeycomb substrate has a litter of 7 ox -33 dB (S?1) at the center frequency f o = 1.6 (OHz). .05), but near both ends of the desired band (1,545 to 1.650 GHz) there is a large difference of V-10 dB (S!-12), making it impossible to obtain uniform and sufficient characteristics within the desired band. It was something.

また、ペーパハニカム基板厚を大きくすると高次モード
の影響をうけ安定した特性が得られかくなり、特にこの
不具合は現在計画中の航空機における衛Jlを用いた位
置情報検出システムに使用される円偏波用アンテナに於
いては円偏波アンテナの重要なフアクタである軸比特性
が劣化する。
Furthermore, if the thickness of the paper honeycomb substrate is increased, it becomes difficult to obtain stable characteristics due to the influence of higher-order modes. In wave antennas, the axial ratio characteristic, which is an important factor in circularly polarized antennas, deteriorates.

従ってこのようなペーパハニカム材を用いた方法に於け
る基板厚さには自ずと制限があるばかりでなく、基板材
の比誘電率を低下したため当然のことながらマイクロス
トリップ上の波長短縮比が小さくなり同一周波数に於け
るアンテナバタンか大型化しかつ基板を厚くしたために
アンテナ容積が増大すると云う副次的欠点をも伴うこと
となる。
Therefore, not only is there a limit to the substrate thickness in a method using such paper honeycomb material, but also the wavelength shortening ratio on the microstrip is naturally reduced due to the lower dielectric constant of the substrate material. This also comes with the secondary disadvantage that the antenna volume at the same frequency is increased due to the increased size of the antenna panel and thickened substrate.

(発明の目的) 本発明は上述し九事情に鑑みてなされ九ものであって、
M8Aの本来の特徴たる薄小型軽量かつ低姿勢を損うこ
となく周波数帯域幅を改善したMSA i提供すること
を目的とする〇(発明の概要) この目的全達成するため本発明ではマイクロストリップ
パタンによって形成した放射素子(アンテナエレメント
)と該素子に対する給電回路との間にインピーダンス不
整合を生ぜしめもってアンテナとしての適用周波数帯域
を広帯域化するよう構成する。
(Object of the invention) The present invention was made in view of the above-mentioned nine circumstances, and includes:
The purpose of the present invention is to provide an MSA with an improved frequency bandwidth without impairing the original characteristics of M8A, such as being thin, small, lightweight, and having a low profile. An impedance mismatch is created between the radiating element (antenna element) formed by the antenna element and a feeding circuit for the element, thereby widening the applicable frequency band as an antenna.

(実施例) 以下本発明を図示した実施例に基づいて詳細に説明する
(Example) The present invention will be described in detail below based on an illustrated example.

第1図(at及び(b)は本発明に係かる円偏波MSA
基板であってその表面には放射素子2として直径64.
72m(f o=1.5975 GHzで設計)の円形
導電バタンを、又裏面にはその全面にアースとしての導
電パタン3を夫々形成し放射器4t−構成したものであ
る。
FIG. 1 (at and (b)) shows a circularly polarized MSA according to the present invention.
It is a substrate with a diameter of 64 mm on its surface as a radiating element 2.
A radiator 4t is constructed by forming a circular conductive button with a length of 72 m (designed at f o = 1.5975 GHz) and a conductive pattern 3 as a ground on the entire back surface thereof.

