JPH02201409A - Rear focus type zoom lens - Google Patents

Rear focus type zoom lens

Info

Publication number
JPH02201409A
JPH02201409A JP2102789A JP2102789A JPH02201409A JP H02201409 A JPH02201409 A JP H02201409A JP 2102789 A JP2102789 A JP 2102789A JP 2102789 A JP2102789 A JP 2102789A JP H02201409 A JPH02201409 A JP H02201409A
Authority
JP
Japan
Prior art keywords
lens
group
focusing
negative
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2102789A
Other languages
Japanese (ja)
Other versions
JP2629935B2 (en
Inventor
Kotaro Yano
光太郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1021027A priority Critical patent/JP2629935B2/en
Publication of JPH02201409A publication Critical patent/JPH02201409A/en
Priority to US08/063,041 priority patent/US5289317A/en
Application granted granted Critical
Publication of JP2629935B2 publication Critical patent/JP2629935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To reduce aberration variation in focusing and to obtain high optical performance while reducing the size of a lens system on the whole by specifying three lens groups of a zoom lens when putting the zoom lens consisting of the three lens groups with specific refracting power in focus by moving the 3rd group. CONSTITUTION:The zoom lens has the 1st group I with negative refracting power, the 2nd group II with positive refracting power, and the 3rd group III with negative refracting power in order from the object side; and the three lens groups are moved to the object side to vary the power from the wide-angle end to the telephoto end and when the 3rd group III is moved for the focusing, the 3rd group III consists of a 31st positive lens and a 32nd negative lens. Then 1 < f31/¦f3¦ < 2, where f3 and f31 the focal lengths of the 3rd group and 31st lens. Consequently, the aberration variation in the focusing is small, the whole lens system is easily reduced in size, and the rear focus type zoom lens which has high optical performance suitable to, for example, a camera which has an automatic focusing device is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はリヤーフォーカス式のズームレンズに関し、特
に写真用カメラやビデオカメラ等の例えば自動焦点検出
装置を有したカメラに好適なフォーカスの際の収差変動
が少ないレンズ全長の短い良好なる光学性能を有したリ
ヤーフォーカス式のズームレンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rear focus type zoom lens, and particularly to a rear focus type zoom lens, which is suitable for focusing on cameras equipped with automatic focus detection devices, such as photographic cameras and video cameras. The present invention relates to a rear focus type zoom lens having good optical performance with a short overall lens length and little fluctuation in aberrations.

(従来の技術) 従来より写真用カメラやビデオカメラ等のズームレンズ
に右いては物体側の第1群以外のレンズ群を移動させて
フォーカスを行う、所謂リヤーフォーカス式を採用した
ものが、例えば特開昭58−91421号公報、特開昭
60−39613号公報等で提案、されている。
(Prior Art) Conventionally, zoom lenses for photographic cameras, video cameras, etc. have adopted the so-called rear focus system, in which focusing is performed by moving lens groups other than the first lens group on the object side. This method has been proposed in Japanese Patent Application Laid-open No. 58-91421, Japanese Patent Application Laid-open No. 60-39613, etc.

一般にリヤーフォーカス式は比較的小型軽量のレンズ群
を移動させているので、レンズ群の駆動力が小さくてす
み特に自動合焦を行う場合、迅速な焦点合わせが出来る
等の特長がある。
In general, the rear focus type uses a relatively small and lightweight lens group that moves, so the driving force for the lens group is small, and it has the advantage of being able to quickly focus, especially when performing automatic focusing.

又、物体側の第1群を移動させてフォーカスを行う、所
謂フロントフォーカス式に比べて物体側のレンズ群の有
効径が小さくなり、レンズ系全体の小型化が容易となる
等の特長がある。
Additionally, compared to the so-called front focus type, in which focusing is performed by moving the first lens group on the object side, the effective diameter of the lens group on the object side is smaller, making it easier to downsize the entire lens system. .

リヤーフォーカス式のズームレンズとして、先の特開昭
58−91421号公報では変倍系の一部のレンズ群を
利用してフォーカスを行っている。
As a rear focus type zoom lens, in the aforementioned Japanese Patent Laid-Open No. 58-91421, focusing is performed using a part of the lens group of a variable power system.

しかしながら同公報のズームレンズは全系で所謂レトロ
フォーカス型のレンズ構成となっている為、テレ比が比
較的大きくなり、レンズ系全体が大型化する傾向があっ
た。
However, since the entire zoom lens disclosed in this publication has a so-called retrofocus type lens configuration, the telephoto ratio tends to be relatively large and the entire lens system tends to be large.

又、特開昭60−39613号公報では変倍系中の3っ
のレンズ群を利用してフォーカスを行うと共に同一物体
の変倍に対するフォーカス用のレンズ群の繰り出し量の
差が少なくなるように構成している。
Further, in Japanese Patent Application Laid-open No. 60-39613, focusing is performed using three lens groups in a variable power system, and the difference in the amount of extension of the focusing lens group when changing the power of the same object is reduced. It consists of

しかしながら、これらの変倍系中の一部のレンズ群を利
用したリヤーフォーカス式のズームレンズはいずれも無
限遠物体から近距離物体までの物体距離全般にわたり、
フォーカスにおける収差変動が比較的大きくなる傾向が
ありた。特に球面収差、非点収差、そしてコマ収差の変
動が大きく、これらの諸収差を良好に補正するのが大変
困難であった。
However, all rear focus zoom lenses that utilize some of the lens groups in these variable magnification systems cover a wide range of object distances, from objects at infinity to objects at close range.
Aberration fluctuations in focus tended to be relatively large. In particular, fluctuations in spherical aberration, astigmatism, and coma aberration are large, and it is very difficult to properly correct these various aberrations.

(発明が解決しようとする問題点) 本発明はズームレンズを全体として所定の屈折力の3つ
のレンズ群より構成し、これら3つのレンズ群を全て移
動させて変倍を行うと共に変倍系の一部のレンズ群を移
動させてフォーカスを行う際の収差変動が少なく、かつ
レンズ系全体の小型化が容易で、例えば自動合焦装置を
有するカメラ等に好適な高い光学性能を有したリヤーフ
ォーカス式のズームレンズの提供を目的とする。
(Problems to be Solved by the Invention) The present invention comprises a zoom lens as a whole consisting of three lens groups having a predetermined refractive power, and all three lens groups are moved to change the magnification. A rear focus with high optical performance that has little aberration variation when focusing by moving some lens groups, and the entire lens system can be easily miniaturized, making it suitable for, for example, cameras with automatic focusing devices. The purpose is to provide a zoom lens of the following type.

(問題点を解決するための手段) 本発明のリヤーフォーカス式のズームレンズは、物体側
より順に負の屈折力の第1群、正の屈折力の第2群、そ
して負の屈折力の第3群の3つのレンズ群を有し、該3
つのレンズ群を物体側へ移動させて広角端から望遠端へ
の変倍を行うと共に、該第3群を移動させてフォーカス
を行う際、該第3群を正の第31レンズと負の第32レ
ンズより構成し、該第3群と該第31レンズの焦点距離
を各々f3.f31としたとき 1  <f31/|f3|<  2   ・・・・(1
)なる条件を満足することを特徴としている。
(Means for Solving the Problems) The rear focus type zoom lens of the present invention includes, in order from the object side, a first group having a negative refractive power, a second group having a positive refractive power, and a second group having a negative refractive power. It has three lens groups of three groups, and the three
When moving two lens groups toward the object side to change the magnification from the wide-angle end to the telephoto end, and when focusing by moving the third group, the third group is combined with the positive 31st lens and the negative 31st lens. It is composed of 32 lenses, and the focal lengths of the third group and the 31st lens are f3. When f31, 1 < f31/ | f3 | < 2 (1
) is characterized by satisfying the following conditions.

(実施例) 第1図は本発明の近軸屈折力配置を示す一実施例の模式
図である。第2図〜第5図は後述する数値実施例1〜4
のレンズ断面図である。
(Example) FIG. 1 is a schematic diagram of an example showing the paraxial power arrangement of the present invention. Figures 2 to 5 are numerical examples 1 to 4, which will be described later.
FIG. 3 is a sectional view of the lens.

図中、(A) 、 (B)は各々広角端と望遠端に右い
て無限遠物体にフォーカスしたとき、(C) 、 (D
)は各々広角端と望遠端に右いて近距離物体(例えば全
系の焦点距離の20倍程度の距111)にフォーカスし
たときの各レンズ群の位置を示している。
In the figure, (A) and (B) are right at the wide-angle end and telephoto end, respectively, and when focusing on an object at infinity, (C) and (D
) indicates the position of each lens group when focusing on a short-distance object (for example, a distance 111 that is approximately 20 times the focal length of the entire system) to the right of the wide-angle end and the telephoto end.

矢印は変倍若しくはフォーカスを行う際の各レンズ群の
移動方向を示す。工は負の屈折力の第1群、■は正の屈
折力の第2群、■は負の屈折力の第3群である。
Arrows indicate the moving direction of each lens group when changing magnification or focusing. Symbol 1 is the first group with negative refractive power, ■ is the second group with positive refractive power, and ■ is the third group with negative refractive power.

本実施例では広角端から望遠端への変倍に際して第1群
〜第3群の3つのレンズ群を全て物体側へ独立に移動さ
せている。又、変倍範囲の任意の位置において無限遠物
体から近距離物体へのフォーカスを負の屈折力の第3群
を像面側へ移動させて行っている。そして望遠端におい
ては同図(D)に示すように更に第3群■を像面側へ破
線で示す位置まで移動させて、これにより超近接撮影(
所謂マクロ撮影)を行うようにしている。
In this embodiment, all three lens groups, the first group to the third group, are independently moved toward the object side when changing the magnification from the wide-angle end to the telephoto end. Furthermore, focusing from an object at infinity to a near object at any position within the variable magnification range is achieved by moving the third group having negative refractive power toward the image plane. At the telephoto end, as shown in the same figure (D), the third group ■ is further moved toward the image plane to the position indicated by the broken line, which allows for ultra-close-up photography (
I try to do so-called macro photography.

又本実施例ではズームレンズを物体側より順に負、正、
そして負の屈折力の3つのレンズ群より構成し、広角端
から望遠端への変倍に際して各レンズ群を矢印の如く物
体側へ移動させている。そして広角端においてはレトロ
フォーカス型のレンズ構成となるようにし、望遠端にお
いては望遠型のレンズ構成となるようにし、広角端にお
いては広画角化な容易とし、望遠端においてはバックフ
ォーカスを短くすると共にレンズ全長の短縮化を効果的
に図っている。
In addition, in this embodiment, the zoom lens is set in order from the object side to negative, positive,
It is composed of three lens groups with negative refractive power, and each lens group is moved toward the object side as shown by the arrow when changing the magnification from the wide-angle end to the telephoto end. At the wide-angle end, the lens has a retrofocus type lens configuration, and at the telephoto end, it has a telephoto type lens configuration, making it easier to widen the angle of view at the wide-angle end, and shortening the back focus at the telephoto end. At the same time, the overall length of the lens is effectively shortened.

そして無限遠物体から近距離物体へのフォーカスを負の
屈折力の第3群を像面側へ移動させて行うように設定し
、バックフォーカス用の空間の有効利用を図っている。
The lens is set to focus from an object at infinity to an object at a short distance by moving the third group having negative refractive power toward the image plane, thereby making effective use of the back focus space.

この為、本発明は特にバックフォーカスの短いレンズシ
ャッターカメラにおいて撮影系の小型化を図るには非常
に有利になっている。
For this reason, the present invention is extremely advantageous in reducing the size of the photographing system, particularly in lens shutter cameras with short back focal lengths.

又、第1図(D)に示すように望遠端においては第3群
が広角端に比べて、より物体側に位置するように構成し
、広角端よりも像面側に大きく繰り込むことができるよ
うにして撮影倍率の大きい所謂超近接撮影が出来るよう
にしている。
In addition, as shown in Figure 1 (D), the third group is configured to be located closer to the object side at the telephoto end than at the wide-angle end, and can be moved more toward the image plane than at the wide-angle end. This makes it possible to perform so-called super close-up photography with a high magnification.

本実施例ではフォーカスを行う第3群を物体側より順に
正の第31レンズと負の第32レンズの2つのレンズで
構成し、特に広角端の至近距離において、負の第32レ
ンズに入射する軸外光線の入射高を低くすることにより
レンズ径の縮少化及び第3群の軽量化を図り、第3群で
フォーカスする際の駆動操作性を良くしている。
In this embodiment, the third group that performs focusing is composed of two lenses, a positive 31st lens and a negative 32nd lens, in order from the object side, and especially at close range at the wide-angle end, the light enters the negative 32nd lens. By lowering the incident height of off-axis rays, the lens diameter can be reduced and the weight of the third group can be reduced, thereby improving drive operability when focusing with the third group.

次に前述の条件式(1)の技術的意味について説明する
。条件式(1)は第3群と該第3群中の正の第31レン
ズの屈折力比に関するものである。
Next, the technical meaning of the above-mentioned conditional expression (1) will be explained. Conditional expression (1) relates to the refractive power ratio of the third group and the positive 31st lens in the third group.

リヤーフォーカス式のズームレンズにおいては一般に広
角端での非点収差及び望遠端での球面収差のフォーカス
の際の収差変動が大きく、これらの諸収差を良好に補正
するのが困難となってくる。
In a rear focus type zoom lens, there are generally large aberration fluctuations during focusing, such as astigmatism at the wide-angle end and spherical aberration at the telephoto end, making it difficult to satisfactorily correct these various aberrations.

即ち、物体距離が無限遠から近距離になるに従い、広角
端での非点収差はアンダーに、望遠端での球面収差はア
ンダーになる傾向がある。第3群の正レンズはフォーカ
ス時に広角端で非点収差をアンダーに、望遠端で球面収
差をオーバーにする作用がある。
That is, as the object distance becomes short from infinity, astigmatism at the wide-angle end tends to become undervalued, and spherical aberration at the telephoto end tends to become undervalued. The positive lens in the third group has the effect of under-reducing astigmatism at the wide-angle end and over-setting spherical aberration at the telephoto end during focusing.

条件式(1)はこのときの第3群中の正の第31レンズ
の屈折力を適切に設定し、これらの諸収差のフォーカス
の際の収差変動をバランス良く補正するためのものであ
る。
Conditional expression (1) is used to appropriately set the refractive power of the positive 31st lens in the third group and to correct the aberration fluctuations during focusing of these various aberrations in a well-balanced manner.

条件式(1)の上限値を越えて正の第31レンズの焦点
距離が大きくなると、望遠端での球面収差の補正作用が
弱くなり、至近距離で球面収差がアンダーになり、その
補正が困難となる。条件式(1)の下限値を越えて正の
第31レンズの焦点距離が小さくなると広角端での非点
収差の変動がよりアンダーになりその補正が困難となる
When the focal length of the positive 31st lens exceeds the upper limit of conditional expression (1), the effect of correcting spherical aberration at the telephoto end becomes weaker, and the spherical aberration becomes undervalued at close range, making it difficult to correct it. becomes. If the lower limit of conditional expression (1) is exceeded and the focal length of the positive 31st lens becomes small, the fluctuation of astigmatism at the wide-angle end becomes even smaller, making it difficult to correct it.

本発明は以上の諸条件を満足させることにより、フォー
カスの際の収差変動が少ない高い光学性能を有した小型
のリヤーフォーカス方式のズームレンズを達成するもの
であるが、更に全変倍範囲及びフォーカス範囲にわたり
コンパクトで高い光学性能を得るには次の諸条件を満足
させるのが良い。
By satisfying the above-mentioned conditions, the present invention achieves a compact rear focus type zoom lens with high optical performance with little aberration fluctuation during focusing. In order to obtain compact and high optical performance over a wide range, the following conditions should be satisfied.

前記第31レンズと第32レンズの材質の屈折率を各々
N31.N32、該第3群の物体側から数えて第1番目
のレンズ面の曲率半径をR111iとするとき N31   <   N32           ・
・・・・・・・ (2)1   <   Rm2/RI
II3   <   2゜(RI[I2<O,RI[I
3<0)  ・・・・・・(3)なる条件を満足するこ
とである。
The refractive index of the material of the 31st lens and the 32nd lens is N31. N32, when the radius of curvature of the first lens surface counting from the object side of the third group is R111i, N31 < N32 ・
...... (2) 1 < Rm2/RI
II3 <2゜(RI[I2<O, RI[I
3<0)...The following condition (3) must be satisfied.

条件式(2)は第3群の正の第31レンズと負の第32
レンズの材料の屈折率に関し、第3群が負の屈折力を存
するため条件式(2)を外れて正レンズの材料の屈折率
が負レンズの材料の屈折率に比べ大きくなると第3群の
ペッツバール和が負の方向に大きな値となるため像面特
性が悪くなる。
Conditional expression (2) is based on the positive 31st lens and the negative 32nd lens in the third group.
Regarding the refractive index of the material of the lens, since the third group has negative refractive power, if conditional expression (2) is violated and the refractive index of the material of the positive lens becomes larger than that of the material of the negative lens, the refractive index of the third group Since the Petzval sum becomes large in the negative direction, the image surface characteristics deteriorate.

従って条件式(2)を外れると全変倍範囲及びフォーカ
ス範囲にわたり像面特性を良好に補正するのが困難にな
フてくる。
Therefore, if conditional expression (2) is not satisfied, it becomes difficult to satisfactorily correct the image plane characteristics over the entire magnification range and focus range.

条°件式(3)は第3群中の正の第31レンズの像面側
のレンズ面と負の第32レンズの物体側のレンズ面の曲
率半径の比に関するものである。
Conditional expression (3) relates to the ratio of the radius of curvature of the image plane side lens surface of the positive 31st lens in the third group to the object side lens surface of the negative 32nd lens.

第3群の負の第32レンズの物体側のレンズ面を凸面(
即ちRIII3>O)とすると、第32レンズの像面側
のレンズ面は強い凹面になり広角端で歪面収差が大きく
発生するので本実施例では負の第32レンズの物体側の
レンズ面を凸面(即ちRm3<O)としている。そして
この時、負の第32レンズの物体側のレンズ面で望遠端
で球面収差が発生するのでこれを良好に補正するため、
正の第31レンズの像面側のレンズ面を凸面(即ちRm
2<O)としている。
The object-side lens surface of the negative 32nd lens in the third group is a convex surface (
In other words, if RIII3>O), the lens surface on the image side of the 32nd lens becomes a strongly concave surface and large distortion aberration occurs at the wide-angle end.In this example, the lens surface on the object side of the negative 32nd lens is The surface is convex (ie, Rm3<O). At this time, spherical aberration occurs at the telephoto end on the object side lens surface of the negative 32nd lens, so in order to properly correct this,
The lens surface on the image plane side of the positive 31st lens is a convex surface (that is, Rm
2<O).

又正の第31レンズの像面側のレンズ面は、物体距離が
無限遠から近距離になるに従い、望遠端での球面収差を
オーバーに補正する作用があり、負の第32レンズの物
体側のレンズ面は広角端での非点収差をオーバーに補正
する作用がある。
In addition, the lens surface on the image side of the positive 31st lens has the effect of over-correcting spherical aberration at the telephoto end as the object distance becomes closer from infinity, and the lens surface on the object side of the negative 32nd lens The lens surface has the effect of over-correcting astigmatism at the wide-angle end.

条件式(3)はこのような点を勘案されて特定されたも
のである。条件式(3)の上限値を越えて正の第31レ
ンズの像面側のレンズ面の曲率が負の第32レンズの物
体側のレンズ面の曲率に比べてゆるくなると望遠端での
球面収差の変動が大きくなり、至近距離で大きくアンダ
ーとなりその補正が困難となる。逆に条件式(3)の下
限値を越えて負の第32レンズの物体側のレンズ面の曲
率が正の第31レンズの像面側のレンズ面の曲率に比べ
てゆるくなると広角端での非点収差の変動が大きくなり
、至近距離で大きくアンダーとなるのでその補正が困難
になってくる。
Conditional expression (3) was specified taking such points into consideration. If the upper limit of conditional expression (3) is exceeded and the curvature of the image-side lens surface of the positive 31st lens becomes gentler than the curvature of the object-side lens surface of the negative 32nd lens, spherical aberration will occur at the telephoto end. The fluctuation of the image becomes large, resulting in a large undershoot at close range, which becomes difficult to correct. Conversely, if the lower limit of conditional expression (3) is exceeded and the curvature of the object-side lens surface of the negative 32nd lens becomes gentler than the curvature of the image-side lens surface of the positive 31st lens, the Astigmatism fluctuates greatly and becomes significantly under-represented at close distances, making it difficult to correct it.

又本実施例においてレンズ系全体の小型化を図りつつ、
変倍に伴う収差変動を更に良好に補正するには物体側よ
り順に第1群を負レンズと正レンズの2つのレンズを有
するように構成し、第2群を2つの正レンズ、負レンズ
、そして正レンズの4つのレンズを有するように構成す
るのが良い。
In addition, in this embodiment, while trying to downsize the entire lens system,
In order to better correct aberration fluctuations caused by zooming, the first group is configured to have two lenses, a negative lens and a positive lens, in order from the object side, and the second group is configured to have two positive lenses, a negative lens, and a negative lens. It is preferable to configure it so that it has four positive lenses.

次に本発明の数値実施例を示す。数値実施例においてR
iは物体側より順に第i番目のレンズ面の曲率半径、D
iは物体側より第i番目のレンズ厚及び空気間隔、Ni
とυiは各々物体側より順に第i番目のレンズのガラス
の屈折率とアツベ数である。可変間隔013の()外は
無限遠物体、()内は物体距lll11mにあける値で
ある。
Next, numerical examples of the present invention will be shown. In numerical examples R
i is the radius of curvature of the i-th lens surface in order from the object side, D
i is the i-th lens thickness and air distance from the object side, Ni
and υi are the refractive index and Abbe number of the glass of the i-th lens, respectively, in order from the object side. The value outside () of the variable interval 013 is an object at an infinite distance, and the value inside () is a value for an object distance lll11m.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、
光の進行方向を正としRを近軸曲率半径、aI +  
2 + ”・、a6を各々非球面係数としたとき +  a411’  +  a5H10なる式で表わし
ている。
The aspherical shape has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis,
The traveling direction of light is positive, R is the paraxial radius of curvature, aI +
It is expressed by the formula + a411' + a5H10, where 2 + ''· and a6 are respectively aspherical coefficients.

又、例えばre−03」の表示はNO−’Jを意味して
いる。
Further, for example, the display "re-03" means NO-'J.

数値実施例I F−28,8 〜78 RI−−84,53 It 2− 18.21 113− 21.31 R4−150,23 R5−39,85 It 6−−51.65 R71−目、63 R11−8638,77 It 9−−41.74 10− 15.67 旧1− 29.07 812−−21.54 Ri3−  絞り 旧4−−83.44 R15−−19,54 旧6−−13.04 R17−1897,07 FNo=1:3.5    2ω−73,8° 〜:1
1.00〜8.24 D  I−1,50 02−2,17 03−4,58 D4・可変 D  5− 3.04 D 6−0.15 D7暉3.25 08−0.57 09−5.00 0 O−0,45 D  I−3,32 02麿 !、00 013暑可変 D 4−3.83 05−3.19 016− 1.5O N  I−1,77250ν 1−49.6N  2−
1.68893  ν 2−31.1N  3−1.4
9831  ν 3−65.ON 4−1.57250
  ν 4−57.8N 5−1.805+8  ν 
5−25.4N 6−164769  ν 6−33.
8N 7”1.58500  v  7−29.3N 
8=1.77250  v  8−49.6非球面:R
15 a、=O a 、=  −1,060−05 a 、=  −1,680−07 R4=   1.570−09 8 g  = −1,330−11 f31  / If31  =  1.40Rn12 
 / 8m3  =  1.5数値実施例2 F曽28.8 〜78 R1會 −71,65 R3讃 R4會 R7噛 18.30 22.20 17+、88 49.94 −43.75 トL25 FNo=1:3.6    26)−73,8° 〜3
1.0’〜8.8 1−1.70   N  1m1.77250  v 
 1−49.62− 2.65 3− 4.64   N  2−1.68893  ν
 2−31.14・可変 5−3.00  N 3−1.51633 v  3−
64.16麿 0.15 7−3.08  N 4−1.56384 ν 4−6
0.7R8纏 235.18 R9−−46,18 1110−15,53 R11曽  26.56 RI2■ −2:1.33 旧3− 絞り RI4暉 −39,19 R15票−17,18 ft+6−−12.98 RI7−146.58 D  8− 0.45 0 9− 5.03 010− 0.31 Dll−:1.30 01201.00 D131−可変 D14−3.16 D15−3.71 016自1.5O N  5−1.80518  ν 5−25.4N  
6−1.68680  ν B−33,ON  7=1
.58500  v  7s29.3N  8−1.7
7250  ν 8雪49.6非球面: 2.34D−07 −1,070−07 1,780−09 −1,580−11 +31  / 1f31  =  1.57Rm2  
/ 8m3  =  1.32数値実施例3 F−28,8 〜81.6 R1−−83,96 R2−20,24 R3−25,12 R4−180,77 R5−34,03 R6−−79,83 87−16,19 R8−430,50 R9−−49,84 旧1■  14.22 R11−17,59 R12−−22,50 R13−絞り R14■−45,28 815−−18,91 R16−−12,77 817−540,53 73,8’  〜29.7’ FNolll:3.4     2ω−〜8.24 D  I−1,70N  l−1,77250υD  
2− 3.04 D  3− 4.75 D4・可変 D  5− 3.44 D 6−0.15 D  7− 4.63 D 8−0.49 D 9−5.00 01G−0,28 Dll−3,77 012−1,00 013−可変 D14− 3.23 015−4.06 D16■ 1.5O N 8厘1.71299  ν N 6讃1.58500  υ N 5鴫1.84666 1 N  7−1.58500  υ N  4−1.66384  ν N 2障1.69895  ν N 3曝1.51633  ν 1−49.6 2嘩30.1 非球面:R12 非球面: 3虐64.1 4−60゜7 5−23.9 al =  O R2=   7.570−06 83 =   1.330−08 a 4 =  −3,820−10 a m  =  −2,990−11 f31  / 1f31 =  1.75RIII2 
78m3  =  1.48−9.62D−06 −1,460−07 4,570−10 −6,220−12 6−29,3 数値実施例4 7−29.3 8−53.8 〜102 Rl−−55,52 12−20,98 13−23,04 84−778813,68 R5−33,41 R6−119,99 Jl  7−  17.10 FNo=l:3.5    2(1)−62,0° 〜
24.0’〜8.24 D  I−1,50N  1−1.71299  ν 
t−R3,′82會 1.35 3− 4.20 4・可変 5−2.42 6鳳 O,tS 7− 4.35 N  2−1.64769  ν 2−33.8N  
3−1.51633  v  3−64.1N  4−
1.56384  ν 4−60.7R8−199,6
4 R9−−65,04 RIO−16,03 R11−28,+8 RI2− −34.44 813−  絞り R4−−86,76 RI5−−19.83 R16寓−13,97 R17−1037,24 非球面: D  8− 0.25 0 9− 5.05 D O自 0.55 Dll−3,77 012−1,00 D3・可変 04〜3.39 D5〜3.06 D  6− 1.5O N  5−1.80518 N  6−1.84769 N  7−1.5850O N  8−1.71299 −1.190−05 −5.05D−09 −5,950−10 −1,310−12 +31  / 1f31 冨 1.118m2  / 
Rm3  =  1.42ν 5禦25.4 v  6−33.8 ν 7−29.3 v  8−53.8 (発明の効果) 本発明によれば所定の屈折力の3つのレンズ群より成る
ズームレンズにおいて第3群を移動させてフォーカスす
る際、各レンズ群を前述の如く設定することによりフォ
ーカスの際の収差変動が少なく、レンズ系全体の小型化
を図った高い光学性能を有するリヤーフォーカス式のズ
ームレンズを達成することができる。
Numerical Example I F-28,8 to 78 RI--84,53 It 2- 18.21 113- 21.31 R4-150,23 R5-39,85 It 6--51.65 R71-th, 63 R11-8638,77 It 9--41.74 10- 15.67 Old 1- 29.07 812--21.54 Ri3- Aperture old 4--83.44 R15--19,54 Old 6--13 .04 R17-1897,07 FNo=1:3.5 2ω-73,8° ~:1
1.00~8.24 DI-1,50 02-2,17 03-4,58 D4/Variable D 5- 3.04 D 6-0.15 D7 3.25 08-0.57 09- 5.00 0 O-0,45 DI-3,32 02 Maro! , 00 013 Heat variable D 4-3.83 05-3.19 016- 1.5O N I-1,77250ν 1-49.6N 2-
1.68893 ν 2-31.1N 3-1.4
9831 ν 3-65. ON 4-1.57250
ν 4-57.8N 5-1.805+8 ν
5-25.4N 6-164769 ν 6-33.
8N 7”1.58500 v 7-29.3N
8=1.77250 v 8-49.6 Aspherical surface: R
15 a, = O a , = -1,060-05 a , = -1,680-07 R4 = 1.570-09 8 g = -1,330-11 f31 / If31 = 1.40Rn12
/ 8m3 = 1.5 Numerical Example 2 Fso 28.8 ~ 78 R1 Kai -71,65 R3 San R4 Kai R7 Kai 18.30 22.20 17+, 88 49.94 -43.75 To L25 FNo=1 :3.6 26) -73,8° ~3
1.0'~8.8 1-1.70 N 1m1.77250v
1-49.62- 2.65 3- 4.64 N 2-1.68893 ν
2-31.14・Variable 5-3.00 N 3-1.51633 v 3-
64.16 Maro 0.15 7-3.08 N 4-1.56384 ν 4-6
0.7R8 235.18 R9--46,18 1110-15,53 R11 So 26.56 RI2 -2:1.33 Old 3- Aperture RI4 -39,19 R15 vote -17,18 ft+6-- 12.98 RI7-146.58 D 8- 0.45 0 9- 5.03 010- 0.31 Dll-: 1.30 01201.00 D131-Variable D14-3.16 D15-3.71 016 Self 1 .5O N 5-1.80518 ν 5-25.4N
6-1.68680 ν B-33, ON 7=1
.. 58500 v 7s29.3N 8-1.7
7250 ν 8 Snow 49.6 Aspherical surface: 2.34D-07 -1,070-07 1,780-09 -1,580-11 +31 / 1f31 = 1.57Rm2
/ 8m3 = 1.32 Numerical Example 3 F-28,8 ~ 81.6 R1--83,96 R2-20,24 R3-25,12 R4-180,77 R5-34,03 R6--79, 83 87-16,19 R8-430,50 R9--49,84 Old 1■ 14.22 R11-17,59 R12--22,50 R13-Aperture R14■-45,28 815--18,91 R16 --12,77 817-540,53 73,8' ~ 29.7' FNoll: 3.4 2ω- ~ 8.24 D I-1,70N l-1,77250υD
2- 3.04 D 3- 4.75 D4/Variable D 5- 3.44 D 6-0.15 D 7- 4.63 D 8-0.49 D 9-5.00 01G-0,28 Dll -3,77 012-1,00 013-Variable D14- 3.23 015-4.06 D16■ 1.5O N 8 1.71299 ν N 6 1.58500 υ N 5 1.84666 1 N 7 -1.58500 υ N 4-1.66384 ν N 2 1.69895 ν N 3 Exposure 1.51633 ν 1-49.6 2 30.1 Aspheric: R12 Aspheric: 3 64.1 4- 60゜7 5-23.9 al = O R2 = 7.570-06 83 = 1.330-08 a 4 = -3,820-10 a m = -2,990-11 f31 / 1f31 = 1.75RIII2
78m3 = 1.48-9.62D-06 -1,460-07 4,570-10 -6,220-12 6-29,3 Numerical Example 4 7-29.3 8-53.8 ~102 Rl --55,52 12-20,98 13-23,04 84-778813,68 R5-33,41 R6-119,99 Jl 7- 17.10 FNo=l:3.5 2(1)-62, 0° ~
24.0'~8.24 D I-1,50N 1-1.71299 ν
t-R3, '82 meeting 1.35 3- 4.20 4.Variable 5-2.42 6 O,tS 7- 4.35 N 2-1.64769 ν 2-33.8N
3-1.51633 v 3-64.1N 4-
1.56384 ν 4-60.7R8-199,6
4 R9--65,04 RIO-16,03 R11-28,+8 RI2--34.44 813- Aperture R4--86,76 RI5--19.83 R16-13,97 R17-1037,24 Non Spherical surface: D 8- 0.25 0 9- 5.05 DO 0.55 Dll-3,77 012-1,00 D3・Variable 04-3.39 D5-3.06 D 6- 1.5O N 5-1.80518 N 6-1.84769 N 7-1.5850O N 8-1.71299 -1.190-05 -5.05D-09 -5,950-10 -1,310-12 +31 / 1f31 Fuji 1.118m2 /
Rm3 = 1.42 ν 5 25.4 v 6-33.8 ν 7-29.3 v 8-53.8 (Effect of the invention) According to the present invention, a zoom consisting of three lens groups with predetermined refractive powers When focusing by moving the third group of the lens, by setting each lens group as described above, there is less aberration variation during focusing, and the rear focus type has high optical performance with a miniaturized overall lens system. can be achieved with a zoom lens.

又望遠端において超近接撮影が容易に行える等の特長を
有したリヤーフォーカス式のズームレンズを達成するこ
とができる。
Furthermore, it is possible to achieve a rear focus type zoom lens having features such as the ability to easily perform extremely close-up photography at the telephoto end.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の近軸屈折力配置を示す一実施例の模式
図、第2図〜第5図は本発明の数値実施例1〜4のレン
ズ断面図、第6図〜第9図は本発明の数値実施例1〜4
の諸収差図である。レンズ断面図と収差図において(A
) 、 (B)は無限遠物体にフォーカスしたときの広
角端と望遠端、(C) 、 (D)は物体比11t 1
 mのときの広角端と望遠端を各々示している。 図中、r、n、mは順に第1.第2.第3群、矢印はレ
ンズ群の変倍若しくはフォーカスの際の移動方向、収差
図においてdはd線、gはg線、ΔMはメリディオナル
像面、ΔSはサジタル像面を示す。
FIG. 1 is a schematic diagram of an embodiment showing the paraxial refractive power arrangement of the present invention, FIGS. 2 to 5 are cross-sectional views of lenses of numerical embodiments 1 to 4 of the present invention, and FIGS. 6 to 9 are numerical examples 1 to 4 of the present invention
It is a diagram of various aberrations. In the lens cross-sectional view and aberration diagram (A
), (B) are wide-angle end and telephoto end when focusing on an object at infinity, (C) and (D) are object ratio 11t 1
The wide-angle end and telephoto end at m are shown, respectively. In the figure, r, n, m are numbered in order. Second. In the third group, arrows indicate the moving direction of the lens group during zooming or focusing, d indicates the d-line, g indicates the g-line, ΔM indicates the meridional image plane, and ΔS indicates the sagittal image plane.

Claims (3)

【特許請求の範囲】[Claims] (1)物体側より順に負の屈折力の第1群、正の屈折力
の第2群、そして負の屈折力の第3群の3つのレンズ群
を有し、該3つのレンズ群を物体側へ移動させて広角端
から望遠端への変倍を行うと共に、該第3群を移動させ
てフォーカスを行う際、該第3群を正の第31レンズと
負の第32レンズより構成し、該第3群と該第31レン
ズの焦点距離を各々f3、f31としたとき 1<f31/|f3|<2 なる条件を満足することを特徴とするリヤーフォーカス
式のズームレンズ。
(1) It has three lens groups in order from the object side: a first group with negative refractive power, a second group with positive refractive power, and a third group with negative refractive power, and these three lens groups are connected to the object. When the lens is moved to the side to change the magnification from the wide-angle end to the telephoto end, and the third group is moved to focus, the third group is composed of a positive 31st lens and a negative 32nd lens. , where the focal lengths of the third group and the 31st lens are f3 and f31, respectively, and the following condition is satisfied: 1<f31/|f3|<2.
(2)前記第31レンズと第32レンズの材質の屈折率
を各々N31、N32、該第3群の物体側から数えて第
i番目のレンズ面の曲率半径をRIIIiとするとき N31<N32 1<RIII2/RIII3<2、 (RIII2<0、RIII3<0) なる条件を満足することを特徴とする請求項1記載のリ
ヤーフォーカス式のズームレンズ。
(2) When the refractive index of the material of the 31st lens and the 32nd lens is N31 and N32, respectively, and the radius of curvature of the i-th lens surface counting from the object side of the third group is RIIIi, N31<N32 1 2. The rear focus type zoom lens according to claim 1, which satisfies the following conditions: <RIII2/RIII3<2, (RIII2<0, RIII3<0).
(3)望遠端において前記第3群を移動させて超近接撮
影が行なえるように構成したことを特徴とする請求項1
記載のリヤーフォーカス式のズームレンズ。
(3) Claim 1 characterized in that the third group is moved at the telephoto end to enable extremely close-up photography.
The rear focus zoom lens described.
JP1021027A 1989-01-06 1989-01-31 Rear focus zoom lens Expired - Fee Related JP2629935B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1021027A JP2629935B2 (en) 1989-01-31 1989-01-31 Rear focus zoom lens
US08/063,041 US5289317A (en) 1989-01-06 1993-05-19 Compact zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021027A JP2629935B2 (en) 1989-01-31 1989-01-31 Rear focus zoom lens

Publications (2)

Publication Number Publication Date
JPH02201409A true JPH02201409A (en) 1990-08-09
JP2629935B2 JP2629935B2 (en) 1997-07-16

Family

ID=12043524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021027A Expired - Fee Related JP2629935B2 (en) 1989-01-06 1989-01-31 Rear focus zoom lens

Country Status (1)

Country Link
JP (1) JP2629935B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160715A (en) * 1992-11-19 1994-06-07 Canon Inc Miniature zoom lens
JPH07218838A (en) * 1993-12-09 1995-08-18 Asahi Optical Co Ltd Variable power optical system for copying
US5455714A (en) * 1992-09-01 1995-10-03 Minolta Co. Ltd. Zoom lens system
US5483380A (en) * 1992-10-26 1996-01-09 Olympus Optical Co., Ltd. Compact zoom lens system having high zoom ratio and wide view angle
US5539582A (en) * 1991-12-09 1996-07-23 Minolta Co., Ltd. Zoom lens system
US5764421A (en) * 1992-11-20 1998-06-09 Olympus Optical Co., Ltd. Zoom lens system having minimal aberration fluctuation at short object distance
EP0996030A2 (en) * 1998-10-22 2000-04-26 Canon Kabushiki Kaisha Camera and lens system for a camera movable between usage and stowage position

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271214A (en) * 1987-04-28 1988-11-09 Canon Inc Miniature zoom lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271214A (en) * 1987-04-28 1988-11-09 Canon Inc Miniature zoom lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539582A (en) * 1991-12-09 1996-07-23 Minolta Co., Ltd. Zoom lens system
US5455714A (en) * 1992-09-01 1995-10-03 Minolta Co. Ltd. Zoom lens system
US5483380A (en) * 1992-10-26 1996-01-09 Olympus Optical Co., Ltd. Compact zoom lens system having high zoom ratio and wide view angle
JPH06160715A (en) * 1992-11-19 1994-06-07 Canon Inc Miniature zoom lens
US5764421A (en) * 1992-11-20 1998-06-09 Olympus Optical Co., Ltd. Zoom lens system having minimal aberration fluctuation at short object distance
JPH07218838A (en) * 1993-12-09 1995-08-18 Asahi Optical Co Ltd Variable power optical system for copying
EP0996030A2 (en) * 1998-10-22 2000-04-26 Canon Kabushiki Kaisha Camera and lens system for a camera movable between usage and stowage position
EP0996030B1 (en) * 1998-10-22 2008-12-03 Canon Kabushiki Kaisha Camera and lens system for a camera movable between usage and stowage position

Also Published As

Publication number Publication date
JP2629935B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US7961409B2 (en) Zoom lens system, optical apparatus, and method for zooming
US8908283B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
US7551367B2 (en) Wide-angle lens, optical apparatus and method for focusing
US7492524B2 (en) Zoom lens system, imaging apparatus, method for vibration reduction, and method for varying focal length
US20060215279A1 (en) Zoom lens system
US7599123B2 (en) Zoom lens system, imaging apparatus and method for varying focal length
US7274519B2 (en) Zoom lens system
JP5017899B2 (en) Zoom lens, imaging device, zooming method
JP3033136B2 (en) Compact zoom lens
JP3033141B2 (en) Compact zoom lens
JP3033137B2 (en) Compact zoom lens
JP2002287031A (en) Zoom lens and optical equipment using the same
JPS61213817A (en) Zoom finder
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JP4902179B2 (en) Zoom lens and imaging apparatus having the same
JPH0843737A (en) Zoom lens
JPH0627377A (en) Zoom lens
US7920341B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
JP3033138B2 (en) Compact zoom lens
JP4624744B2 (en) Wide angle zoom lens
JPH0667092A (en) Zoom lens
JP3184581B2 (en) Zoom lens
JPH1031155A (en) Zoom lens
JP3301815B2 (en) Zoom lens
JP4153710B2 (en) 3 group zoom optical system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees