JPH0220048A - Boiling-cooling type semiconductor device - Google Patents

Boiling-cooling type semiconductor device

Info

Publication number
JPH0220048A
JPH0220048A JP16994588A JP16994588A JPH0220048A JP H0220048 A JPH0220048 A JP H0220048A JP 16994588 A JP16994588 A JP 16994588A JP 16994588 A JP16994588 A JP 16994588A JP H0220048 A JPH0220048 A JP H0220048A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
hole
boiling
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16994588A
Other languages
Japanese (ja)
Other versions
JP2562180B2 (en
Inventor
Izumi Azuma
東 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63169945A priority Critical patent/JP2562180B2/en
Publication of JPH0220048A publication Critical patent/JPH0220048A/en
Application granted granted Critical
Publication of JP2562180B2 publication Critical patent/JP2562180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To increase an effective heat transfer area to liquid refrigerant and to accelerate a boiling heat transfer by opening refrigerant passage hole row formed as a gear train in the inner wall face of a hole along the contact face with a semiconductor element in a cooler. CONSTITUTION:A plurality of refrigerant passage holes 34 are opened at the center of a cooler 35 in its thickness direction along the contact face 31 of a semiconductor element. The hole 34 is formed with female threads, and female threadlike gear train 33 are formed on the inner wall face of the hole. When the heat generated at the element is transferred to the cooler 35 through the face 31, a heat transfer occurs by convection to the refrigerant in contact therewith. If the wall face of the cooler 35 is at the saturation temperature or higher of the liquid refrigerant, the refrigerant is surface boiled to generate air bubbles on the wall face, and boiling heat transfer occurs. On the other hand, the temperature of the refrigerant filled in the hole 34 is raised by the heat transfer from the cooler 35 thereby to generate liquid density difference in upper and lower parts in a vessel, so-called a chimney effect is operated to rise the liquid refrigerant in the hole 34.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、サイリスタ、ダイオードなどの半導体素子か
ら発生する熱を液体冷媒の沸騰/凝縮作用で系外に除熱
するようにした沸騰冷却形半導体装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a boiling cooling type device that removes heat generated from semiconductor elements such as thyristors and diodes to the outside of the system by the boiling/condensing action of a liquid refrigerant. Related to semiconductor devices.

〔従来の技術〕[Conventional technology]

まず、頭記した沸騰冷却形半導体装置の従来構成を第4
図、第5図により説明する0図において1は半導体装置
のスタック組立体であり、サイリスタなどの半導体素子
2と熱伝導性の高い金属で作られた平板状の冷却体3と
を交互に重ね合わせた積層体が絶縁板4を介して左右の
端板5の間に加圧挟持されている。なお、6はスタック
締結用のスタンド、7は加圧力を与える皿ばね、8はス
タックの両端に配した端子板である。
First, the conventional configuration of the boiling-cooled semiconductor device mentioned above is explained in the fourth section.
In Fig. 0, which will be explained with reference to Figs. The combined laminate is held under pressure between left and right end plates 5 with an insulating plate 4 in between. Note that 6 is a stand for fastening the stack, 7 is a disc spring that applies pressing force, and 8 is a terminal plate arranged at both ends of the stack.

一方、上記のスタック組立体lは、図示のように横置姿
勢でフロンなどの液体冷媒9に浸漬して容器IO内に収
容設置されており、これらで沸騰冷却形半導体装置を構
成している。なお、11は前記端子板8に接続した容器
10よりの外部引出し端子、12は容器lOの上部空間
の外周面より張り出す放熱フィンである。
On the other hand, as shown in the figure, the stack assembly l is housed in a container IO in a horizontal position immersed in a liquid refrigerant 9 such as chlorofluorocarbon, and together constitutes an evaporative cooling type semiconductor device. . In addition, 11 is an external lead terminal from the container 10 connected to the terminal board 8, and 12 is a radiation fin projecting from the outer peripheral surface of the upper space of the container 1O.

かかる構成による沸騰冷却作用は周知であり、半導体素
子2の通電により発生した熱は、冷却体3に伝熱し、こ
こから冷却体3の表面に接する液体冷媒9へ沸騰伝熱さ
れる。一方、この沸騰伝熱の過程で生じた冷媒蒸気は気
泡となり、その浮力で冷媒液中を上昇して容器10の上
部空間に放散される。また容器10の上部空間に充満す
る冷媒蒸気13は容器10の壁面へ凝縮伝熱して凝縮し
、再び液相に状B変化して液中に還流するとともに、容
器10に伝熱された熱は放熱フィン11より糸外(大気
中)に放散される。このような液体冷媒の蒸発/凝縮サ
イクルによる潜熱での熱授受により、半導体素子2の発
生熱が系外に除熱される。なお、前記した沸騰熱伝達は
主として核沸騰の領域で進行し、冷媒は冷却体3の伝熱
面で表面沸騰する。
The boiling cooling effect with such a configuration is well known, and the heat generated by energizing the semiconductor element 2 is transferred to the cooling body 3, and from there, the boiling heat is transferred to the liquid refrigerant 9 in contact with the surface of the cooling body 3. On the other hand, the refrigerant vapor generated during this boiling heat transfer process becomes bubbles, which rise in the refrigerant liquid due to their buoyancy and are dissipated into the upper space of the container 10. In addition, the refrigerant vapor 13 filling the upper space of the container 10 transfers condensation heat to the wall surface of the container 10 and condenses, changes to a liquid phase again and refluxes into the liquid, and the heat transferred to the container 10 is It is radiated outside the yarn (into the atmosphere) by the heat radiation fins 11. The heat generated by the semiconductor element 2 is removed to the outside of the system by the transfer of latent heat through the evaporation/condensation cycle of the liquid refrigerant. The boiling heat transfer described above mainly proceeds in the region of nucleate boiling, and the refrigerant undergoes surface boiling on the heat transfer surface of the cooling body 3.

一方、前記した冷却体3について、液体冷媒9と接する
伝熱面積を増大させ、併せて伝熱促進を図るために、第
5図のように冷却体3の内部(厚さ方向の中央部)に、
半導体素子の当接面31に沿って平行に並ぶ複数の冷媒
通路穴32を穿孔したものが既に実施されている。なお
この冷媒通路穴32は、第4図に示すようにスタック組
立体lを容器10内に据付けた状態で上下方向に向くよ
うに定めである。これにより冷却体3と液体冷媒9との
間の伝熱面積が増加し、かつこれに冷媒通路穴32の煙
突効果による冷媒の流動も加わって冷却体3と液体冷媒
9との間の伝熱が促進され、冷却性能を高めることがで
きる。
On the other hand, regarding the above-mentioned cooling body 3, in order to increase the heat transfer area in contact with the liquid refrigerant 9 and also promote heat transfer, the inside of the cooling body 3 (the central part in the thickness direction) is To,
One in which a plurality of coolant passage holes 32 are bored in parallel along the contact surface 31 of a semiconductor element has already been implemented. The refrigerant passage hole 32 is oriented vertically when the stack assembly 1 is installed in the container 10, as shown in FIG. As a result, the heat transfer area between the cooling body 3 and the liquid refrigerant 9 increases, and in addition to this, the flow of the refrigerant due to the chimney effect of the refrigerant passage hole 32 is added to increase the heat transfer area between the cooling body 3 and the liquid refrigerant 9. is promoted, and cooling performance can be improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記した従来装置の冷媒としては一般に冷媒
として優れた特性を有するフロンを使用しているが、昨
今ではフロンの使用が国際的に規制される(項部にある
ことから、フロンに代わる冷媒1例えば弗化炭素冷媒の
採用が検討されている。
By the way, the conventional equipment described above generally uses CFCs, which have excellent properties as a refrigerant, but recently the use of CFCs has been internationally regulated. 1. For example, the use of fluorocarbon refrigerants is being considered.

しかして弗化炭素冷媒の熱伝導率はフロンに比べて低く
、かつ弗化炭素冷媒を使用した場合の沸騰熱伝達率は、
フロンの場合に比べて約2/3程度に低下する。したが
って従来構造のままでフロンを使用した場合と同等な沸
騰冷却効果を得るには、沸騰熱伝達率の低下分だけ冷却
体を大形寸法にして伝熱面積を増加させるなどの手段を
講じる必要があり、結果的に半導体装置の全体構造が大
形化してしまう。
However, the thermal conductivity of fluorocarbon refrigerant is lower than that of fluorocarbons, and the boiling heat transfer coefficient when using fluorocarbon refrigerant is
This is reduced to about 2/3 compared to the case of fluorocarbons. Therefore, in order to obtain the same boiling cooling effect as when using CFCs with the conventional structure, it is necessary to take measures such as increasing the heat transfer area by increasing the size of the cooling body by the reduction in the boiling heat transfer coefficient. As a result, the overall structure of the semiconductor device becomes larger.

本発明は上記の点にかんがみ成されたものであり、冷却
体に穿孔した冷媒通路穴に改良の手を加えることにより
、同じ形状1寸法の冷却体で、冷媒との間の有効伝熱面
積を増加させ、併せて沸騰伝熱の有効促進が図れるよう
にした冷却性能の高い沸騰冷却形半導体装置を提供する
ことを目的とする。
The present invention has been made in consideration of the above points, and by improving the refrigerant passage holes drilled in the cooling body, the effective heat transfer area between the cooling body and the refrigerant can be increased with the same shape and size. It is an object of the present invention to provide a boiling-cooled semiconductor device with high cooling performance, which can increase heat transfer and effectively promote boiling heat transfer.

〔課題を解決するための手段] 上記課題を解決するために、本発明の沸騰冷却形半導体
装置においては、半導体素子とともに積層してスタック
組立体を構成する冷却体の内部に、半導体素子との当接
面に沿い、かつ穴内壁面を歯列面と成した冷媒通路大判
を穿孔して構成するものとする。
[Means for Solving the Problems] In order to solve the above problems, in the boiling-cooled semiconductor device of the present invention, a cooling body that is stacked together with the semiconductor elements to form a stack assembly is provided with a cooling body that is stacked with the semiconductor elements. A large-sized refrigerant passage is formed by drilling along the abutment surface and with the inner wall surface of the hole serving as the tooth row surface.

〔作用〕[Effect]

上記の構成で、冷媒通路穴の内壁面に形成した歯列は、
雌ねじ、あるいは内歯歯車の歯として形成されたもので
ある。これにより冷媒と接する冷媒通路穴の伝熱面積は
、歯列の高さを11程度とすると、穴内壁面が平坦面で
ある同じ内径の冷媒通路穴と比べて約1.8倍に増大す
る。また、この歯列により形成された穴内壁面の凹凸は
冷媒の気泡発生の核として有効に働き、それだけ気泡発
生点が増加する。さらに沸騰伝熱過程で煙突効果により
冷媒通路穴の中を上昇流動する冷媒流に対して前記の歯
列面による撹乱作用が加わり、表面沸騰して冷却体の伝
熱面に生じた気泡の泡切れがよくなる。この結果、前記
作用の相乗効果により冷却体と冷媒との間の沸騰伝熱が
より一層促進されるようになり、沸騰冷却効果が高まる
In the above configuration, the tooth row formed on the inner wall surface of the refrigerant passage hole is
It is formed as a female thread or the teeth of an internal gear. As a result, if the height of the tooth row is about 11, the heat transfer area of the refrigerant passage hole in contact with the refrigerant increases by about 1.8 times compared to a refrigerant passage hole of the same inner diameter with a flat inner wall surface. Further, the unevenness of the inner wall surface of the hole formed by this tooth row effectively acts as a nucleus for the generation of bubbles of the refrigerant, and the number of bubble generation points increases accordingly. Furthermore, during the boiling heat transfer process, the above-mentioned dentition surface adds a disturbance to the refrigerant flow rising in the refrigerant passage hole due to the chimney effect, resulting in surface boiling and bubbles forming on the heat transfer surface of the cooling body. Cuts better. As a result, boiling heat transfer between the cooling body and the refrigerant is further promoted due to the synergistic effect of the above actions, and the boiling cooling effect is enhanced.

〔実施例] 第1図ないし第3図は本発明実施例による冷却体の構造
を示すものであり、第5図と同様に半導体素子の当接面
31に沿って冷却体35の厚さ方向の中央部には複数の
冷媒通路穴34が穿孔されている。
[Embodiment] FIGS. 1 to 3 show the structure of a cooling body according to an embodiment of the present invention, and similarly to FIG. 5, the thickness direction of the cooling body 35 is A plurality of refrigerant passage holes 34 are bored in the center of the refrigerant passage hole 34 .

なお、冷却体35を第4図に示したスタック組立体へ組
込むに際しては、従来と同様に冷媒通路穴34が上下方
向に向くようにして組み込まれる。ここで、本発明によ
り、前記した冷媒通路穴34は第3図に明示されている
ように雌ねじのねし穴であり、その穴内壁面に雌ねじ状
の歯列33が形成されている。なお、歯列33は雌ねじ
の代わりに内歯歯車の歯列として形成してもよい、いず
れの場合でも冷媒通路穴34の内壁面が凹凸状の歯列面
となる。ここで、第3図における歯列33としてのねし
山の高さを1−程度とすると、冷媒通路穴34の冷媒と
の間の伝熱面積は、同じ内径で内壁面が平坦な冷媒通路
穴(従来の冷媒通路穴)と比べて約1.8倍に増加する
Note that when the cooling body 35 is assembled into the stack assembly shown in FIG. 4, it is assembled with the coolant passage hole 34 facing in the vertical direction, as in the conventional case. Here, according to the present invention, the refrigerant passage hole 34 described above is a female threaded tapped hole, as clearly shown in FIG. 3, and a female threaded tooth row 33 is formed on the inner wall surface of the hole. Note that the tooth row 33 may be formed as a tooth row of an internal gear instead of a female thread. In either case, the inner wall surface of the refrigerant passage hole 34 becomes an uneven tooth row surface. Here, if the height of the threads as the tooth row 33 in FIG. This is approximately 1.8 times larger than the hole (conventional refrigerant passage hole).

かかる構成により、第4図で説明したように半導体素子
の発生熱が当接面31を経て冷却体35に熱伝達される
と、冷媒通路穴34の伝熱面よりここに接する液体冷媒
との間で対流による伝熱が生じる。
With this configuration, when the heat generated by the semiconductor element is transferred to the cooling body 35 via the contact surface 31 as explained in FIG. Heat transfer occurs between the two by convection.

ここで冷却体35の壁面が液体冷媒の飽和温度以上であ
れば、冷媒は表面沸騰して壁面上に気泡が発生し、沸騰
伝熱が行われる。一方、冷却体35からの伝熱で冷媒通
路穴34内を満たしている冷媒の温度も上昇し、これに
より容器内での上下に液体密度差が生じていわゆる煙突
効果が働き、液体冷媒が冷媒通路穴34の中を上昇通流
するようになる。
If the wall surface of the cooling body 35 is equal to or higher than the saturation temperature of the liquid refrigerant, the refrigerant undergoes surface boiling, bubbles are generated on the wall surface, and boiling heat transfer occurs. On the other hand, the temperature of the refrigerant filling the inside of the refrigerant passage hole 34 increases due to heat transfer from the cooling body 35, and this causes a difference in liquid density between the upper and lower parts of the container, causing a so-called chimney effect, and the liquid refrigerant becomes the refrigerant. The fluid flows upward through the passage hole 34.

ところで、本発明により、冷媒通路穴34の内壁面には
前記のように歯列33が形成されていることから、冷媒
との間の有効伝熱面積が増加し、かつ歯列33による凹
凸面が気泡発生の核として有効に働いて気泡発生点も大
幅に増える。しかも冷媒通路穴34の煙突効果により穴
内を上昇する冷媒流に対して歯列33が撹乱効果を与え
ることから、表面沸騰により生じた気泡は壁面上に停滞
することなく直ちに剥離するように気泡の切れがよくな
り、これらの相乗効果で沸騰伝熱が促進される。
By the way, according to the present invention, since the tooth row 33 is formed on the inner wall surface of the refrigerant passage hole 34 as described above, the effective heat transfer area with the refrigerant increases, and the uneven surface due to the tooth row 33 increases. acts effectively as a nucleus for bubble generation, and the number of bubble generation points increases significantly. In addition, the tooth row 33 gives a disturbance effect to the refrigerant flow rising inside the hole due to the chimney effect of the refrigerant passage hole 34, so that the air bubbles generated by surface boiling do not stagnate on the wall surface but immediately peel off. This results in better cutting, and the synergistic effect of these effects promotes boiling heat transfer.

この結果、沸騰冷却系での沸騰冷却効率が向上し、冷却
体35自体の寸法小形化が可能になる、ないしは冷媒を
フロンから弗化炭素冷媒に替えた場合でも同等な冷却性
能を確保できる。また半導体装置に過負荷が加わった場
合でも、冷却体35と液体冷媒との間の熱抵抗が低い状
態に維持されるので、それだけ過負荷耐量が高まる。な
おこの点について発明者が行った従来装置との対比実験
結果より、熱抵抗がほぼ半減することが確認されている
As a result, the boiling cooling efficiency in the boiling cooling system is improved, and the size of the cooling body 35 itself can be reduced, or equivalent cooling performance can be ensured even when the refrigerant is changed from fluorocarbon to a fluorocarbon refrigerant. Further, even if an overload is applied to the semiconductor device, the thermal resistance between the cooling body 35 and the liquid refrigerant is maintained in a low state, so that the overload tolerance is increased accordingly. In this regard, the results of a comparative experiment with a conventional device conducted by the inventor have confirmed that the thermal resistance is reduced by almost half.

なお、図示実施例では、−枚の冷却体35について冷媒
通路穴34を横一列に穿孔した例を示したが、この冷媒
通路大判を二列、ないしそれ以上の複数列として、各人
に対してその内壁面に歯列を形成することにより、冷却
性能をより一層高めることができる。
Although the illustrated embodiment shows an example in which the refrigerant passage holes 34 are drilled in a horizontal row for the - number of cooling bodies 35, the large-sized refrigerant passages may be arranged in two or more rows to provide a hole for each person. By forming a tooth row on the inner wall surface of the cooling member, the cooling performance can be further improved.

(発明の効果〕 本発明の沸騰冷却形半導体装置は、以上説明したように
構成されているので、次記の効果を奏する。
(Effects of the Invention) Since the evaporative cooling type semiconductor device of the present invention is configured as described above, it exhibits the following effects.

すなわち、半導体素子とと・もに積層してスタック組立
体を構成する冷却体の内部に、半導体素子との当接面に
沿い、かつ穴内壁面を歯列面と成した冷媒通路穴列を穿
孔して構成したことにより、従来の構成と比べて液体冷
媒との間の有効伝熱面積の増大、並びに沸騰伝熱の促進
が図れる。これにより、フロンに比べて熱伝導率の低い
弗化炭素冷媒の使用にも対応可能な小形で沸騰冷却効率
の高い沸騰冷却形半導体装置が得られる。
That is, a row of refrigerant passage holes are bored inside the cooling body that is stacked together with the semiconductor element to form a stack assembly, along the contact surface with the semiconductor element, and with the inner wall surface of the hole serving as the toothed surface. With this configuration, it is possible to increase the effective heat transfer area with the liquid refrigerant and promote boiling heat transfer compared to the conventional configuration. As a result, it is possible to obtain a small-sized boiling-cooled semiconductor device with high boiling-cooling efficiency, which can also be used with a fluorocarbon refrigerant having a lower thermal conductivity than fluorocarbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例によるスタック組立体に組み込ま
れた冷却体の断面図、第2図は第1図の平面図、第3図
は第1図における冷媒通路穴の拡大断面図、第4図は沸
騰冷却形半導体装宜全体の構成回、第5図は従来におけ
る冷却体の斜視図である0図において、 1ニスタック組立体、2:半導体素子、3,35j冷却
体、31”:半導体素子の当接面、32,347冷媒通
路穴、33:歯列、9:液体冷媒、10:容器、12:
第2図 第3図33 第4図 ?! 第5図
1 is a sectional view of a cooling body incorporated in a stack assembly according to an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is an enlarged sectional view of the refrigerant passage hole in FIG. Figure 4 shows the overall configuration of the evaporative cooling type semiconductor device, and Figure 5 is a perspective view of a conventional cooling body. Contact surface of semiconductor element, 32,347 refrigerant passage hole, 33: tooth row, 9: liquid refrigerant, 10: container, 12:
Figure 2 Figure 3 33 Figure 4? ! Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)半導体素子と平板状の冷却体とを交互に積層して
なるスタック組立体を液体冷媒に浸漬して容器内に収容
し、半導体素子の発生熱を冷却体を介して冷媒へ沸騰伝
熱させ、さらに冷媒蒸気を系外への放熱面上に凝縮伝熱
させて除熱するようにした沸騰冷却形半導体装置におい
て、前記冷却体の内部に、半導体素子との当接面に沿い
、かつ穴内壁面を歯列面と成した冷媒通路穴列を穿孔し
たことを特徴とする沸騰冷却形半導体装置。
(1) A stack assembly formed by alternately stacking semiconductor elements and flat cooling bodies is immersed in a liquid refrigerant and housed in a container, and the heat generated by the semiconductor elements is transferred to the refrigerant through the cooling body. In a boiling-cooled semiconductor device in which heat is generated and heat is removed by condensing refrigerant vapor onto a heat dissipation surface to the outside of the system, inside the cooling body, along the contact surface with the semiconductor element, An evaporative cooling type semiconductor device characterized in that a refrigerant passage hole row is bored with the inner wall surface of the hole serving as a tooth row surface.
JP63169945A 1988-07-07 1988-07-07 Boiling cooling type semiconductor device Expired - Lifetime JP2562180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63169945A JP2562180B2 (en) 1988-07-07 1988-07-07 Boiling cooling type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63169945A JP2562180B2 (en) 1988-07-07 1988-07-07 Boiling cooling type semiconductor device

Publications (2)

Publication Number Publication Date
JPH0220048A true JPH0220048A (en) 1990-01-23
JP2562180B2 JP2562180B2 (en) 1996-12-11

Family

ID=15895797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63169945A Expired - Lifetime JP2562180B2 (en) 1988-07-07 1988-07-07 Boiling cooling type semiconductor device

Country Status (1)

Country Link
JP (1) JP2562180B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0441572A2 (en) * 1990-02-07 1991-08-14 Ngk Insulators, Ltd. Power semiconductor device with heat dissipating property
US5229915A (en) * 1990-02-07 1993-07-20 Ngk Insulators, Ltd. Power semiconductor device with heat dissipating property
JP2008205087A (en) * 2007-02-19 2008-09-04 Fuji Electric Systems Co Ltd Cooling device and semiconductor power converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123566U (en) * 1980-02-20 1981-09-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123566U (en) * 1980-02-20 1981-09-19

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0441572A2 (en) * 1990-02-07 1991-08-14 Ngk Insulators, Ltd. Power semiconductor device with heat dissipating property
US5229915A (en) * 1990-02-07 1993-07-20 Ngk Insulators, Ltd. Power semiconductor device with heat dissipating property
JP2008205087A (en) * 2007-02-19 2008-09-04 Fuji Electric Systems Co Ltd Cooling device and semiconductor power converter

Also Published As

Publication number Publication date
JP2562180B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US3217793A (en) Heat transfer
US20120012281A1 (en) Heat sink with multiple vapor chambers
JP3918502B2 (en) Boiling cooler
JPH0234183B2 (en)
TWM517314U (en) Heat dissipation apparatus
JPH0363825B2 (en)
TW202030448A (en) Vapor chamber and heat dissipation device having the same
TWM622843U (en) Heat dissipation device
JP2023070147A (en) Evaporator assemblies, vapor chambers, and methods for fabricating vapor chambers
US11967540B2 (en) Integrated circuit direct cooling systems having substrates in contact with a cooling medium
JPH0220048A (en) Boiling-cooling type semiconductor device
US20230337398A1 (en) Heat dissipation module
JPH02114597A (en) Method of cooling electronic device
TWM524451U (en) Integrated heat dissipating device
WO2022227220A1 (en) Heat dissipation device having flat heat pipe and cooling liquid plate composite structure and manufacturing method for heat dissipation device
WO2017107191A1 (en) Heat exchange material, apparatus and system
US20220246493A1 (en) Water-cooling device with composite heat-dissipating structure
CN103841803A (en) Heat sink equipped with thin chamber using thick burnt deposits and boiling
JPH0254955A (en) Vaporization cooling semiconductor device
TWM498303U (en) Vapor chamber
TWI767829B (en) Chip package
JPS61128598A (en) Cooler
TWM659621U (en) Three-dimensional heat dissipation device
KR102346767B1 (en) Direct contact heat sink
TWI816444B (en) Immersion-cooling heat-dissipation structure with high density fins