JPH02201510A - High precision regulator - Google Patents

High precision regulator

Info

Publication number
JPH02201510A
JPH02201510A JP2048889A JP2048889A JPH02201510A JP H02201510 A JPH02201510 A JP H02201510A JP 2048889 A JP2048889 A JP 2048889A JP 2048889 A JP2048889 A JP 2048889A JP H02201510 A JPH02201510 A JP H02201510A
Authority
JP
Japan
Prior art keywords
pressure
spring
diaphragm
chamber
sensitive chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2048889A
Other languages
Japanese (ja)
Other versions
JP2762094B2 (en
Inventor
Kunihiko Omichi
邦彦 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1020488A priority Critical patent/JP2762094B2/en
Publication of JPH02201510A publication Critical patent/JPH02201510A/en
Application granted granted Critical
Publication of JP2762094B2 publication Critical patent/JP2762094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To adjust the pressure highly precisely and to exclude the influence of environmental conditions by using a spring made of a shape memory alloy using a super elastic characteristic as the pressure governing spring and evacuating a pressure sensitive chamber. CONSTITUTION:A diaphragm is moved upward or downward by the difference between a liquid pressure P applied to the diaphragm 5 and the elastic force of a pressure governing spring 9 to open and close a liquid passage, and a secondary-side fluid pressure is kept at a sent value. Since the pressure governing spring 9 has an approximately flat displacement-load characteristic because of the super elastic characteristic of the shape memorizable alloy, the elastic force of the spring 9 is not changed though the extent of displacement of the spring 9 is changed, and the secondary-side liquid pressure P is always kept at a prescribed set adjustment value. Since the inside of a pressure sensitive chamber B is kept in a high degree of vacuum, the diaphragm 5 is always operated in prescribed environmental conditions. Thus, the pressure is adjusted with a high precision, and the adjustment value is not badly affected by environmental conditions.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は流量・圧力調整器の改良に係り、宇宙空間や地
底、海底等に於ける生命維持装置の02N2の供給用等
に利用する高精度11整器に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to the improvement of a flow rate/pressure regulator, which is used for supplying 02N2 to life support equipment in outer space, underground, under the sea, etc. It is related to precision 11 integer.

(従来の技術) 一般に流量・圧力W!4整指は、ダイヤフラムにかかる
流体圧と調圧用スプリングの弾性力との相関関係により
、所望の流体圧を得るように構成されている。
(Conventional technology) Generally flow rate and pressure W! The four adjustable fingers are configured to obtain a desired fluid pressure based on the correlation between the fluid pressure applied to the diaphragm and the elastic force of the pressure regulating spring.

従って、流量・圧力調整器の調整精度を向上させるため
には、先ず調圧用スプリングが第2図の曲線Aに示す如
く、必要な出力を有し且つ変位に対する荷重の変化の小
さな特性を具備する必要がある。
Therefore, in order to improve the adjustment accuracy of the flow rate/pressure regulator, the pressure regulating spring must first have the necessary output and have the characteristics of small changes in load with respect to displacement, as shown by curve A in Figure 2. There is a need.

そのため、つる巻きバネBと皿バネCとを組合せ5両者
の複合により曲!llAの如きスプリング特性とし、変
位−荷重変化の殆んど無い平坦なA′部を流量・圧力の
調整用に利用する様にした高精度調整器が開発されてい
る。
Therefore, by combining the helical spring B and the disc spring C, we can make a song! A high-precision regulator has been developed that has spring characteristics such as llA and uses a flat section A' with almost no displacement-load change for adjusting flow rate and pressure.

しかし、前記つる巻きバネBと皿ハネCとの、:且合せ
に係る腹合形スプリングは、変位−荷重変化の少ない特
性範囲(平坦部A’)が極めて狭いうえ、つる巻きバネ
や皿バネ゛の調整が著しく困雉で、実用上多くの問題が
残されている。
However, the bell-to-edge type spring, which involves the combination of the helical spring B and the disc spring C, has an extremely narrow characteristic range (flat portion A') in which the displacement-load change is small, and is not suitable for helical springs or disc springs. It is extremely difficult to adjust this, and many practical problems remain.

また、従前の高精度調整器に於いては、ダイヤフラム上
部の調圧用スプリングを収容する感圧室が高度な密閉贋
造になっていないため、ダイヤフラムやスプリングが環
境圧力や環境温度の影#を直接に受けることになり、調
整(直が調整器の使朋環境によって変動するという問題
がある。
In addition, in conventional high-precision regulators, the pressure sensitive chamber that houses the pressure regulating spring at the top of the diaphragm is not highly sealed, so the diaphragm and spring directly respond to the effects of environmental pressure and temperature. There is a problem in that the adjustment (direction) varies depending on the environment in which the adjuster is used.

(発明が解決しようとする課題) 不発明は、従前の流量・圧カニAM器に於ける上述の如
き問題、即ち(D複合型のスプリングを用いるため、利
用し得る変位−荷重曲線の範囲が極く侠いうえ、スプリ
ングの弾性力の調整が著しく困難なこと、(■感圧室が
気密構造になっていないため、環境条件によって調整値
が変化し易いこと等の問題を解決せんとするものであり
、調性用スプリングの弾性力のセツティングが簡単且つ
正確に行なえると共に、調整器を使用する環境条件によ
って調整値が悪形響を受けない采にした高ht度調整器
を提供するものである。
(Problems to be Solved by the Invention) The inventive problem lies in the above-mentioned problems in the conventional flow rate/pressure crab AM device, namely (because the D-complex type spring is used, the range of the usable displacement-load curve is limited. In addition to being very clumsy, it is extremely difficult to adjust the elastic force of the spring (■ Because the pressure sensitive chamber is not an airtight structure, the adjustment value easily changes depending on the environmental conditions.) To provide a high-temperature adjuster that allows for easy and accurate setting of the elastic force of a tonality spring, and that prevents the adjustment value from being adversely affected by the environmental conditions in which the adjuster is used. It is something to do.

(課題を]郵決するための手段) 弁箱1にダイヤフラム室Aと感圧室Bとを設け、前記ダ
イヤフラム室A内に設けたダイヤフラム5に、流体圧P
と調圧用スプリング9の弾;生方とを加えるようにした
ダイヤフラム式A”II NBに於いて、前記調圧用ス
プリング9を1.田弾姓特性を利用する形状記憶合金(
・汝のスプリングとすると共に、前記感圧室Bを真空の
感圧室としたことを発明の基本構成とするものである。
(Means for submitting the problem) A diaphragm chamber A and a pressure sensitive chamber B are provided in the valve box 1, and a diaphragm 5 provided in the diaphragm chamber A is provided with a fluid pressure P.
In the diaphragm type A''II NB, which has a bullet of the pressure regulating spring 9;
- The basic structure of the invention is that the pressure sensitive chamber B is a vacuum pressure sensitive chamber in addition to being your spring.

(作用) ダイヤフラム5にかかる流体圧Pと調圧用スプリング9
の弾1生力との差でダイヤフラム5が上・下動し、これ
によって流体通路が開・閉され、二次側流体圧が設定値
に保持される。
(Function) Fluid pressure P applied to diaphragm 5 and pressure regulating spring 9
The diaphragm 5 moves up and down due to the difference between the natural force of the bullet 1 and the fluid passage, thereby opening and closing the fluid passage and maintaining the secondary fluid pressure at the set value.

前記調圧用スプリング9は形状記憶合金の超弾性特注に
より変位−荷重特性が略平坦になっている。その結果、
スプリング9の変位量が変ってもスプリングの弾性力は
変化せず、二次側の流体圧Pが常に所定の設定調整値に
高精度で保持されることになる。
The pressure regulating spring 9 has substantially flat displacement-load characteristics due to the superelastic shape-memory alloy. the result,
Even if the amount of displacement of the spring 9 changes, the elastic force of the spring does not change, and the fluid pressure P on the secondary side is always maintained at a predetermined set adjustment value with high precision.

また、感圧室B内が高真空度に保持さ九ているため、外
部環境の圧力等が変化しても感圧室B内の圧力条件等は
一切変(ヒせず、ダイヤフラムが常に所定の環境条件下
で作動されることになる。
In addition, since the pressure sensitive chamber B is maintained at a high degree of vacuum, even if the pressure in the external environment changes, the pressure conditions in the pressure sensitive chamber B will not change at all, and the diaphragm will always maintain the specified level. It will be operated under environmental conditions.

(実施例) 以下、図面に基づいて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail based on the drawings.

第1図は本発明に係る調!1急の縦:Fr面Aであり、
図に於いて1は弁箱、2は弁体、:3はシート、4(よ
弁体ガイド、5はダイヤフラム、6はダイヤフラム押え
、7はダイヤフラム受け、8は弁体下部のシール用0リ
ング、9は調圧用スプリング、10はスプリングケース
、11は蓋体、12はゲッター 13はロータリー式シ
ャットオフ弁である。
Figure 1 shows the key according to the present invention! 1 steep vertical: Fr plane A,
In the figure, 1 is the valve box, 2 is the valve body, 3 is the seat, 4 is the valve body guide, 5 is the diaphragm, 6 is the diaphragm holder, 7 is the diaphragm receiver, and 8 is the O-ring for sealing at the bottom of the valve body. , 9 is a pressure regulating spring, 10 is a spring case, 11 is a lid, 12 is a getter, and 13 is a rotary shutoff valve.

前記弁箱1はステンレス鋼、アルミニウム合金又はアル
ミニウム合金表面処理材により形成さ九でおり、流体人
口1a、シャットオフ弁取付口上b、シャットオフ弁用
弁座1c、流体通路1d。
The valve box 1 is made of stainless steel, aluminum alloy, or aluminum alloy surface-treated material, and has a fluid port 1a, a shutoff valve mounting opening b, a valve seat 1c for the shutoff valve, and a fluid passage 1d.

1e、弁室1f、流体出口1g等が設けられている。1e, a valve chamber 1f, a fluid outlet 1g, etc. are provided.

また、弁箱上の上方部には前記弁室1fに連通するダイ
ヤフラム室Aと感圧室Bとが設けられている。更に、前
記ダイヤフラム室Aは、弁体カイト4を配設するための
縮径部A□と、ダイヤフラム5を配設するための拡陛部
A2とから夫々形成されている。
Furthermore, a diaphragm chamber A and a pressure sensitive chamber B, which communicate with the valve chamber 1f, are provided in the upper part of the valve box. Further, the diaphragm chamber A is formed of a reduced diameter portion A□ for arranging the valve body kite 4 and an enlarged diameter portion A2 for arranging the diaphragm 5, respectively.

前記弁体2は、シート3に当接するディスク部2aと、
ディスク部2aより上方へ突出せしめた上部シャフト部
2bと、ディスク部2aより下方へ突出せしめた下部シ
ャツ1一部2Cとから形成されており、弁箱1の下方よ
り上部シャフト部2bを弁体ガイド4)\挿通せしめて
弁室1f内へ挿着され、スプリング14により上方へ常
時付勢されている。又、前記上部シャツ1一部2bの先
端は後述する如くダイヤフラム受け7の受入孔7a内へ
嵌合されており、該ダイヤフラム受け7を介して弁体2
が上下動される。
The valve body 2 includes a disk portion 2a that comes into contact with the seat 3;
It is formed of an upper shaft portion 2b that projects upwardly from the disk portion 2a, and a portion 2C of the lower shirt 1 that projects downwardly from the disk portion 2a. The guide 4) is inserted through the valve chamber 1f and is constantly urged upward by the spring 14. Further, the tip of the upper shirt part 2b is fitted into a receiving hole 7a of a diaphragm receiver 7 as described later, and the valve body 2 is inserted through the diaphragm receiver 7.
is moved up and down.

尚、2dは弁体2に設けた連通孔であり、円筒状の下部
シャフト2dの空間2eと流体出口側通路1eとが、こ
れにより連通されており、空間2e内を流体通路1eと
同圧とすることにより、弁体2の上・下動が円滑に行な
えるようにしている3又、15は下部蓋体であり、0リ
ング8により弁体2の下部シャフト部2dと一次側通路
1dとの間がシールされている。
Note that 2d is a communication hole provided in the valve body 2, through which the space 2e of the cylindrical lower shaft 2d and the fluid outlet side passage 1e are communicated, and the inside of the space 2e is kept at the same pressure as the fluid passage 1e. 15 is a lower lid body, and an O ring 8 connects the lower shaft portion 2d of the valve body 2 and the primary passage 1d. There is a seal between the two.

前記シート3は合成樹脂(摂のリング体であり。The sheet 3 is a ring made of synthetic resin.

弁室1fの奥部に嵌着されている。It is fitted into the inner part of the valve chamber 1f.

前記弁体ガイド4は中央部にガイド孔4aを穿設したリ
ング体であり、ダイヤフラム室Aの縮径部A1内へ螺着
されている。
The valve body guide 4 is a ring body having a guide hole 4a in the center thereof, and is screwed into the reduced diameter portion A1 of the diaphragm chamber A.

前記ダイヤフラム5は金属(若しくは合成樹脂)から形
成されており、前記ダイヤフラム押え6とダイヤフラム
受け7により挟持され、ダイヤフラム室への拡径部A2
内に配設されている。
The diaphragm 5 is made of metal (or synthetic resin), is held between the diaphragm presser 6 and the diaphragm receiver 7, and has an enlarged diameter portion A2 extending into the diaphragm chamber.
It is located inside.

調圧用スプリング9は、Ti−Ni系合金である所謂形
状記憶合金により形成されており、その変態凝弾性効果
を利用したものである。即ち、形状記憶合金は、 相→
マルテンサイ1へ相の変態的と変形温度及び作用応力の
相関関係で形状記憶効果と超弾性機能の何れかを現出す
るが、本発明に於ける形状記憶合金は超弾性機能を現出
すべく処理されている。
The pressure regulating spring 9 is made of a so-called shape memory alloy, which is a Ti-Ni alloy, and utilizes its transformation condensation-elasticity effect. That is, the shape memory alloy has the following phase→
Although the shape memory effect and superelastic function of martensitic alloy 1 appear depending on the relationship between phase transformation, deformation temperature, and applied stress, the shape memory alloy in the present invention is treated to exhibit the superelastic function. has been done.

その結果、当該調圧用スプリング9は、変位に対する荷
重の変化が一定となり、スプリング9の歪み量が変化し
ても応力は殆んど変化しない。尚、当該調圧用スプリン
グ9は、所定の温度下で所望の流体圧Pを得ることが出
来る。弾性力を発揮するように予かしめ製作されており
、−旦その弾性力(即ち流体の調整圧力)が設定される
と、その慎はその後不変である。
As a result, in the pressure regulating spring 9, the change in load with respect to displacement is constant, and even if the amount of strain of the spring 9 changes, the stress hardly changes. Note that the pressure regulating spring 9 can obtain a desired fluid pressure P under a predetermined temperature. It is preswaged to exhibit an elastic force, and once that elastic force (i.e., the regulated pressure of the fluid) is set, its elasticity remains unchanged thereafter.

尚、本実施例では調圧用スプリング9としてNi−Ti
合金系の形状記憶合金を使用しているが、Cu −Z 
n −A I系の形状記憶合金を利用してもよいことは
勿論である。
In this embodiment, the pressure regulating spring 9 is made of Ni-Ti.
Alloy-based shape memory alloy is used, but Cu-Z
Of course, an n-AI type shape memory alloy may also be used.

前記調圧用スプリング9は、スプリングケース10を介
して弁Wi1へビーム溶接Eした蓋体11によりその上
端部が保持されており、これによりその引張り変位iに
対応する弾性力がダイヤフラム5へ印加される6 尚、ダイヤフラム5上方のスプリングケース10と、J
illとで形成された感圧室Bは、後述する如<、10
−4torr程度の真空に保持されており、蓋体11の
裏面に固着したゲッター12をビーム照射によって加熱
活性比することにより、真空度の保持が図ら、れている
The pressure regulating spring 9 is held at its upper end by a lid 11 which is beam-welded E to the valve Wi1 via a spring case 10, and thereby an elastic force corresponding to the tensile displacement i is applied to the diaphragm 5. 6 In addition, the spring case 10 above the diaphragm 5 and the J
The pressure sensitive chamber B formed by ill is
The vacuum is maintained at about -4 torr, and the degree of vacuum is maintained by heating and activating the getter 12 fixed to the back surface of the lid 11 by beam irradiation.

面記ロータリー式シャットオフ弁13は弁箱1のシャッ
トオフ弁取付口1bへ袋すニア 1” 13 a介して
螺着されており、ハンドル13bを回動することにより
弁体13cを介して弁/1lc13dを弁座1cへ当渭
座せし、流体人口1aと流体通、lld間を開・閉する
The rotary type shut-off valve 13 is screwed onto the shut-off valve mounting port 1b of the valve body 1 through a sleeve 1" 13a, and by rotating the handle 13b, the valve is opened through the valve body 13c. /1lc13d is seated on the valve seat 1c to open/close the fluid communication between the fluid port 1a and lld.

次に1本件調v11器の組立について説明する。Next, the assembly of the V11 device will be explained.

先ず弁箱1へ、弁体2、シート3.弁体ガイド4、ダイ
ヤフラム5.調圧用スプリング9及びスプリングケース
10等を組付ける。
First, to the valve box 1, the valve body 2, the seat 3. Valve body guide 4, diaphragm 5. Assemble the pressure regulating spring 9, spring case 10, etc.

次に、内部を10−’torr程度の真空度に保持した
真空槽(図示省略)の内部で、ゲッター12を固着した
蓋体12をスプリングケース10の上方へ螺着し、所定
の締込量に調整する。
Next, inside a vacuum chamber (not shown) whose interior is kept at a vacuum level of about 10-'torr, the lid 12 with the getter 12 fixed thereon is screwed onto the spring case 10, and tightened to a predetermined amount. Adjust to.

その後、ビーム溶接方法により、真空槽の内部に於いて
前記感圧室Bの螺着部E、E・・・を溶接し、これによ
り間圧室B内を真空下で密封する。
Thereafter, the threaded portions E, E, . . . of the pressure sensitive chamber B are welded inside the vacuum chamber by a beam welding method, thereby sealing the inside of the interpressure chamber B under vacuum.

また、同時に蓋体11の裏面側に固着したゲッター12
の周辺部へビームを照射して約300℃程度に加熱し、
これを活性化する。
Also, at the same time, the getter 12 fixed to the back side of the lid body 11
A beam is irradiated to the peripheral area of the material and heated to approximately 300°C.
Activate this.

次に2本沖調樒a(の作動について説明する。Next, we will explain the operation of the two Okichocho (a).

ダイヤフラム5には、予かしめ設定されたスプリング°
9の弾性力がπ方へ向けて常時負荷されており、こ、れ
により弁体2は下降し、流体通路1d。
The diaphragm 5 is equipped with a pre-swaged spring.
An elastic force 9 is constantly applied in the π direction, which causes the valve body 2 to descend and open the fluid passage 1d.

1eflfflが連通している。1effffl is in communication.

シャットオフ弁13を開放すると、流体りが流入し、流
体通路1d、leを通して流通する。二次側流体圧Pが
上昇し、所定の設定値に達すると、ダイヤフラム5がス
プリング9の弾性力に打ち勝って上方へ押し上げられ、
弁体2が゛シート3へ当座して流体りの流通が遮断され
る。
When the shutoff valve 13 is opened, fluid flows in and flows through the fluid passages 1d and le. When the secondary fluid pressure P increases and reaches a predetermined set value, the diaphragm 5 overcomes the elastic force of the spring 9 and is pushed upward.
The valve body 2 is brought into contact with the seat 3, and the flow of fluid is cut off.

二次側の流体圧Pは連通孔2dを通して弁体2の下部シ
ャフト部2Cの空間2e内へ導入されており、下部シャ
フト部2Cと二次側流体圧Pとの圧力差が相殺され、弁
体2は円滑に作動する。
The fluid pressure P on the secondary side is introduced into the space 2e of the lower shaft portion 2C of the valve body 2 through the communication hole 2d, and the pressure difference between the lower shaft portion 2C and the fluid pressure P on the secondary side is canceled out. Body 2 operates smoothly.

尚、弁体2は上部シャフト部2bと下部シャフト部2c
の両方でガイドされており、下部シャフト部2cと一次
側流体通路間のシールはOリング8により行なわ九でい
る。
The valve body 2 has an upper shaft portion 2b and a lower shaft portion 2c.
The seal between the lower shaft portion 2c and the primary fluid passage is provided by an O-ring 8.

(発明の効果) 本発明に於いては、圧力調整用のスプリングを形状記憶
合金の擬弾性特性を利用したスプリングとしているため
、スプリングの変形量が変わってもスプリングの弾性力
が殆んど変化せず、その結果常に所定の弾性応力をダイ
ヤフラムに掛けることが出来、極めて高精度な圧力!I
jlnが可能となる。
(Effects of the Invention) In the present invention, since the spring for pressure adjustment is a spring that utilizes the pseudoelastic properties of a shape memory alloy, the elastic force of the spring hardly changes even if the amount of deformation of the spring changes. As a result, a predetermined elastic stress can always be applied to the diaphragm, resulting in extremely high precision pressure! I
jln becomes possible.

また、本発明に於いては感圧室B内を高度な真空空間に
する構成としているため、ダイヤフラムに掛かる外気圧
が略零となって環境圧力の影響が完全に排除され、外気
圧の変動による誤差等が皆無となる。
In addition, in the present invention, since the pressure sensitive chamber B is configured to be a highly vacuum space, the external pressure applied to the diaphragm becomes approximately zero, completely eliminating the influence of environmental pressure, and preventing fluctuations in external pressure. There will be no errors caused by this.

更に、感圧室B内を真空空間としているため、スプリン
グへの伝熱も固体熱伝導のみとなる。その結果、環境温
度が大きく変化しても、スプリングやダイヤフラムの温
度が急激に変化することは無く、温度変化による調整圧
の狂いが殆んど無視し得る程度となる。
Furthermore, since the inside of the pressure sensitive chamber B is a vacuum space, heat is transferred to the spring only by solid heat conduction. As a result, even if the environmental temperature changes significantly, the temperature of the spring or diaphragm will not change suddenly, and the deviation in the adjusted pressure due to temperature changes will be almost negligible.

そのうえ、ビーム溶接そのものの環境が1O−4tor
r程度であるため、特別な作業を要することなく感圧室
B内を所望の真空度下に密封できると共に、ゲッターの
加熱活性化もビームを利用して同時に行なうことが出来
、調整器の製造コストの大幅な引下げを図り得る。
Moreover, the environment of beam welding itself is 1O-4torr.
Since the temperature is about It is possible to significantly reduce costs.

本発明は上述の通り優れた実用的効用を奏するものであ
る。
As described above, the present invention has excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る調整器の縦断面図である。 第2図は、複合型スプリングの変位−荷重特性曲線の一
例を示すものである。 1 弁箱 2 弁体 シート 弁体ガイド ダイヤフラム 調圧用スプリング スプリングケース 蓋体 ゲッター シャツ1−オフ弁 ダイヤフラム室 感圧室 流体圧 流体
FIG. 1 is a longitudinal sectional view of a regulator according to the invention. FIG. 2 shows an example of a displacement-load characteristic curve of a composite spring. 1 Valve box 2 Valve body seat Valve body guide diaphragm Spring spring case for pressure regulation Lid body Getter shirt 1-Off valve diaphragm chamber Pressure sensing chamber Fluid pressure fluid

Claims (3)

【特許請求の範囲】[Claims] (1)弁箱(1)にダイヤフラム室(A)と感圧室(B
)とを設け、前記ダイヤフラム室(A)内に設けたダイ
ヤフラム(5)に、流体圧(P)と設けた調圧用スプリ
ング(9)の弾性力とを加えるようにしたダイヤフラム
式調整器に於いて、前記調圧用スプリング(9)を、超
弾性特性を利用する形状記憶合金製のスプリングとする
と共に、前記感圧室(B)を真空の感圧室としたことを
特徴とする高精度調整器。
(1) Diaphragm chamber (A) and pressure sensitive chamber (B) in the valve box (1)
), and the diaphragm type regulator is configured to apply fluid pressure (P) and the elastic force of the provided pressure regulating spring (9) to the diaphragm (5) provided in the diaphragm chamber (A). The pressure adjustment spring (9) is a spring made of a shape memory alloy that utilizes superelastic properties, and the pressure sensitive chamber (B) is a vacuum pressure sensitive chamber. vessel.
(2)感圧室(B)を、真空槽内でシール部をビーム溶
接して成る真空の感圧室とした請求項(1)に記載の高
精度調整器。
(2) The high-precision regulator according to claim (1), wherein the pressure-sensitive chamber (B) is a vacuum pressure-sensitive chamber whose seal portion is beam-welded in a vacuum chamber.
(3)感圧室(B)内に、ビーム照射により加熱活性化
したゲッター(12)を配設した請求項(1)に記載の
高精度調整器。
(3) The high-precision regulator according to claim (1), wherein a getter (12) heated and activated by beam irradiation is disposed in the pressure sensitive chamber (B).
JP1020488A 1989-01-30 1989-01-30 High precision adjuster Expired - Fee Related JP2762094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020488A JP2762094B2 (en) 1989-01-30 1989-01-30 High precision adjuster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020488A JP2762094B2 (en) 1989-01-30 1989-01-30 High precision adjuster

Publications (2)

Publication Number Publication Date
JPH02201510A true JPH02201510A (en) 1990-08-09
JP2762094B2 JP2762094B2 (en) 1998-06-04

Family

ID=12028532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020488A Expired - Fee Related JP2762094B2 (en) 1989-01-30 1989-01-30 High precision adjuster

Country Status (1)

Country Link
JP (1) JP2762094B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634627A (en) * 1995-05-10 1997-06-03 Fujikin Incorporated Controller
CN110114536A (en) * 2016-12-28 2019-08-09 3伊弗洛股份制有限公司 Damp valve cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981917A (en) * 1972-12-11 1974-08-07
JPS5562331A (en) * 1978-11-06 1980-05-10 Hitachi Ltd Absolute pressure reference type pressure sensor
JPS59153216A (en) * 1983-02-22 1984-09-01 Matsushita Electric Ind Co Ltd Proportional control valve of gas
JPS61201417A (en) * 1985-03-04 1986-09-06 Nissin Electric Co Ltd Driving mechanism in vacuum container
JPS62192287A (en) * 1986-02-18 1987-08-22 Mazda Motor Corp Flange welding method by high energy beam
JPS6351037A (en) * 1986-08-20 1988-03-04 Toshiba Corp Anode chamber of electron beam device
JPS63146614U (en) * 1987-03-18 1988-09-27

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981917A (en) * 1972-12-11 1974-08-07
JPS5562331A (en) * 1978-11-06 1980-05-10 Hitachi Ltd Absolute pressure reference type pressure sensor
JPS59153216A (en) * 1983-02-22 1984-09-01 Matsushita Electric Ind Co Ltd Proportional control valve of gas
JPS61201417A (en) * 1985-03-04 1986-09-06 Nissin Electric Co Ltd Driving mechanism in vacuum container
JPS62192287A (en) * 1986-02-18 1987-08-22 Mazda Motor Corp Flange welding method by high energy beam
JPS6351037A (en) * 1986-08-20 1988-03-04 Toshiba Corp Anode chamber of electron beam device
JPS63146614U (en) * 1987-03-18 1988-09-27

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634627A (en) * 1995-05-10 1997-06-03 Fujikin Incorporated Controller
CN110114536A (en) * 2016-12-28 2019-08-09 3伊弗洛股份制有限公司 Damp valve cell
JP2020504878A (en) * 2016-12-28 2020-02-13 スリーイーフロー エービー Damping valve unit

Also Published As

Publication number Publication date
JP2762094B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2667114B2 (en) Decompression regulator for compressed natural gas
US6708712B2 (en) Pressure regulator utilizing a disc spring
US3900045A (en) Fulcrum pressure regulator
JPH0783338A (en) Controller
US5485884A (en) Hydride operated reversible temperature responsive actuator and device
TR27632A (en) Pressure control valve (valve) for high flow rates.
US3489165A (en) Inline pressure regulator
IE890615L (en) Droop compensated direct acting pressure regulator
US5063956A (en) Fluid delivery pressure control system
US5501247A (en) Pressure regulator with means to block relative rotation of parts during assembly
JPH02201510A (en) High precision regulator
TWI230233B (en) Pneumatic pressure regulator assembly
US5458001A (en) Gas pressure regulator, diaphragm assembly therefor and method of making same
US4084612A (en) Flow compensating pressure regulator
AU6387794A (en) Self-actuating control valve
US3665956A (en) Gas pressure regulator
US4773443A (en) Pressure reducer
US3068883A (en) Regulator
US4135697A (en) Low pressure pilot valve
JPH07310842A (en) Fine flow rate adjustment valve
JPH0781690A (en) Adjusting device with auxiliary steering device
GB1401614A (en) Pressure-reducing gas-flow regulator valves
JP2020056430A (en) Diaphragm valve and flow rate control device
US2583664A (en) Relief valve
GB2017870A (en) Pressure regulator for gas burners

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees