JPH02200797A - Production of organic thin film - Google Patents

Production of organic thin film

Info

Publication number
JPH02200797A
JPH02200797A JP1765989A JP1765989A JPH02200797A JP H02200797 A JPH02200797 A JP H02200797A JP 1765989 A JP1765989 A JP 1765989A JP 1765989 A JP1765989 A JP 1765989A JP H02200797 A JPH02200797 A JP H02200797A
Authority
JP
Japan
Prior art keywords
thin film
micelle
solution
substance
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1765989A
Other languages
Japanese (ja)
Other versions
JPH068515B2 (en
Inventor
Seiichiro Yokoyama
横山 清一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP1765989A priority Critical patent/JPH068515B2/en
Publication of JPH02200797A publication Critical patent/JPH02200797A/en
Publication of JPH068515B2 publication Critical patent/JPH068515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin film of a hydrophobic org. substance in a molecularly dispersed state by mixing a soln. of the hydrophobic org. substance in a nonaq. solvent with an aq. medium and a ferrocene deriv. as a micelle forming agent and supplying electric current to form a thin film of the hydrophobic org. substance on an electrode. CONSTITUTION:A ferrocene deriv. as a micelle forming agent is put in an aq. medium such as water to prepare a micelle soln. having about 0.5-5mM concn. of the micelle forming agent. A hydrophobic org. substance such as porphyrin is dissolved in a nonaq. solvent such as ethanol to proper concn. The micelle soln. is mixed with the resulting soln. of the hydrophobic org. substance and electric current is supplied to the mixed soln. at about 0-70 deg.C and about 0.03-1.5V voltage for about 30min-2hr to form a thin film of the hydrophobic org. substance on an electrode. The hydrophobic org. substance forms the thin film in a molecularly dispersed state and the thin film is useful as the material of an optical disk, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機薄膜の製造方法に関し、詳し7くは特定の
ミセル化剤を用い、また、非水溶媒と水性媒体との混合
液を用いると共に、電気化学的手法を講じることによっ
て、光メモリー材料、感光材料をはじめ電子材料、コー
ティング材料等に利用しうる有機薄膜を効率よく製造す
る方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an organic thin film, and more particularly, it uses a specific micellar agent and a mixture of a non-aqueous solvent and an aqueous medium. The present invention also relates to a method for efficiently producing organic thin films that can be used for optical memory materials, photosensitive materials, electronic materials, coating materials, etc. by using electrochemical techniques.

〔従来の技術及び発明が解決しよ・)とする課題〕近年
、有機薄膜の形成技術については、様々な手法が開発さ
れており、フタロシアニンあるいはその誘導体等の色素
をはじめとする疎水性の有機物質については、一般に真
空蒸着法、熱CVD法。
[Problems to be solved by conventional techniques and inventions] In recent years, various methods have been developed for forming organic thin films. For materials, vacuum evaporation methods and thermal CVD methods are generally used.

プラズマCVD法、超高真空(イオンビーム、分子線エ
ピタキシー)法、LB法、キャスト法などによって薄膜
化されている。さらに最近では、所謂ミセル電解法なる
薄膜形成技術が開発されるに至り(特開昭63−243
298号公報参照)、上述した疎水性の有機物質の薄膜
化が容易になると同時に、薄膜の均質化、y4肉化等が
一段と改善され、高品質の薄膜を形成することが可能と
なっている。このミセル電解法は、疎水性の有機物質の
一次粒子あるいは二次粒子の形状を保持したまま製膜で
きる点に特徴がある。
The thin film is made by a plasma CVD method, an ultra-high vacuum (ion beam, molecular beam epitaxy) method, an LB method, a casting method, or the like. More recently, a thin film forming technology called micelle electrolysis has been developed (Japanese Patent Application Laid-Open No. 63-243).
(Refer to Publication No. 298), it has become easier to form a thin film of the above-mentioned hydrophobic organic substance, and at the same time, the homogenization of the thin film, the Y4 thickness, etc. have been further improved, and it has become possible to form a high-quality thin film. . This micelle electrolysis method is characterized in that it can form a film while maintaining the shape of the primary particles or secondary particles of a hydrophobic organic substance.

し2かし、上述したミセル電解法は、−成粒子や二次粒
子の形状を保持したまま製膜できるものの、分子状に分
散させた状態の薄膜杏形成することはできなかった。
However, although the above-mentioned micelle electrolysis method can form a film while maintaining the shape of the primary particles and secondary particles, it has not been possible to form a thin film in which the particles are dispersed in molecular form.

そこで、本発明者は上記ミセル電解法ではなし得なかっ
た分子状に分散した薄膜を形成する方法を開発すべく鋭
意研究を重ねた。
Therefore, the inventors of the present invention conducted extensive research in order to develop a method for forming a thin film in which molecules are dispersed, which could not be achieved using the micelle electrolysis method described above.

その結果、従来のミセル溶液に疎水性有機物質を分散1
可溶化させる代わりに、非水溶媒C,7疎水性有機物質
を溶解させ、その溶液をミセル化剤及び水性媒体と混合
させたものを通電処理するごとによって、所期の1・]
的が達成できることを見出した。本発明はかかる知見に
基いて完成りまたものである。
As a result, a hydrophobic organic substance was dispersed in a conventional micelle solution.
Instead of solubilizing, the non-aqueous solvent C,7 hydrophobic organic substance is dissolved, and the solution is mixed with a micellar agent and an aqueous medium, and each time the mixture is subjected to electrical treatment, the desired 1.]
We found that the target can be achieved. The present invention was completed based on this knowledge.

