JPH02201973A - Thin film solar cell - Google Patents

Thin film solar cell

Info

Publication number
JPH02201973A
JPH02201973A JP1020077A JP2007789A JPH02201973A JP H02201973 A JPH02201973 A JP H02201973A JP 1020077 A JP1020077 A JP 1020077A JP 2007789 A JP2007789 A JP 2007789A JP H02201973 A JPH02201973 A JP H02201973A
Authority
JP
Japan
Prior art keywords
solar cell
thin film
active layer
film solar
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1020077A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kadota
門田 好晃
Taketaka Kohama
剛孝 小濱
Hiroshi Okamoto
浩 岡本
Yoshio Watanabe
義夫 渡辺
Tagahiko Ohara
大原 多賀彦
Tokuro Omachi
大町 督郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1020077A priority Critical patent/JPH02201973A/en
Publication of JPH02201973A publication Critical patent/JPH02201973A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a solar cell with increased photovoltaic current and efficiency by combining multilayered films comprising two type of semiconductors different in refractive indexes. CONSTITUTION:A solar cell active layer 4 comprises an n-GaAs layer (base) 41 and a p<+>-GaAs (emitter) 42, and includes a light reflecting layer 8 formed of semiconductor multilayered films of two types different in refractive indexes and disposed at the rear end of the active layer. The reflecting layer is constructed so as to reflect light available having wavelengths transmitted through the thin film solar cell active layer, and is designed such that respective reflecting layers BR1, BR2, and BR3 satisfy the formula I. In the formula I, denotes a central wavelength, film thickness, and ni a refractive index. Hereby, long wavelength light component with reduced light absorbance can effectively be taken out as an electrical output.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Si基板上に形成された化合物半導体薄膜太
陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a compound semiconductor thin film solar cell formed on a Si substrate.

(従来の技術) 一般にSi基板上に化合物半導体薄膜太陽電池を形成し
た場合、Si基板と化合物半導体の格子定数の不一致に
よって、化合物半導体薄膜中には高密度の転位が発生し
て太陽電池の活性領域にまで達する。転位は電子と正孔
の再結合中心となりやすい。太陽電池活性層に入射した
太陽光によって発生した電子と正孔は転位において再結
合してしまうため、効率良く光−電気エネルギ変換がで
きなくなる。このために薄膜太陽電池の性能は大幅に低
下することが知られている。この為、性能を向上させる
目的で化合物半導体の転位の低減が図られている0例え
ば、第2図は、特願昭63−145201号出願にかか
る太陽電池の断面構造図を示すものであり、太陽電池活
性層4とSi基板2の間に緩衝層3を導入して、太陽電
池活性層に含まれる転位の低減を図っている。同図にお
いて31は1〜2pm厚のGaAsでなる熱サイクル処
理を施した熱サイクル緩衝層、32はIno、 +5G
ao、 asAs(厚さIons) / GaAs(厚
さ10n+1)を5周期繰り返し成長した歪超格子緩衝
層、33はAlo、 hGao、 aAs(厚さ50n
m) / GaAs (厚さ10100nを3周期繰り
返し成長した交互N緩衝層であり、いずれも転位低酸の
観点から構造が決定されている。なお1は下部電極、5
はウィンド層、6は反射防止層、7は上部を掻を示す。
(Prior art) Generally, when a compound semiconductor thin film solar cell is formed on a Si substrate, high density dislocations occur in the compound semiconductor thin film due to mismatch in lattice constant between the Si substrate and the compound semiconductor, resulting in activation of the solar cell. reach the territory. Dislocations tend to serve as recombination centers for electrons and holes. Electrons and holes generated by sunlight incident on the solar cell active layer recombine at dislocations, making it impossible to efficiently convert light to electrical energy. It is known that for this reason, the performance of thin film solar cells is significantly reduced. For this reason, efforts are being made to reduce dislocations in compound semiconductors in order to improve performance. For example, FIG. A buffer layer 3 is introduced between the solar cell active layer 4 and the Si substrate 2 to reduce dislocations contained in the solar cell active layer. In the figure, 31 is a thermal cycle buffer layer made of GaAs with a thickness of 1 to 2 pm and subjected to thermal cycle treatment, and 32 is Ino, +5G.
33 is a strained superlattice buffer layer grown repeatedly for 5 cycles of ao, asAs (thickness Ions)/GaAs (thickness 10n+1);
m) / GaAs (alternating N buffer layers with a thickness of 10100 nm grown three times repeatedly, and the structure of each is determined from the viewpoint of dislocation and low acidity. Note that 1 is the lower electrode, 5
6 shows the wind layer, 6 shows the antireflection layer, and 7 shows the upper part.

(発明が解決しようとする課題) 上記緩衝層を介した薄膜太陽電池に於いても、10’c
m”zの転位密度を有しており、電子と正孔すなわちキ
ャリアは再結合しやすいために小数キャリアの拡散長は
短く、薄膜太陽電池が利用できる波長領域の光の吸収深
さよりも小さくなる。この為pn接合から離れた深い領
域で発生したキャリアは、pn接合に達するまえに再結
合して、太陽電池の電気出力として利用できない。
(Problems to be Solved by the Invention) Even in the thin film solar cell using the above buffer layer, 10'c
It has a dislocation density of m''z, and electrons and holes, that is, carriers, are easy to recombine, so the diffusion length of minority carriers is short, and it is smaller than the absorption depth of light in the wavelength range that thin-film solar cells can use. For this reason, carriers generated in a deep region away from the pn junction recombine before reaching the pn junction and cannot be used as the electrical output of the solar cell.

本発明は、上記の欠点を改善するため提案されたもので
、Si基板上にエピタキシャル成長した化合物半導体薄
膜を利用する薄膜太陽電池において、従来構造に比べて
より高い性能を実現可能とするものである。
The present invention was proposed to improve the above-mentioned drawbacks, and makes it possible to achieve higher performance than conventional structures in thin-film solar cells that utilize compound semiconductor thin films epitaxially grown on Si substrates. .

(課題を解決するための手段) 上記の目的を達成するため、本発明は活性層の後端に屈
折率の異なる2種類の半導体多層膜により形成した光反
射層を、新たに配置したことを特徴とする薄膜太陽電池
である。この結果、光吸収係数の小さい長波長光成分を
効率よく電気出力として取り出せることが可能になる特
徴を有する。
(Means for Solving the Problems) In order to achieve the above object, the present invention newly arranges a light reflecting layer formed of two types of semiconductor multilayer films with different refractive indexes at the rear end of the active layer. This is a thin film solar cell with special characteristics. As a result, it has a feature that long wavelength light components with small optical absorption coefficients can be efficiently extracted as electrical output.

(作用) 本発明の薄膜太陽電池においては、多層膜反射層を設け
、これにより実効吸収領域が2倍となるとともに吸収領
域をpn接合に近接化させるため光起電流がおおきく効
率の商い太陽電池をうろことができる。
(Function) In the thin film solar cell of the present invention, a multilayer reflective layer is provided, which doubles the effective absorption area and brings the absorption area closer to the pn junction, so that the photovoltaic current is large and the efficiency is increased. You can wander around.

(実施例) 次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
種々の変更あるいは改良を行いつることは言うまでもな
い。
(Example) Next, an example of the present invention will be described. Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the invention.

第1図は本発明による薄膜太陽電池の実施例を示す。図
中において1は下部電極、2はSi基板、3は結晶性向
上のための緩衝層である。4は太陽電池活性層でn −
GaAsH(ベース)41、p −GaAsN(エミ・
ンタ)42.5はp” −GaAIAs (ウィンド)
層である。6は反射防止層、7は上部電極を示す。
FIG. 1 shows an embodiment of a thin film solar cell according to the invention. In the figure, 1 is a lower electrode, 2 is a Si substrate, and 3 is a buffer layer for improving crystallinity. 4 is the solar cell active layer n −
GaAsH (base) 41, p-GaAsN (Emi-
) 42.5 is p” -GaAIAs (wind)
It is a layer. 6 indicates an antireflection layer, and 7 indicates an upper electrode.

8は本発明によって導入された反射層であり、本実施例
では中心波長の異なる3種類の反射層(BJ71.BR
2,BR3)で構成されている。
8 is a reflective layer introduced according to the present invention, and in this example, three types of reflective layers with different center wavelengths (BJ71.BR
2, BR3).

この反射層の構成は、y4膜太陽電池活性層の小数キャ
リアの拡散長に対する最適な薄膜太陽電池活性層厚によ
り決定される。すなわち、薄膜太陽電池活性層を透過す
る波長の光のうち電池出力として利用可能な光を反射す
る構成とする。
The configuration of this reflective layer is determined by the optimal thickness of the thin film solar cell active layer relative to the diffusion length of minority carriers in the y4 film solar cell active layer. That is, the structure is such that out of the light having a wavelength that passes through the thin-film solar cell active layer, light that can be used as cell output is reflected.

ここに反射層BRI、BR2,BR3の構成を示すと次
のようである。λrは中心波長、Ali成。
The configurations of the reflective layers BRI, BR2, and BR3 are shown below. λr is the center wavelength, formed by Ali.

Wl、厚、屈折率の順に示す。Wl, thickness, and refractive index are shown in this order.

BRI:λr =0.72n (AIAs (膜厚59
2人、屈折率3.04) / Ale、 zsGao、
 ?5AS(486人、 3.70))BR2:λr 
=0.18n (AIAs (645人、 3.02)
 /Ale、 +5Gao、 5sAs(542人、 
3.60))BR3:λr =0.871(AIAs 
(730人、 2.98) /^L、 +5Gao、 
5sAs(621人、 3.50))しかして夫々の反
射層BRI、BR2,BR3について、       
 λr n+L+本 nzLz= λ。
BRI: λr = 0.72n (AIAs (film thickness 59
2 people, refractive index 3.04) / Ale, zsGao,
? 5AS (486 people, 3.70)) BR2:λr
=0.18n (AIAs (645 people, 3.02)
/Ale, +5Gao, 5sAs (542 people,
3.60)) BR3: λr = 0.871 (AIAs
(730 people, 2.98) /^L, +5Gao,
5sAs (621 people, 3.50)) Therefore, for each reflective layer BRI, BR2, BR3,
λr n+L+book nzLz=λ.

n、t 3 = が成り立つように設計されたものである。n, t 3 = It is designed so that it holds true.

第3図は小数キャリアの拡散長が1.5nでの本発明の
反射層による光起電流に対する効果を示したもので、こ
れより、最適な活性層厚は従来構造では2μ屋、本発明
では1.2nであることが判明した。この場合の活性層
厚は約0.6nが有効である。
Figure 3 shows the effect of the reflective layer of the present invention on photovoltaic current when the diffusion length of minority carriers is 1.5n.From this, the optimal active layer thickness is 2μ for the conventional structure, and for the present invention. It turned out to be 1.2n. In this case, an effective active layer thickness of about 0.6 nm is effective.

第4図に本発明および従来構造薄膜太陽電池の光子エネ
ルギーと分光感度を示す。これより本発明は反射波長は
650na+から870nmで十分な効果があることが
分かる。
FIG. 4 shows the photon energy and spectral sensitivity of thin film solar cells of the present invention and conventional structures. From this, it can be seen that the present invention has a sufficient effect when the reflection wavelength is from 650 na+ to 870 nm.

第5図は入射波長と反射率との関係を示すもので、これ
によって3種類の反射層すなわちBR1゜BF?2.B
R3を組み合わせることにより700na+から900
nmの波長範囲の光を効果的に反射することが確認でき
る。
FIG. 5 shows the relationship between incident wavelength and reflectance, and this shows three types of reflective layers: BR1°BF? 2. B
By combining R3, from 700na+ to 900na+
It can be confirmed that light in the nm wavelength range is effectively reflected.

すなわち本発明の薄膜太陽電池においては、活性層を構
成する化合物半導体としてGaAsあるいはAI、、G
a+−xA3、多層膜を構成する化合物半導体としてA
I、Ga+−、As+ AIJa+−gAs (x <
 y < z )から成ることを特徴とするものである
That is, in the thin film solar cell of the present invention, GaAs, AI, G
a+-xA3, A as a compound semiconductor constituting a multilayer film
I, Ga+-, As+ AIJa+-gAs (x <
y < z).

また、反射層を構成する半導体の禁制帯幅は太陽電池活
性層を構成する半導体の禁制帯幅よりも大であるために
(すなわちX<y<z)、光は反射層では吸収されず効
果的に反射される。
In addition, since the forbidden band width of the semiconductor constituting the reflective layer is larger than that of the semiconductor constituting the solar cell active layer (i.e., X<y<z), light is not absorbed by the reflective layer and has no effect. reflected.

すなわち本発明の薄膜太陽電池において、活性層を構成
する化合物半導体としてInP、多層膜を構成する化合
物半導体としてInAlAs、 InAIAsPからな
ることを特徴とするものである。
That is, the thin film solar cell of the present invention is characterized in that the active layer is composed of InP as a compound semiconductor, and the multilayer film is composed of InAlAs and InAIAsP as compound semiconductors.

(発明の効果) 以上説明したように、本発明によればSi基板上の薄膜
太陽電池活性領域の後端に活性領域の材料と格子常数が
近く屈折率の異なる禁制帯幅の広い2種類の半導体から
なる多層膜の組合せにより、従来構造の薄膜太陽電池に
対し結晶性を維持したままで、効率を向上することがで
きるのみならず、小さい拡散長に対して効率良くキャリ
アを得る構造とできることから、従来構造に対し効率を
維持したままで放射線耐量の高い薄膜太陽電池を得るこ
とができる。この技術により、バルク型GaAs太陽電
池に迫る性能をもつ薄膜太陽電池を軽量かつ安価なSi
基板上に製造することが可能となり、衛星搭載用並びに
各種民生用としてシステムにおける経済効果を高めるこ
とができる。
(Effects of the Invention) As explained above, according to the present invention, two kinds of materials having a wide forbidden band width and different refractive indexes, which have a lattice constant close to that of the material of the active region and have different refractive indexes, are prepared at the rear end of the thin film solar cell active region on a Si substrate. By combining multilayer films made of semiconductors, it is possible to not only improve efficiency while maintaining crystallinity compared to conventional thin-film solar cells, but also create a structure that efficiently obtains carriers with a small diffusion length. Therefore, a thin film solar cell with high radiation resistance can be obtained while maintaining efficiency compared to the conventional structure. Using this technology, thin-film solar cells with performance approaching that of bulk-type GaAs solar cells can be fabricated using lightweight and inexpensive Si.
It becomes possible to manufacture on a substrate, and the economic effect of the system can be enhanced for use in satellites and various civilian applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜太陽電池の実施例の略断面構造を
示す。第2図は従来構造例の薄膜太陽電池の略断面構造
、第3図は薄膜太陽電池における反射層の有無による光
起電流の太陽電池活性層厚依存性を示したものである。 第4図は太陽電池活性層厚さの異なる薄膜太陽電池での
光起電流変換効率の入射光エネルギー依存性を図示した
もので反射層の太陽電池活性1iL反射波長の効果を現
わすものである。第5図は実際の反射層の反射特性を示
したものである。 1・・・・・下部電極 2・・・・・Si基板 3 ・ ・ ・ 4 ・ ・ ・ 5 ・ ・ ・ 6 ・ ・ ・ 7 ・ ・ ・ 8 ・ ・ ・ 31・ ・ ・ 32・ ・ ・ 33・ ・ ・ ・ 41・ ・ ・ ・ 42・ ・ ・ ・ 8f、82.83・ 緩衝層 太陽電池活性層 ウィンド層 反射防止層 上部電極 反射層 熱サイクル緩衝層 歪超格子緩衝層 交互層緩衝層 n  GaAs太陽電池活性層 p”−GaAs太陽電池活性層 反射層(BR) 第1図 ■−−−丁部罷極 5−−−ウインド 第 図 第 図 、会活性漫厚 (、Jun )
FIG. 1 shows a schematic cross-sectional structure of an embodiment of the thin film solar cell of the present invention. FIG. 2 shows a schematic cross-sectional structure of a conventional thin-film solar cell, and FIG. 3 shows the dependence of photovoltaic current on the solar cell active layer thickness depending on the presence or absence of a reflective layer in the thin-film solar cell. Figure 4 illustrates the dependence of photovoltaic current conversion efficiency on incident light energy in thin film solar cells with different thicknesses of the solar cell active layer, and shows the effect of the reflection wavelength of the solar cell activity 1iL of the reflective layer. . FIG. 5 shows the reflection characteristics of an actual reflection layer. 1... Lower electrode 2... Si substrate 3 . . . 4 . . . . 5 . . . 6 . . . 7 . . . 8 .・ ・ ・ 41・ ・ ・ ・ 42・ ・ ・ ・ 8f, 82.83 Battery active layer p''-GaAs solar cell active layer reflective layer (BR) Fig. 1 ■---Chobe katakoku 5---Wind diagram fig.

Claims (1)

【特許請求の範囲】[Claims] Si基板上に化合物半導体薄膜をエピタキシャル成長し
た構造でなる薄膜太陽電池において、上記半導体薄膜太
陽電池の活性層の下に、屈折率nと厚さtの組合せが(
n_1、t_1)と(n_2、t_2)であられされる
2種類の半導体の多層膜を少なくとも1つ配置し、かつ
それぞれの多層膜が上記活性層で吸収されるべき光の波
長λ_rに対してn_1t_1=n_2t_2=λ_r
/4の関係で現わされる多層膜であることを特徴とする
薄膜太陽電池。
In a thin film solar cell having a structure in which a compound semiconductor thin film is epitaxially grown on a Si substrate, a combination of refractive index n and thickness t is formed below the active layer of the semiconductor thin film solar cell.
At least one multilayer film of two types of semiconductors composed of n_1, t_1) and (n_2, t_2) is arranged, and each multilayer film has n_1t_1 with respect to the wavelength λ_r of the light to be absorbed by the active layer. =n_2t_2=λ_r
1. A thin film solar cell characterized by being a multilayer film with a relationship of /4.
JP1020077A 1989-01-30 1989-01-30 Thin film solar cell Pending JPH02201973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020077A JPH02201973A (en) 1989-01-30 1989-01-30 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020077A JPH02201973A (en) 1989-01-30 1989-01-30 Thin film solar cell

Publications (1)

Publication Number Publication Date
JPH02201973A true JPH02201973A (en) 1990-08-10

Family

ID=12017038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020077A Pending JPH02201973A (en) 1989-01-30 1989-01-30 Thin film solar cell

Country Status (1)

Country Link
JP (1) JPH02201973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569332A (en) * 1995-08-07 1996-10-29 United Solar Systems Corporation Optically enhanced photovoltaic back reflector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569332A (en) * 1995-08-07 1996-10-29 United Solar Systems Corporation Optically enhanced photovoltaic back reflector

Similar Documents

Publication Publication Date Title
JP6650916B2 (en) Semiconductor device with improved current generation
Dimroth et al. Metamorphic GayIn1− yP/Ga1− xInxAs tandem solar cells for space and for terrestrial concentrator applications at C> 1000 suns
US4547622A (en) Solar cells and photodetectors
JPH02218174A (en) Photoelectric converting semiconductor device
TW201436262A (en) Multijunction solar cell with low band gap absorbing layer in the middle cell
JPH05114747A (en) Improved monolithic tandem-type solar cell
CN108461568B (en) Multi-junction solar cell with Bragg reflector and manufacturing method thereof
Inoue et al. Enhanced light trapping in multiple quantum wells by thin-film structure and backside grooves with dielectric interface
RU2308122C1 (en) Cascade solar cell
JPH01304786A (en) Photogeneration element
JPH07101753B2 (en) Stacked solar cells
CN111430493B (en) Multi-junction solar cell and power supply equipment
CN110707172B (en) Multi-junction solar cell with Bragg reflection layer and manufacturing method
JP5283588B2 (en) Solar cell
JPH02201973A (en) Thin film solar cell
CN114566560B (en) Gallium arsenide laser photovoltaic cell and preparation method thereof
JP2737705B2 (en) Solar cell
JPS639163A (en) Semiconductor photodetector
Andreev et al. High-efficiency AlGaAs-GaAs solar cells with internal Bragg reflector
CN111430495A (en) Multi-junction solar cell and power supply equipment
Zhang et al. Theoretical study on potential performance of lattice-matched monolithic GaNP/GaNAsP/Si triple-junction solar cell
JPS5996777A (en) Photovoltaic element
US20220406952A1 (en) Longpass Distributed Bragg Reflector (LPDBR)
JPH04137769A (en) Compound semiconductor solar cell
JP2005347402A (en) Rear surface reflection compound semiconductor solar cell and its manufacturing process