又、5は同様に厚さh = 0.8 mのテフロン基板
であり、その片面には全面アースバタン6を、他方面に
はマイクロストリップラインパタンによるブランチライ
ン形3 (I Bハイブリッド回路7とインピーダンス
整合回路8とを形成したアンテナ給電回路9であって、
該給電回路9と前記放射器4の放射素子2とを夫々のア
ース面3と6とを接して重ね合せると共に、前記給電回
路9の2つの入力端の一方lOには終端抵抗器11を接
続し他方端12t−当咳アンテナの入出力端とし、又こ
の給電口w1902つの出力端13及び14には夫々の
基板1,5及びアースバタン3.6を貫通するビン15
.16’i介して前記放射器4の反対面に形成した前記
放射素子2の所要位置と接続せしめてマイクロストリッ
プアンテナを構成する。
Similarly, 5 is a Teflon substrate with a thickness h = 0.8 m, with a full-surface grounding button 6 on one side and a branch line type 3 (I B hybrid circuit 7) with a microstrip line pattern on the other side. An antenna feeding circuit 9 formed with an impedance matching circuit 8,
The feeding circuit 9 and the radiating element 2 of the radiator 4 are overlapped with their respective ground planes 3 and 6 in contact with each other, and a terminating resistor 11 is connected to one of the two input terminals IO of the feeding circuit 9. The other end 12t is used as the input/output end of the antenna, and the two output ends 13 and 14 are provided with a bottle 15 that passes through the respective substrates 1, 5 and the ground button 3.6.
.. A microstrip antenna is constructed by connecting it to a desired position of the radiating element 2 formed on the opposite surface of the radiator 4 via 16'i.

この際前記貫通ビン15.16と各基板のアースパタ/
3,6との絶縁をはかることもちろんであるが放射素子
2への給電点は入力インピーダンスが1000となる優
位点(オフセットポイント)に設定する。
At this time, the through-hole pins 15 and 16 and the ground pattern of each board
3 and 6, and the feeding point to the radiating element 2 is set at an advantageous point (offset point) where the input impedance is 1000.

上述したマイクロストリップアンチナラ側面からみれば
第1図(blに示す通りである。
When viewed from the side of the above-mentioned microstrip annular column, it is as shown in FIG. 1 (bl).

同、前記3dBハイブリッド回路7は従来から知られた
技術に基づけば容易に得られるから詳細説明は省略する
が1例えば第1図(clに示す如く2つの入力端10.
12双方の入力インピーダンスが500かつ2つの出力
端13.14に表われる出力信号はそのレベルが2分配
されかつ互いに90°の位相差をもったものとなるよう
その中心軸対称にパタン會構成すればよい。
The 3 dB hybrid circuit 7 can be easily obtained based on conventionally known techniques, so a detailed explanation will be omitted. For example, as shown in FIG.
12 The input impedance of both sides is 500, and the output signals appearing at the two output terminals 13 and 14 are patterned symmetrically about their central axes so that their levels are divided into two and have a phase difference of 90° from each other. Bye.

この際重要なことは前記3dB〕・イブリッド回路7の
出力端13.14のインピーダンスZoutと前記アン
テナ放射器4の放射素子2の入力インピーダンスZRと
の整合状態のちがいによってアンテナの周波数帯域特性
上極めて大きな差違を生ずることである。
In this case, the important thing is that the difference in the matching state between the impedance Zout of the output terminal 13.14 of the hybrid circuit 7 and the input impedance ZR of the radiating element 2 of the antenna radiator 4 is extremely It makes a big difference.

即ち、上述したような放射素子2の入力インピーダンス
ZR100Ωと3dBハイブリッド回路7の出カイ/ビ
ーダンス50Ωとの整合をはかる場合は従来から第1図
(dlに示すように一担70.70ストリツプラインに
よって500から1000インピーダンス変換後更に1
00Ωストリツプラインを付加し、マイクロストリップ
ライン上に於いて給電すべき放射素子2の入力インピー
ダンスつまり給電点インピーダンスZR(=1000)
に変換したのち給電を行っていた。
That is, when trying to match the input impedance ZR of 100Ω of the radiating element 2 as described above and the output power/beadance of 50Ω of the 3dB hybrid circuit 7, conventionally, a strip line with a length of 70.70Ω is used as shown in FIG. 1 (dl). After 500 to 1000 impedance conversion by
00Ω stripline is added, and the input impedance of the radiating element 2 to be fed on the microstrip line, that is, the feeding point impedance ZR (=1000)
After converting to , power was supplied.

この理由はストリップラインの特性インピーダンスMS
Aの放射素子2の給電点インピーダンスとは物理的特性
が異なるためであると思われる。
The reason for this is the characteristic impedance MS of the strip line.
This seems to be because the physical characteristics are different from the feeding point impedance of the radiating element 2 in A.

換言すればマイクロストリップラインの特性インピーダ
ンスは理論上周波数によって変化しないが放射素子の給
電点インピーダンスとはその共振周波数に於いてのみ意
味をもつものである。
In other words, the characteristic impedance of a microstrip line does not theoretically change with frequency, but the feeding point impedance of a radiating element has meaning only at its resonant frequency.

従って、従来このようなアンテナに於いてインピーダン
ス整合をはかる場合経験的に上述したような理由全知り
、これに基づいて第1図(dlの如き整合回路を用いて
いたものと思われる。
Therefore, when attempting impedance matching in such an antenna in the past, it seems that a matching circuit as shown in FIG. 1 (dl) was used based on the knowledge of the above-mentioned reasons from experience.

即ち、アンテナの給電点に於いてはその放射器入力と給
電回路出力のインピーダンスをできる限り同一にしスト
リップラインのインピーダンス変換回路の伝送特性を安
定させ、理想的な整合をはかることが常識であり、アン
テナの広帯域にあたってはその他の要素例えば基板材の
比誘電率(εγ)を小さくしてQt−低下せしめること
等を試みていたこと前述の通りである。
In other words, it is common sense to make the impedance of the radiator input and the feed circuit output as similar as possible at the feeding point of the antenna, to stabilize the transmission characteristics of the strip line impedance conversion circuit, and to achieve ideal matching. As mentioned above, attempts have been made to reduce Qt by reducing other elements, such as the dielectric constant (εγ) of the substrate material, in order to create a broadband antenna.

本発明はこの点に注目し、放射器入力と給電回路出力の
インピーダンスをあえてずらし、ストリップラインのイ
ンピーダンス変換回路の伝送特性をわづか低下させ若干
の不整合金生ぜしめることによって広帯域化會可能なら
しめたものである。
The present invention focuses on this point, and intentionally shifts the impedance of the radiator input and feeder circuit output, slightly lowering the transmission characteristics of the stripline impedance conversion circuit and creating a slight mismatch. It is closed.

即ち、前記第1図(clの3dB)・イブリッド回路7
は出力端に500から1000に変換するための70.
70のストリップラインλg/4長(λgは基板波長)
を付加するのみで直接放射器4の放射素子2に給電する
方法?とった。
That is, the hybrid circuit 7 in FIG. 1 (3 dB of cl)
is 70. to convert from 500 to 1000 at the output end.
70 strip lines λg/4 length (λg is substrate wavelength)
How to directly feed power to the radiating element 2 of the radiator 4 by simply adding ? I took it.

これは前記3dBハイブリッド回路7のインピーダンス
(Zin)50Ω と放射器のインビーダンス(ZR)
100Ωとを直接整合せしめるものであって2周知の如
く Z o =v’−石1可饗=V15000 ’−=70
.7p ・・・・・・(3)なる式に基づいて求めたZ
o(=70.70)を特性インピーダンスとするλg/
4長のストリップラインインピーダンス変換回路i 3
dBノ・イブリッド回路と放射素子の間に挿入したもの
である。
This is the impedance (Zin) of the 3dB hybrid circuit 7 of 50Ω and the impedance of the radiator (ZR).
100Ω, and as is well known, Z o = v' - stone 1 capacity = V15000' - = 70
.. 7p...Z calculated based on the formula (3)
λg/ where o (=70.70) is the characteristic impedance
4 length strip line impedance conversion circuit i3
It is inserted between the dB hybrid circuit and the radiating element.

このような給電回路を用いて前記第1図(atのマイク
ロストリップアンテナを構成すれば、一応放射器給電部
のインピーダンス整合をはかることになるが、上述した
如く放射器の共振周波数以外では第1図(dlの通常の
タイプとは異なる若干の不整合を生じ第2図中実線で示
すように広帯域アンテナ特性を得ることができる。
If such a feeding circuit is used to construct the microstrip antenna shown in FIG. It is possible to obtain wideband antenna characteristics as shown by the solid line in FIG. 2 due to a slight mismatch that differs from the normal type of dl in FIG.

尚、同図には参考まで前記第1図(dlの従来の給電回
路を用いた場合の同様のマイクロストリップアンテナの
リターンロス特性を破線によって示す。
For reference, the same figure shows the return loss characteristics of a similar microstrip antenna using the conventional feeder circuit shown in FIG. 1 (dl) by a broken line.

同図によれば両者のアンテナとしての適用帯域幅の差は
明らかであって1本発明によるマイクロストリップアン
テナMSAでは従来のアンテナに比べて極めて広い適用
周波数帯を得ることができる。
According to the figure, the difference in the applicable bandwidth of both antennas is clear, and the microstrip antenna MSA according to the present invention can obtain an extremely wide applicable frequency band compared to the conventional antenna.

又、第3図に示すように本実施例によるアンテナのボア
サイト方向の軸比特性に於いても1.54 GHzから
1.65 GHzの約100MHzの広範囲にわたって
1以下であるから従来のハニカム基板によるアンテナよ
り優れた軸比特性をもち広帯域アンテナとして充分実用
に耐え得ること明らかである。
Furthermore, as shown in Fig. 3, the axial ratio characteristic in the boresight direction of the antenna according to this embodiment is less than 1 over a wide range of about 100 MHz from 1.54 GHz to 1.65 GHz, so it is different from that of the conventional honeycomb substrate. It is clear that this antenna has better axial ratio characteristics than that of the antenna of 2000, and can be used in practical use as a wideband antenna.

伺、上述した実施例に於いて注意f要することは前記給
電回路9の2つの出力端13.14と放射素子2の給電
点との間に介在せしめた貫通ビン15.16の存在が若
干特性に影響を与えることである。
In the above-described embodiment, it is important to note that the presence of the through-hole 15.16 interposed between the two output ends 13.14 of the feed circuit 9 and the feed point of the radiating element 2 has some characteristics. It is to have an impact on the

即ち、該貫通ビン15.16は単に放射器40基板を貫
通する約5n前後の導体棒であるが。
That is, the penetrating pins 15 and 16 are simply conductive rods of about 5n that pass through the radiator 40 board.

微かながらインピーダンスを乱すものとなるから本発明
に於いてあえて生ぜしめる放射素子給電点のインピーダ
ンス不整合にこれを含めて考えるべきである。
Since it slightly disturbs the impedance, this should be considered in the impedance mismatch at the feeding point of the radiating element, which is deliberately caused in the present invention.

本発明は以上説明した実施例以外にも種々の実施態様が
考えられるが、要はアンテナの放射器入力と給電回路出
力の入出力インピーダンスを若干異なったものにするこ
とによって適用周波数を広帯域化するものであればどの
ような手段であってもよいからアンテナ装置全搬にわた
って応用可能なること説明を要しないであろう。
Although various embodiments of the present invention are conceivable in addition to the embodiments described above, the key point is to widen the applicable frequency band by making the input/output impedance of the antenna radiator input and the feeder circuit output slightly different. Any means may be used as long as it can be used, so there is no need to explain that it can be applied to all types of antenna devices.

(発明の効果) 本発明は以上説明したように構成するものであるから極
めて簡単な手法によって薄形、低姿勢のMSAの特徴を
損うことなく広帯域化をはかるうえで著効を奏する。
(Effects of the Invention) Since the present invention is configured as described above, it is extremely effective in achieving a wide band using an extremely simple method without impairing the characteristics of the thin and low-profile MSA.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図であって、(a)は
平面図、(b)は側面図、(C)及び(dlは3dBハ
イブリッド回路バタン図、第2図及び第3図は本発明の
MSAの一実施例の実測結果を示す図、第4図(al及
び(b)は従来のMSAの外観構造図及びその特性図で
ある。 射素子、  3及び6・・・・・・・−アース用導電バ
タン、  4・・・・−・−放射器、  7・・−・・
・・・・3dBハイブリッド回路、  8−・明・・整
合回路。 9・・・・−・・・給電回路、  15及び16・・・
・−・・・・貫通ビン。 特許出願人  東洋通信機株式会社 Freq、 CQsz) (′Io’)
FIG. 1 is a diagram showing an embodiment of the present invention, in which (a) is a plan view, (b) is a side view, (C) and (dl are 3 dB hybrid circuit button diagrams, and FIGS. The figure shows actual measurement results of an embodiment of the MSA of the present invention, and Fig. 4 (al and (b)) shows the external structure of the conventional MSA and its characteristic diagram.・・・・-Conductive button for ground, 4.・・・-・-Radiator, 7.・・・-・
....3dB hybrid circuit, 8-.Bright...matching circuit. 9...--Power supply circuit, 15 and 16...
・−・・Through-through bottle. Patent applicant Toyo Tsushinki Co., Ltd. Freq, CQsz) ('Io')

Claims (2)

【特許請求の範囲】[Claims] (1)マイクロストリップアンテナの放射素子の給電点
と給電回路との間のインピーダンス整合を微かにずらす
ことによってその周波数特性を広帯域化したことを特徴
とするマイクロストリップアンテナ。
(1) A microstrip antenna characterized in that its frequency characteristics are broadened by slightly shifting the impedance matching between the feeding point of the radiating element of the microstrip antenna and the feeding circuit.
(2)前記インピーダンスの不整合状態を適宜変化せし
めることによってアンテナの適用周波数帯域を任意に設
定するよう構成したことを特徴とする特許請求の範囲1
項記載のマイクロストリップアンテナ。
(2) Claim 1 characterized in that the applicable frequency band of the antenna is arbitrarily set by appropriately changing the impedance mismatch state.
Microstrip antenna as described in section.
JP18327785A 1985-08-21 1985-08-21 Microstrip antenna Granted JPS6243906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18327785A JPS6243906A (en) 1985-08-21 1985-08-21 Microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18327785A JPS6243906A (en) 1985-08-21 1985-08-21 Microstrip antenna

Publications (2)

Publication Number Publication Date
JPS6243906A true JPS6243906A (en) 1987-02-25
JPH0562481B2 JPH0562481B2 (en) 1993-09-08

Family

ID=16132840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18327785A Granted JPS6243906A (en) 1985-08-21 1985-08-21 Microstrip antenna

Country Status (1)

Country Link
JP (1) JPS6243906A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211985A (en) * 1982-06-01 1983-12-09 株式会社シマノ Gear crank device for bicycle
JPH01168102A (en) * 1987-12-23 1989-07-03 Mitsubishi Electric Corp Shared antenna system for plural waves
JPH02202203A (en) * 1989-01-31 1990-08-10 Sony Corp Antenna feeder
JPH02262701A (en) * 1989-04-03 1990-10-25 Yamatake Honeywell Co Ltd Feed structure of microstrip antenna
JPH03187503A (en) * 1989-12-15 1991-08-15 Matsushita Electric Works Ltd Multilayered substrate
CN103794860A (en) * 2014-01-18 2014-05-14 中国计量学院 Micro-strip antenna shaped like three Chinese characters 'tu' and also shaped like head of Chinese character 'xi'
WO2015004992A1 (en) * 2013-07-09 2015-01-15 株式会社ヨコオ Micro-strip antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107305A (en) * 1979-02-13 1980-08-18 Mitsubishi Electric Corp Microstrip antenna
JPS60130903A (en) * 1983-12-20 1985-07-12 Toshiba Corp Microstrip antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107305A (en) * 1979-02-13 1980-08-18 Mitsubishi Electric Corp Microstrip antenna
JPS60130903A (en) * 1983-12-20 1985-07-12 Toshiba Corp Microstrip antenna

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243906B2 (en) * 1982-06-01 1987-09-17 Shimano Industrial Co
JPS58211985A (en) * 1982-06-01 1983-12-09 株式会社シマノ Gear crank device for bicycle
JP2535992B2 (en) * 1987-12-23 1996-09-18 三菱電機株式会社 Multi-wave shared antenna device
JPH01168102A (en) * 1987-12-23 1989-07-03 Mitsubishi Electric Corp Shared antenna system for plural waves
JPH02202203A (en) * 1989-01-31 1990-08-10 Sony Corp Antenna feeder
JPH02262701A (en) * 1989-04-03 1990-10-25 Yamatake Honeywell Co Ltd Feed structure of microstrip antenna
JPH03187503A (en) * 1989-12-15 1991-08-15 Matsushita Electric Works Ltd Multilayered substrate
WO2015004992A1 (en) * 2013-07-09 2015-01-15 株式会社ヨコオ Micro-strip antenna
JP2015019132A (en) * 2013-07-09 2015-01-29 株式会社ヨコオ Microstrip antenna
CN105379015A (en) * 2013-07-09 2016-03-02 株式会社友华 Micro-strip antenna
US9799958B2 (en) 2013-07-09 2017-10-24 Yokowo Co., Ltd. Microstrip antenna
CN105379015B (en) * 2013-07-09 2019-04-09 株式会社友华 Microstrip antenna
CN103794860A (en) * 2014-01-18 2014-05-14 中国计量学院 Micro-strip antenna shaped like three Chinese characters 'tu' and also shaped like head of Chinese character 'xi'
CN103794860B (en) * 2014-01-18 2015-12-30 中国计量学院 Three native shapes and happiness prefix microstrip

Also Published As

Publication number Publication date
JPH0562481B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
US5025264A (en) Circularly polarized antenna with resonant aperture in ground plane and probe feed
CA1237808A (en) Crossed-drooping dipole antenna
US5070340A (en) Broadband microstrip-fed antenna
US10199743B2 (en) Array antenna
Sugawara et al. A mm-wave tapered slot antenna with improved radiation pattern
US4922263A (en) Plate antenna with double crossed polarizations
US4054874A (en) Microstrip-dipole antenna elements and arrays thereof
US4623894A (en) Interleaved waveguide and dipole dual band array antenna
EP1279202B1 (en) Planar ultra wide band antenna with integrated electronics
US4495505A (en) Printed circuit balun with a dipole antenna
US4320402A (en) Multiple ring microstrip antenna
KR100574014B1 (en) Broadband slot array antenna
CA1264373A (en) Flat wide - band antenna
US20040104859A1 (en) Wide bandwidth flat panel antenna array
AU655357B2 (en) Wideband arrayable planar radiator
US4814785A (en) Wideband gridded square frequency selective surface
US4479127A (en) Bi-loop antenna system
JPH0311563B2 (en)
US20030112200A1 (en) Horizontally polarized printed circuit antenna array
US20210273339A1 (en) Wideband Dual-Polarized Four-Quad Loop Antenna
JPH03166803A (en) Microstrip antenna for separately feeding two-frequency circular polarized wave
CA1240037A (en) Microstrip space duplexed antenna
EP0823749A1 (en) Integrated stacked patch antenna
US6404377B1 (en) UHF foliage penetration radar antenna
US4587525A (en) 180 degree dipole phase shifter