〔課題を解決するための手段〕[Means to solve the problem]

すなわら、本発明は(a)疎水性有機物質をJ[水溶媒
に溶解させた溶液、 (1,、)水性媒体及び(c) 
−,7−zロセン誘導体よりなるミセル化剤を混合し、
得られる混合液を通電処理して電穫上に前記疎水性有機
物質の薄膜を形成″4ることを特徴とする有機薄膜の製
造方法を捷供するものである。
That is, the present invention provides (a) a solution of a hydrophobic organic substance dissolved in an aqueous solvent, (1,,) an aqueous medium, and (c)
-, mixing a micellar agent consisting of a 7-z locene derivative,
The present invention provides a method for producing an organic thin film, characterized in that the resulting mixed solution is subjected to electrical current treatment to form a thin film of the hydrophobic organic substance on an electrolyte.

本発明の方法に用いる疎水性有機物質は、様々なもの壱
あげることができるが12例えばペリレン。
Various hydrophobic organic substances can be used in the method of the present invention, including perylene.

ペリレンの金@錯体およびこれらの誘導体、レー:t#
1月、フクロシア−、ン、フタ1コシアニンの金属錯体
およびこれらの誘導体くフタロシアニンプルフタロシア
ニングリ−j、12など)、ナソタロシ”7ニン、ナツ
タ1!シア、−ンの金属錯体およびこれらの誘導体、ポ
ルフィリン、ポルフィリンの金属錯体およびこれらの誘
導体、アントラキノン、アゾ色素、キナクリドン9 ビ
オ11ゲン、スーダンなどの光メモリー用色素や有機色
素をはじめ1.1”−ジヘブヂル−4,4“−ビビリジ
ニウムジブロマイド 1. 1”−ジドデシル−4,4
−ビビリュ;クニウムジブロ′ンイドなどの工1/クト
aクロミック材料、6−・ニトロ−1,3,3−4リメ
チルスビロー(2’H〜1゛−ベンゾビランー 2.2
=−インドリン)(通称スピロピラン)などの感光材料
(フォトりしjミック材料)や光センサー材料、Pアゾ
4−シアニソールなどの液晶表示用色素、更に「カラー
ゲミカル事典1株式会社シーエムシ、198ン313月
281]発行の第542へ・71′1頁に列挙されてい
る工し・クトロで−ジス用色素5記録用色素、環境クロ
ミズム用色素1写真用色素エネルギー用色素。バイオメ
ディカル用色素1食品・化粧用色素、染料、顔料、特殊
着色用色素のうちの疎水性の化合物などがあげられる。
Gold@complexes of perylene and their derivatives, Re:t#
1, metal complexes of phthalocyanine, phthalocyanine green, 12), metal complexes of phthalocyanine, phthalocyanine, phthalocyanine, and derivatives thereof; Porphyrins, metal complexes of porphyrins and their derivatives, anthraquinones, azo dyes, quinacridone-9, bio-11gen, sudan and other photomemory dyes and organic dyes, as well as 1.1"-dihebdyl-4,4"-biviridinium di Bromide 1.1”-didodecyl-4,4
- Bibily; engineered 1/cuta chromic materials such as chromium dibromonide;
Photosensitive materials (photosensitive materials) such as (=-indoline) (commonly known as spiropyran), optical sensor materials, dyes for liquid crystal display such as P-azo-4-cyanisole, and also "Color Gemmical Encyclopedia 1 CMC Co., Ltd., 1983-313 281] Issue No. 542, page 71'1 lists the techniques listed on page 71'1: dyes for chromism, 5 for recording, dyes for environmental chromism, 1 for photography, dyes for energy use, dyes for biomedical use, 1 food, Examples include hydrophobic compounds among cosmetic pigments, dyes, pigments, and special coloring pigments.

また、7.7,8.8−テトラシアノキノンジメタン(
TCNQ)とテトラシアフルバレ=/(TTF)との]
 : 1. SR体などの有機導電材料やガスセ:/サ
ー材料、ベンタエリスリトールジアクリレー トなどの
光硬化性塗料、ステ“7リン酸などの絶縁材料、1、−
−フェニルアゾ−2−ナフトールなどのジ”7ゾタイブ
の感光材料や塗料等をあげることができる。
In addition, 7,7,8,8-tetracyanoquinone dimethane (
TCNQ) and Tetrasia Full Bare = / (TTF)]
: 1. Organic conductive materials such as SR bodies, gas cell materials, photocurable paints such as bentaerythritol diacrylate, insulating materials such as phosphoric acid, etc.
Examples include photosensitive materials and paints based on di7zotypes such as -phenylazo-2-naphthol.

次6ご、上記疎水性有機物質を溶解$=る非水溶媒とし
、では、様々のものがあげられ、例えば−・4−サン、
・・ブタン等の脂肪族炭化水素、テトラヒドロフラン(
1’HF)等の環状エーテル、メタン・−ル。
Next, the above-mentioned hydrophobic organic substance is dissolved in a non-aqueous solvent.
...Aliphatic hydrocarbons such as butane, tetrahydrofuran (
cyclic ethers such as 1'HF), methane-ru.

エタノール、プロパツール等のアルコール、アセトン、
メチルエチルゲトン等のケトン、酢酸エチル等のエーテ
・ル、ベンセ“ン′、トルエン、キシレ・ン笠の芳香族
炭化水素、そのほかジメヂルボルムアミド(DMF)、
  ダメナルスルホキシド5アセト、ニートリル5塩化
メチレン、りIニア0ナフタレンなどを好適なものとし
Cあげることができる。いずれにしても、十記疎水性有
機物質を溶解するものであれば、(t))水性媒体に対
して相溶性を有するか否かを問わず、各種の有機溶媒が
使用可能である。
Alcohol such as ethanol and propatool, acetone,
Ketones such as methyl ethyl getone, ethers such as ethyl acetate, aromatic hydrocarbons such as benzene, toluene, and xylene, as well as dimethylborumamide (DMF),
Suitable examples include nitrile sulfoxide 5-acetate, nitrile 5-methylene chloride, and nitrile 0-naphthalene. In any case, any organic solvent can be used as long as it dissolves the above-mentioned hydrophobic organic substances (t)) regardless of whether it is compatible with the aqueous medium or not.

本発明の方法では、前記の疎水性有機物質を井水溶媒に
溶解させた溶液を(a)成分とし、これに(1))水性
媒体と(c)ミセル化剤を混合するが、ここでα))水
性媒体としては、水をはじめ、水とアルコールの混合液
、水とアセトンの混合液など様々な水を基調とする媒体
をあげることができる。
In the method of the present invention, component (a) is a solution in which the above hydrophobic organic substance is dissolved in well water solvent, and (1)) an aqueous medium and (c) a micellar agent are mixed therein. α)) The aqueous medium includes various water-based media such as water, a mixture of water and alcohol, and a mixture of water and acetone.

一方、(c)成分として用いるミセル化剤は、フ、7゜
ロセン誘導体よりなるものである。ここで、使用可能な
フェロセン誘導体には、様々なものがあるが、例えば特
開昭63−243298号公報に示されるアンモニウム
型のフェロセン誘導体、′JL8191昭62−212
718号明細書に示されるエーテル型のソエし1センf
f11体、[[s 3−52696号明細書に示される
ピリジニウム型のフェロセン誘導体、さらには特願昭6
:l−233798号明細書、同63−・248600
号明細書、同63−248601号明細書等に示される
様々なタイプのフェロセン誘導体がある。
On the other hand, the micelle forming agent used as component (c) is composed of a 7°rocene derivative. Here, there are various ferrocene derivatives that can be used.
Ether-type soap 1 sen f shown in specification No. 718
f11 form, [[s 3-52696 specification pyridinium-type ferrocene derivatives, and Japanese Patent Application No. 1983
: l-233798 specification, 63-248600
There are various types of ferrocene derivatives shown in the specification of No. 63-248601 and the like.

本発明の方法では、前記(a)、 0))及び(c)成
分を混会してなる混合液を用いる。この混合液は、(a
)成分中の非水溶媒& (b)成分である水性媒体とが
不溶性Cある場合には、疎水性(′1機物質を非水溶媒
Gご溶解させた溶液((a)成分)が、ミセル化剤を含
む水性媒体中で乳化L ’?:エマルジゴンになるとと
もに、疎水性有機物′6は、4ミセル化剤によっこ1、
その−・部が水性媒体に溶解(分子ik )すると考え
られる。また、前記非水溶媒と水11媒体とが相溶性で
ある場合?、こは1.T′?ルジョンを形成する、二と
なく、疎水性有機物nがミセル化剤によって、系全体に
分散し、ミセル化剤中に取り込まれると考えられる。い
ずれのIF5合も疎水性有機物質は、分子状に分散ある
いは可溶化す゛るθ)で、その後の、IJ]1電処理に
よって、分子状に分散して形成した薄1摸となる。
In the method of the present invention, a liquid mixture obtained by mixing the components (a), 0)) and (c) is used. This mixed solution is (a
) If the non-aqueous solvent in the component & the aqueous medium as the component (b) are insoluble, the solution (component (a)) in which the hydrophobic substance is dissolved in the non-aqueous solvent G (component (a)) is Emulsified L'? in an aqueous medium containing a micelle-forming agent: At the same time as becoming an emuldigon, the hydrophobic organic substance '6 is mixed with the micelle-forming agent 1,
It is thought that the -. part dissolves in the aqueous medium (molecule ik). Also, what if the non-aqueous solvent and water 11 medium are compatible? , Koha1. T'? It is thought that the hydrophobic organic substance n that forms the fusion is dispersed throughout the system by the micelle-forming agent and incorporated into the micelle-forming agent. In any case of IF5, the hydrophobic organic substance is dispersed or solubilized in molecular form (θ), and by subsequent IJ]1 electrolysis treatment, it becomes a thin film formed by being dispersed in molecular form.

本発明の方法で行う通電処理は、−1−述の(a)、 
(11))及び(c)成分よりなるイ・l1合液を用い
るものであり(の結果電極l−に疎水性有機物質の薄、
膜が形成される。
The energization process performed by the method of the present invention includes (a) described in -1-,
(11)) and (c) components are used (as a result of this, a thin layer of hydrophobic organic material is applied to the electrode
A film is formed.

本発明の方法の操作手順は、様々な態様が考えられるが
、その−例をあげれば次の通りである。
Various aspects of the operating procedure of the method of the present invention can be considered, examples of which are as follows.

即ち、まず水性媒体中にノコーロセン誘導体よりなるミ
セル化剤を入れてミセル溶液を調製する。
That is, first, a micelle-forming agent made of a nocorocene derivative is placed in an aqueous medium to prepare a micelle solution.

なお、この際のミセル化剤の濃度は、、特に制限はない
が、通常は限界ミセル濃度以り、具体的には10μM 
〜IM、好ましくは0.5〜5rnMの範囲で選定する
。、τのミセル溶液には所望に応じて支持塩を加えるこ
とも有効である。支持塩を加誠る場合、その支持塩の種
類は、疎水性有機物質のiiJ溶化の進行や電極・\の
析出を妨げることなく、1水性媒体の電気伝導度を調節
しうるちのでに5れば特に制限はない。具体的には各種
の硫酸塩、酢酸塩、ハロゲン化塩1水溶性酸什、物塩な
どが1V・ぼられる、また支持塩の添加量は通常番、シ
ヒ記ミセル化剤のO〜300倍程度の濃度、好ましくは
10〜200倍程度の濃度を目安とVる。。
The concentration of the micelle agent at this time is not particularly limited, but is usually higher than the limit micelle concentration, specifically 10 μM.
~IM, preferably in the range of 0.5 to 5rnM. It is also effective to add a supporting salt to the micelle solution of τ, if desired. When adding a supporting salt, the type of supporting salt should be one that can adjust the electrical conductivity of the aqueous medium without interfering with the progress of solubilization of the hydrophobic organic substance or the precipitation of the electrode. There are no particular restrictions. Specifically, various sulfates, acetates, halides, water-soluble acids, salts, etc. are absorbed at 1 V, and the amount of supporting salt added is 0 to 300 times that of the micellar agent described in the standard. The standard concentration is approximately 10 to 200 times higher. .

一方、非水溶媒には疎水性有機物質を、適宜;温度、通
常は飽和堆以上の濃度で溶解させておき、この疎水性有
機物質の溶液を、前述(へヨ、セル溶液と混合する。こ
の混合に際し7ては2超音波、ホモジナイザーあるいは
撹拌機等により充分混合攪t’Pを行い、その後必要に
応じてjの剰の疎水性有機物質を除去し、得られた混合
液を静置したままあるいは若干の撹拌を加えながら電極
を用いて通電処理する。また、1lll電処理中に、疎
水性有機物質4非水溶媒に熔解させた溶液を前記混合液
に補充添加してもよく、あるいは陽極近傍の混合液を系
外へ彷き出し51、夫き出した混合凍り前記溶′a、(
疎水性41機物質を非水溶媒に)電解させた溶液)を加
えて充分に混1↑撹拌し7、t7かる後r;二この液を
陰極近傍へ戻t−循環回路含併設しても34、い。この
際の通電条件は、各種状況に応じて適宜選定すればA、
いが、通常は液温0〜70°C1好ましくは20〜30
°C,、電圧0゜03へ・1.5■、好ましくは0.1
ヘー・0.5■の範囲に設定する。また、通電時間につ
いては、状況により異なるがm=・般には30分・〜2
時間程度で充分である。
On the other hand, a hydrophobic organic substance is dissolved in the non-aqueous solvent at an appropriate temperature, usually at a concentration above the saturation level, and this solution of the hydrophobic organic substance is mixed with the cell solution described above. During this mixing, in step 7, thoroughly mix and stir using 2 ultrasonic waves, a homogenizer, a stirrer, etc., then remove the excess hydrophobic organic substance of j as necessary, and leave the resulting mixture still. Electrification treatment is carried out using an electrode while the mixture is being heated or while being slightly stirred.Also, during the 1 lll electrification treatment, a solution of the hydrophobic organic substance 4 dissolved in a non-aqueous solvent may be added to the mixed solution, Alternatively, the mixed liquid near the anode can be moved out of the system 51, and the mixed liquid that has been drawn out can be frozen.
A solution prepared by electrolyzing a hydrophobic 41 substance in a non-aqueous solvent) is added and thoroughly mixed. 7. After t7, r; 2. Return this solution to the vicinity of the cathode. 34, yes. The energizing conditions at this time can be selected as appropriate depending on various situations.
However, the liquid temperature is usually 0 to 70°C, preferably 20 to 30°C.
°C, voltage 0°03 to 1.5■, preferably 0.1
Set in the range of 0.5■. In addition, the energization time varies depending on the situation, but in general, it is 30 minutes ~ 2
About an hour is enough.

なお、この際に用いる電極は、ミセル化剤Cあるフ、y
、ロセン誘導体の酸化電位(+0.10〜0.30v対
p和甘コウ電極)より責な金属もしくは導電体であれば
、1、い、具体的には1TO(酸化インジウ・ムと酸化
スズとのl琵合酸化物)、白金、金、iff。
Note that the electrodes used at this time are micellar agent C, y
, if it is a metal or conductor that has a higher oxidation potential than the oxidation potential of the locene derivative (+0.10 to 0.30v vs. p sum electrode), it is 1, specifically 1TO (indium oxide and tin oxide). platinum, gold, if.

グラジ−カーボン、導電性金属酸化物、有機ポリマー導
電体などがあげらtする。
Examples include grady carbon, conductive metal oxides, and organic polymer conductors.

このように、前記(a)、(b)及び(c)成分よりな
る混合液を通電処?P、 1°ることによゲζ、疎水性
有機物質の分子状Gこ分散した薄膜が形成される。この
薄膜は、従来のミセル電解法で得られる疎水性fi@f
J賞粒子が分散しご形成される薄膜とは、その微細構造
が著[、<異なるものである。
In this way, the mixture consisting of the components (a), (b) and (c) is energized? By increasing P and 1°, a thin film in which molecular G of a hydrophobic organic substance is dispersed is formed. This thin film has hydrophobic fi@f obtained by conventional micelle electrolysis method.
The microstructure is significantly different from the thin film formed by dispersing the J-Prize particles.

〔実施例〕〔Example〕

次に、本発明を実施例及び比較例によりさらに詳しく説
明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 テトラフ4)−二ルポルフィリンをエタノール中に溶解
し、飽和色素溶液を調製し2だ。この飽和色素/8液の
旬視吸収スペクトルを第1凹(印A)に示す。
Example 1 A saturated dye solution was prepared by dissolving tetraph 4)-diluporphyrin in ethanol. The optical absorption spectrum of this saturated dye/8 solution is shown in the first concave (marked A).

一方、、100+fiの水に を加え2mMのミセル2容ン夜とし、このミセル電解液
25eeに前記飽和色素溶液3 cc シ加え、スター
ラーにて1時間撹拌し、混合液(ミセル混合溶液)とし
た。さらに、ごのミセル混合溶液に支持塩とし−(Q化
すチウムを0.1 Mの濃度になるように加え、ミセル
電解液とした。このミセル電解液の1lii?j!吸収
スペクトルを第1図(印B)に示ず。
On the other hand, add 100+fi of water to make 2 volumes of 2mM micelles, add 3 cc of the saturated dye solution to 25 ee of this micelle electrolyte, and stir with a stirrer for 1 hour to obtain a mixed solution (micelle mixed solution). . Furthermore, lithium Q chloride was added as a supporting salt to the mixed micelle solution to a concentration of 0.1 M to prepare a micellar electrolyte. The absorption spectrum of this micelle electrolyte is shown in Figure 1. (Not shown in mark B).

このミセル電解液に陽極とj7てITO透明ガラス電極
1陰極に白金、参照極として飽和甘口1つ電極を用いて
、25“C2印加電圧0.5Vで定電位電解を行−4、
た。このときの電流密度は6.87!A/ e+fl 
、通電時間は30分1通電量は0601クー・1・゛コ
ン(c)であった。
This micellar electrolyte was subjected to constant potential electrolysis at an applied voltage of 0.5 V using an ITO transparent glass electrode 1 as an anode, platinum as a cathode, and a saturated sweet electrode as a reference electrode.
Ta. The current density at this time is 6.87! A/e+fl
The energization time was 30 minutes and the energization amount was 0601 cu.1.con (c).

その結果、I’l’O透明ガラス電穫」二に色素薄膜を
得た。この薄膜の可視スペクトルを第1図(印C)に示
す。後述の比較例1で製造した薄膜の可視吸収スペクト
ル(第1図(印D))に比べ、飽和色素溶液に近いスペ
クトルを示し、溶解(単分子分散)に近い構造をとって
いることが判る。
As a result, a dye thin film was obtained on the I'l'O transparent glass electrode. The visible spectrum of this thin film is shown in Figure 1 (mark C). Compared to the visible absorption spectrum of the thin film produced in Comparative Example 1 (described below) (Fig. 1 (mark D)), it shows a spectrum close to that of a saturated dye solution, indicating that it has a structure close to that of a dissolved (monomolecular dispersion). .

以上から、実施例1では、分子状に分散した薄膜を得る
ことができた。
From the above, in Example 1, a thin film in which molecules were dispersed could be obtained.

比較例1 テトラフェニルポルフィ )容解せず、その0.1gをそのままミセル2容ン夜に
分散,可溶化したこと以外は、、実施例1と同じ方法で
薄膜の製造を行った。
Comparative Example 1 A thin film was produced in the same manner as in Example 1, except that 0.1 g of tetraphenylporphyry (tetraphenylporphyry) was not dissolved and was directly dispersed and solubilized into 2 volumes of micelles overnight.

その結果、ITO透明電極上に色素薄膜を得た。As a result, a dye thin film was obtained on the ITO transparent electrode.

この薄膜の可視吸収スペクトルを第1図(印D ”)に
示す。
The visible absorption spectrum of this thin film is shown in FIG. 1 (marked D'').

実施例2 テトラフェニルポルフィリンをトルエン中に)容解し、
飽和色素溶液を調製した。この飽和色素溶液の可視吸収
スペクトルを第2図(印A)に示す。
Example 2 Dissolving tetraphenylporphyrin in toluene)
A saturated dye solution was prepared. The visible absorption spectrum of this saturated dye solution is shown in FIG. 2 (mark A).

一方、1.、 O O mlの水に ヲ加え′ζ2rriMのミセル溶液とし、このミセル溶
)夜25ccに前記飽和色素)電液3ccを加え、スタ
ーラーにて1時間撹1↑し、ミヒル混合)′:4液とし
た。
On the other hand, 1. , Add to O O ml of water to make a micelle solution of ζ2rriM, add 3 cc of the above saturated dye) electrolytic solution to 25 cc of this micelle solution, stir for 1 hour with a stirrer, and mix with Mihir)': 4 liquids. And so.

さC・に、このミセル混合溶液に支持塩とし゛(臭化り
子カムをO.i.Mの濃度になるよ・うに加λ、ミ1、
・ル電′fI液とした。ごのミセル電解:夜の可視吸収
スペクトルを第2図(EIIB)に示す。
In step C, add brominated cam as a supporting salt to this micelle mixture solution to a concentration of O.i.M.
・It was made into a liquid. Micelle electrolysis: The visible absorption spectrum at night is shown in Figure 2 (EIIB).

ごのミセル電解液に、陽極としでド1゛0透明ガラス電
極,陰極に白金,参照極とし2て飽和t」コウ電極を用
いご、25’C.印加電圧Q.5Vで定電位電解を行,
た。このときの電流密度は11.5μノへ17c己1通
電時間は30分,通電量は0. 0 2 Cであった。
A micellar electrolyte of 25'C. Applied voltage Q. Perform constant potential electrolysis at 5V,
Ta. At this time, the current density was 11.5 μm, 17 cm, 30 minutes per energization time, and 0.1 μm current density. It was 0.02C.

その結果、! TO透明ガ・ノス電極1−に色素薄膜を
得た,2この薄膜のijl視吸収スペクトルを第2図(
印C)4.:示す。比較例1で製造し,へ・薄)1りの
可視スペクトル(第1図(rJ]D))に比べ、飽和色
素溶液に近いスペクトルを示し溶解(単分子分散)に近
い構造をとっていることが判る。
the result,! A dye thin film was obtained on the TO transparent gas electrode 1-.2 The optical absorption spectrum of this thin film is shown in Figure 2 (
Mark C)4. :show. Compared to the visible spectrum of the dye produced in Comparative Example 1 (Fig. 1 (rJ]D)), it exhibits a spectrum close to that of a saturated dye solution and has a structure close to that of a dissolved (monomolecular dispersion). I understand that.

以上から、。実施例2では、分子状に分散した薄膜を得
ることかびきた。
From the above. In Example 2, it was attempted to obtain a molecularly dispersed thin film.

実施例3 テトラフ兎ニルポルフィリン亜鉛錯体を1タノール中に
溶解し、飽和色素溶液を調製した。この飽和色素溶液の
可視吸収スベク1ルを第13図(印パ)にボず。
Example 3 A saturated dye solution was prepared by dissolving a tetraphenylporphyrin zinc complex in 1 ethanol. The visible absorption spectrum of this saturated dye solution is shown in Figure 13.

一方、100dの水に を加え゛で2 rr+ !viのミセル溶液とし、この
ミヒル溶液2 5 cc.に前記飽和色素溶液3 cc
を加え スター−、)−にて1時間撹拌し、ミセル混合
溶液とC7た。
On the other hand, add 100d of water and get 2rr+! vi, and 25 cc of this Mihill solution. Add 3 cc of the saturated dye solution to
was added and stirred for 1 hour under a starburst, followed by mixing with the micelle mixed solution and C7.

さらに、このミセル混合溶液に支持塩として臭化1チウ
ムを0.1.Mの濃度になるように加え、ミセル電解液
とした。このミセル電解液の可視吸収スペクトルを第3
図(印B )に示した。
Furthermore, 1 tium bromide was added as a supporting salt to this micelle mixed solution at 0.1%. M was added to the solution to obtain a micellar electrolyte solution. The visible absorption spectrum of this micellar electrolyte is
It is shown in the figure (marked B).

このミセル電解液に、陽極としてITO透明ガラス電極
1陰極に白金、参照極として飽和41゛コウ電極を用い
て、25”C5印加電圧0,5■で定電位電解を行った
。このときの電流密度は、15.671A/c[、通電
時間は30分1通電量は0.0250であった。
This micellar electrolyte was subjected to constant potential electrolysis using an ITO transparent glass electrode as an anode, platinum as a cathode, and a saturated 41゛ copper electrode as a reference electrode at an applied voltage of 0.5㎜.The current at this time was The density was 15.671 A/c, the current application time was 30 minutes, and the current flow amount was 0.0250.

(の結果、ITO透明ガラス電極上に色素薄膜を得た。(As a result, a dye thin film was obtained on the ITO transparent glass electrode.

この薄膜の可視吸収スペクトルを第3図(印C)に示す
。後述の比較例2で製造した薄膜の可視吸収スペクトル
(第3図(印D))に比べ、飽和色素溶液に近いスペク
トルを示し7、溶解(単分子分散)に近い構造をとって
いることかillる。
The visible absorption spectrum of this thin film is shown in FIG. 3 (mark C). Compared to the visible absorption spectrum of the thin film produced in Comparative Example 2 (described later) (Fig. 3 (mark D)), it shows a spectrum close to that of a saturated dye solution7, indicating that it has a structure close to dissolution (monomolecular dispersion). illull.

以上から、実施例3では、分子状に分散した薄膜を得る
ことができた。
From the above, in Example 3, a thin film in which molecules were dispersed could be obtained.

比較例2 テ)・ラフェニルボルフィリン亜鉛錯体をエタノール中
に溶解セす、その0.1gを、そのままミセル溶液に分
散、可溶化したこと以外は、実施例3と同じ方法で薄膜
の製造を行った。
Comparative Example 2 A thin film was produced in the same manner as in Example 3, except that 0.1 g of the te)-raphenylborphyline zinc complex was dissolved in ethanol and 0.1 g thereof was directly dispersed and solubilized in the micelle solution. Ta.

その結果、ITO透明電極上C,′、色素薄膜を得た。As a result, a thin dye film C,' was obtained on the ITO transparent electrode.

この薄膜の可視吸収スペクトルを第3図(印D)に示し
た。
The visible absorption spectrum of this thin film is shown in Figure 3 (mark D).

実施例4 フタロシアニンをクロロ・ノ゛フタレン中に溶解し、飽
和色素溶液を調製した。この飽和色素溶液の可視吸収ス
ペクトルを第4図(印A)に示す。
Example 4 A saturated dye solution was prepared by dissolving phthalocyanine in chloro-nophthalene. The visible absorption spectrum of this saturated dye solution is shown in FIG. 4 (mark A).

一方、100−の水にFPEGを加え2mMのミセル溶
液とし、このミセル溶液25ccに前記飽和色素溶液3
eeを加え、スターラーにて1時間撹拌し、ミセル混合
溶液とした。さらに、このミセル混合溶液に支持塩とし
て臭化リチウムを0.1へイの濃度になるように加え、
ミセル電解液とした。
On the other hand, FPEG was added to 100-ml water to make a 2mM micelle solution, and 25cc of this micelle solution was added to the saturated dye solution 3.
ee was added and stirred with a stirrer for 1 hour to obtain a micelle mixed solution. Furthermore, lithium bromide was added as a supporting salt to this micelle mixed solution to a concentration of 0.1 h,
It was made into a micellar electrolyte.

このミセル電解液の可視吸収スペクトルを第4図(印!
3 )に示した。
The visible absorption spectrum of this micellar electrolyte is shown in Figure 4 (marked!
3).

このミセル電解液に、陽極としてITO透明ガラス電極
、陰極に白金、参照極とし、て飽和1[コ・′)電極を
用いて、25°C2印加電圧0,5■で定電位電解を行
った。このときの電流密度は8.6μA/ +=ffl
 、通電時間は30分1通’1tilハ0.015 C
ごあった。
This micellar electrolyte was subjected to constant potential electrolysis at 25°C2 with an applied voltage of 0.5μ using an ITO transparent glass electrode as the anode, platinum as the cathode, and a saturated 1 [co·′) electrode as the reference electrode. . The current density at this time is 8.6μA/ +=ffl
, energization time is 30 minutes 1 time 0.015 C
Thank you very much.

その結果、[TO透明ガラス電極上に色素薄膜を得た。As a result, a dye thin film was obtained on the [TO transparent glass electrode].

この薄膜の可視吸収スペクトルを第4図(印C)にボす
。後述の比較例3で製造した薄膜の可視吸収スペクトル
(第4図(印I〕))に比べ、飽和色素溶液に近いスペ
クトルを示し溶解(単分子分散)に近い構造をとっ−ζ
いることが判る。
The visible absorption spectrum of this thin film is shown in Figure 4 (mark C). Compared to the visible absorption spectrum of the thin film produced in Comparative Example 3 (described later) (Fig. 4 (marked I)), it shows a spectrum close to that of a saturated dye solution and has a structure close to that of a dissolved (monomolecular dispersion).
I know that there is.

以上より、実施例4では、分子状に分散した薄膜を得る
ことができた。
As described above, in Example 4, a thin film in which molecules were dispersed could be obtained.

比較例3 フタロシアニンをクロロナフタレン中に?電解セず、そ
の0.1gを、そのままミセル)容7夜に分散。
Comparative Example 3 Phthalocyanine in chloronaphthalene? Without electrolysis, 0.1 g of it was directly dispersed in micelles).

可溶化したこと以外は、実施例4と同じ方法で薄膜の製
造を行った。
A thin film was produced in the same manner as in Example 4 except for solubilization.

ぞの結果1.ITO透明電極上に色素薄膜を得た。Result 1. A dye thin film was obtained on the ITO transparent electrode.

この薄膜の]視吸収スペクトルを第4図(印D)に示し
た。
The visual absorption spectrum of this thin film is shown in FIG. 4 (mark D).

実施例5 マグネシウムツタτ」シアニンをエタノール中に溶解し
、飽和色素溶液を調製した。この飽和色素溶液の可視吸
収スペクトルを第5図(印A)に示ず6 −・方、1.00mNの水にFPEGを加えて2m、M
のミセル溶液とし、このミセル溶液25 ccに前記飽
和色素溶液3ccを加え、スターラーにて1時間撹拌し
、ミセル混合溶液とした。さらに、このミセル混合溶液
に、支持塩として臭化リチウムを0.1Mの濃度になる
ように加え、ミセル電解液とした。このミセル電解液の
可視吸収スペクトルを第5図(印B)に示した。
Example 5 Magnesium ivy τ' cyanine was dissolved in ethanol to prepare a saturated dye solution. The visible absorption spectrum of this saturated dye solution is shown in Figure 5 (mark A).
3 cc of the saturated dye solution was added to 25 cc of this micelle solution, and the mixture was stirred with a stirrer for 1 hour to obtain a mixed micelle solution. Furthermore, lithium bromide was added as a supporting salt to the micelle mixed solution to a concentration of 0.1M to obtain a micelle electrolyte. The visible absorption spectrum of this micellar electrolyte is shown in FIG. 5 (marked B).

このミセル電解液に、陽極としてITO透明ガラス電極
、陰極に白金、参照極として飽和せコウ電極を用いて、
25゛c、印加電圧0.5Vで定電位電解を行った。こ
のときの電流密度は9.111A/ cd 、通電時間
は30分、 it■ハ0.015 Cであった。
Using this micellar electrolyte, an ITO transparent glass electrode as an anode, platinum as a cathode, and a saturated white electrode as a reference electrode,
Constant potential electrolysis was performed at 25°C and an applied voltage of 0.5V. At this time, the current density was 9.111 A/cd, the current application time was 30 minutes, and it was 0.015 C.

その結果、ビJ゛0透明ガラス電極上Cご色素薄膜を得
た。この薄膜の可視吸収スペクトルを215図(印C)
に示す。後述のけ較例4で製造した薄膜の可視吸収スペ
クトル(第5図(印1〕))に比べ、飽和色素溶液に近
いスペクトルを示し溶解(単分子分散)に近い構造をと
っζいることが判る。
As a result, a thin film of C dye was obtained on the BJ0 transparent glass electrode. Figure 215 shows the visible absorption spectrum of this thin film (mark C).
Shown below. Compared to the visible absorption spectrum of the thin film produced in Comparative Example 4 (described later) (Fig. 5 (mark 1)), it shows a spectrum close to that of a saturated dye solution, indicating that it has a structure close to that of a dissolved dye (monomolecular dispersion). I understand.

以Fより、実施例5では、7分子状に分散した薄膜を得
ることができた。
From the following F, in Example 5, it was possible to obtain a thin film in which heptad molecules were dispersed.

比較例4 マグネシウムフタロシアニンをエタノール中に溶解せず
、その0.1gを、そのままミセル溶液に、分散、可溶
化したこと以外は、実施例5と同じ方法で薄膜の製造を
行った。
Comparative Example 4 A thin film was produced in the same manner as in Example 5, except that the magnesium phthalocyanine was not dissolved in ethanol and 0.1 g thereof was directly dispersed and solubilized in a micelle solution.

その結果、ITO透明電極上に色素薄膜を得た。As a result, a dye thin film was obtained on the ITO transparent electrode.

この)W膜の可視吸収スペクトルを第5図(印I))に
小ξた。
The visible absorption spectrum of this W film is shown in Fig. 5 (marked I).

(発明の効果) 叙上の如く、本発明の方法によれば、各種の疎水性有機
物質からなる薄膜を、膜厚を極め、二薄く、しかも分子
−状に分散(即ち、単分子分散)し7た杖態で形成する
ことができる。
(Effects of the Invention) As described above, according to the method of the present invention, thin films made of various hydrophobic organic substances can be made extremely thick, thin, and dispersed in molecular form (that is, monomolecular dispersion). It can be formed in the form of a cane.

そのため、。本発明の方法で製造される有機薄膜は、光
レスポンスが高く、光デイスク材料、光メモリー材料、
フォトホールバーニング(PHB)メモリー材料、感光
材料、フォトクロミンク材料。
Therefore,. The organic thin film produced by the method of the present invention has a high optical response and can be used as an optical disk material, an optical memory material, etc.
Photo hole burning (PHB) memory materials, photosensitive materials, photochromic materials.

カラーフィルター、太陽電池、電子材料、コーティング
材料等として有効な利用が期待される。
It is expected to be effectively used as color filters, solar cells, electronic materials, coating materials, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は、それぞれ実施例1〜5及び比較例i〜4
で得られた飽和色素溶液、ミセル電解液。 薄膜のiiI視吸収スペクトルを示す。 特許出願人  出光興産株式会社 【7パ・・−・二 代理人 弁理上 人 谷   保!ト:・−、・130
0」 第:9 [を 波 1”で−’l””””’−’i−’−”−1−’−’−
”’r−−+−1−−!−1l−−T−’−t−’1−
1’−−ゝr宇”−” ’+”””−1−”−’11−
−−1600           7α’I    
    ’i’ 8 C)侵 (nrh) −51,、3−
Figures 1 to 5 show Examples 1 to 5 and Comparative Examples i to 4, respectively.
Saturated dye solution obtained in micellar electrolyte. The iii visual absorption spectrum of the thin film is shown. Patent Applicant: Idemitsu Kosan Co., Ltd. [7th Patent Attorney] Tamotsu Tani! G:・-,・130
0" No. 9
”'r--+-1--!-1l--T-'-t-'1-
1'--ゝrU"-"'+"""-1-"-'11-
--1600 7α'I
'i' 8 C) invasion (nrh) -51,,3-

Claims (1)

【特許請求の範囲】[Claims] (1)(a)疎水性有機物質を非水溶媒に溶解させた溶
液、(b)水性媒体及び(c)フェロセン誘導体よりな
るミセル化剤を混合し、得られる混合液を通電処理して
電極上に前記疎水性有機物質の薄膜を形成することを特
徴とする有機薄膜の製造方法。
(1) Mix (a) a solution of a hydrophobic organic substance in a non-aqueous solvent, (b) an aqueous medium, and (c) a micelle agent made of a ferrocene derivative, and apply current to the resulting mixture to form an electrode. A method for producing an organic thin film, comprising forming a thin film of the hydrophobic organic substance thereon.
JP1765989A 1989-01-30 1989-01-30 Organic thin film manufacturing method Expired - Fee Related JPH068515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1765989A JPH068515B2 (en) 1989-01-30 1989-01-30 Organic thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1765989A JPH068515B2 (en) 1989-01-30 1989-01-30 Organic thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH02200797A true JPH02200797A (en) 1990-08-09
JPH068515B2 JPH068515B2 (en) 1994-02-02

Family

ID=11949975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1765989A Expired - Fee Related JPH068515B2 (en) 1989-01-30 1989-01-30 Organic thin film manufacturing method

Country Status (1)

Country Link
JP (1) JPH068515B2 (en)

Also Published As

Publication number Publication date
JPH068515B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JPH0359998B2 (en)
EP2663394B1 (en) Method for synthesizing dissymmetric particles (janus particles) by means of bipolar electrochemistry
JPH02200797A (en) Production of organic thin film
JP2006071767A (en) Color rewritable display device
JPH02200798A (en) Production of organic thin film
US20230128623A1 (en) Method of preparation of a gold electrode
JP2885467B2 (en) Method for producing thin film and electrophotographic photoreceptor
JPH0826476B2 (en) Organic thin film manufacturing method
JPH0693497A (en) Production of organic thin film
JP2738457B2 (en) Thin film manufacturing method
JP3576263B2 (en) Method for producing anisotropic thin film
JPH0288798A (en) Method for cleaning thin film
JPH02101199A (en) Method for washing electrode
JPH02164435A (en) Production of thin membrane
JPH0762275B2 (en) Method for producing phthalocyanine compound copper complex thin film
JPH02298294A (en) Production of thin film
JP2021071556A (en) Electrochromic element
JP2659638B2 (en) Method for producing micelle dispersion or micelle solubilizing solution, thin film and color filter
JPH0336528A (en) Electrochromic element and production thereof
JPH0541717B2 (en)
JPH068516B2 (en) Thin film manufacturing method
JPH02225697A (en) Film formation of phthalocyanine pigment
JPH0243396A (en) Production of thin phthalocyanine compound complex film
JPH03102302A (en) Color filter and production thereof
JPH034202A (en) Production of thin films in multiple stages

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees