JPH021998B2 - - Google Patents

Info

Publication number
JPH021998B2
JPH021998B2 JP15835082A JP15835082A JPH021998B2 JP H021998 B2 JPH021998 B2 JP H021998B2 JP 15835082 A JP15835082 A JP 15835082A JP 15835082 A JP15835082 A JP 15835082A JP H021998 B2 JPH021998 B2 JP H021998B2
Authority
JP
Japan
Prior art keywords
discharge port
slide valve
valve
regulator
screw compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15835082A
Other languages
Japanese (ja)
Other versions
JPS5949392A (en
Inventor
Hideyo Asano
Yoshio Ikeda
Keisuke Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP15835082A priority Critical patent/JPS5949392A/en
Publication of JPS5949392A publication Critical patent/JPS5949392A/en
Publication of JPH021998B2 publication Critical patent/JPH021998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • F04C28/125Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves with sliding valves controlled by the use of fluid other than the working fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary-Type Compressors (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はスクリユー式圧縮機の吐出ポートの開
度変更及び容量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a device for changing the opening degree of a discharge port of a screw compressor and controlling the capacity thereof.

(従来の技術) 従来のスクリユー式圧縮機の吐出ポートの開度
変更及び容量制御装置には特開昭57−126589号公
報所載のものがあるが、これは滑り弁、摺動スト
ツプ及び付加的弁部材の3個の弁によつて容量及
び圧力比を調節可能としたものであり、構造複雑
であるとともにその調節も簡単ではない。また、
特開昭51−43211号公報所載のものは、スライド
バルブが吐出圧力可変バルブと容量可変バルブと
からなり、容量可変バルブが吐出圧力可変バルブ
の小径部に摺動できるように嵌合されていて一本
の摺動空間で容量及び吐出圧力を制御できるよう
にしたものであつて、2つのピストンロツドは同
軸上に直列に設けてなく、吐出圧力可変バルブと
容量可変バルブを一体として摺動させることがで
きず、また吐出圧力と吸入圧力の比に対して最小
の所要動力が得られる設計容積比の最適値を演算
して発生する信号により作動させることはできな
い。
(Prior Art) A conventional device for changing the opening degree and controlling the capacity of the discharge port of a screw compressor is disclosed in Japanese Patent Application Laid-Open No. 126589/1989. The capacity and pressure ratio can be adjusted by three valves in the target valve member, and the structure is complex and the adjustment is not easy. Also,
In the slide valve described in JP-A No. 51-43211, the slide valve consists of a variable discharge pressure valve and a variable capacity valve, and the variable capacity valve is fitted so as to be able to slide into the small diameter portion of the variable discharge pressure valve. The variable discharge pressure valve and the variable capacity valve slide as a unit, and the two piston rods are not arranged in series on the same axis. Moreover, it cannot be operated by a signal generated by calculating the optimal value of the design volume ratio that provides the minimum required power with respect to the ratio of the discharge pressure to the suction pressure.

更に、実願昭55−88704号(実開昭57−13896号
公報)の願書に添付した明細書及び図面所載のも
のは、スライド弁が「互いに嵌合する固定弁と可
動弁」との組合せからなり、両弁を相対的に摺動
させることによりスライド弁自体の長さを変更
し、内部容積比を変更できるようにしたものであ
るが、固定弁の凹部に可動弁の一部が摺動自在に
嵌挿されているため、固定弁と可動弁との中間に
直径の小さい段部が生じてしまい、この小径段部
の長さが内部容積比の変更に応じて変化する(両
弁が相対的に移動するので)ことになり、該小径
段部を介して圧縮空気が他の歯溝空間に洩れるこ
とになる。したがつてこのようなスライド弁では
圧縮空間を実際上、形成することがむつかしい。
Furthermore, the specification and drawings attached to the application of Utility Model Application No. 55-88704 (publication of Utility Model Application No. 57-13896) show that the slide valve is a "fixed valve and a movable valve that fit together". By sliding both valves relative to each other, the length of the slide valve itself can be changed and the internal volume ratio can be changed. Because they are slidably inserted, a small-diameter step is created between the fixed valve and the movable valve, and the length of this small-diameter step changes as the internal volume ratio changes (both As the valves move relative to each other), compressed air leaks into other tooth space through the small diameter step. Therefore, it is actually difficult to form a compression space in such a slide valve.

(発明が解決しようとする問題点) 本発明は前記従来技術の欠点を解消し、構造が
簡単であつて調節操作も容易であるとともに運転
状態(圧縮器の変化)に応じて最適の設計容量比
を得ることができるように設計容量比を運転中自
在に転換することができる装置に関する。
(Problems to be Solved by the Invention) The present invention eliminates the drawbacks of the prior art, has a simple structure, is easy to adjust, and has an optimal design capacity according to operating conditions (changes in the compressor). The present invention relates to a device that can freely change the design capacity ratio during operation so that the ratio can be obtained.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は前記の問題点を解決するために次のよ
うに構成される。
(Means for Solving the Problems) The present invention is configured as follows in order to solve the above problems.

互いに噛み合う一対の雄雌ねじロータ、該ロー
タを内蔵しその歯溝空間を形成するケーシング及
び吸入ポート、吐出ポートを具える両端面を有す
るスクリユー式圧縮機において、前記雄雌ねじロ
ータの噛み合い位置に対向する前記ケーシング内
壁に軸方向に吸入ポート側の端面、吐出ポート側
の端面を貫通するくぼみ溝を形成し、このくぼみ
溝に軸と平行の方向にシリンダ内壁の一部を形成
する第1スライド弁、第2スライド弁を同軸上に
直列に設け、前記第1スライド弁を吐出ポート側
とし、第1スライド弁及び第2スライド弁は同軸
心上に位置するようにしてそれぞれ連結杆を設
け、かつ該連結杆にそれぞれ固定される油圧ピス
トンが同一油圧シリンダ内で同軸心上において作
動できるようになつており、前記第1スライド弁
を単独に摺動させることによつて容量を制御でき
るようにし、吐出圧力Pdと吸入圧力Psを感知す
る装置と該感知装置よりの信号により運転圧縮比
Pd/Psに対して最小所要動力が得られる設計容
積比の最適値を演算してその信号を発生させる調
節器とを有し、該調節器よりの信号により、前記
の第1、第2スライド弁を一体として摺動させる
ことによつて吐出ポートの開度を変更できるよう
に構成したスクリユー式圧縮機の吐出ポートの開
度変更及び容量制御装置。
A screw compressor having a pair of male and female threaded rotors that mesh with each other, a casing that houses the rotors and forms a tooth space, and both end faces that include a suction port and a discharge port, the screw compressor facing the meshing position of the male and female threaded rotors. a first slide valve in which a recessed groove is formed in the inner wall of the casing to pass through an end face on the suction port side and an end face on the discharge port side in the axial direction, and a part of the inner wall of the cylinder is formed in the recessed groove in a direction parallel to the axis; second slide valves are provided in series on the same axis, the first slide valve is on the discharge port side, the first slide valve and the second slide valve are located on the same axis, and each has a connecting rod; Hydraulic pistons fixed to the connecting rods are operable coaxially within the same hydraulic cylinder, and by independently sliding the first slide valve, the displacement can be controlled, and the discharge A device that senses pressure Pd and suction pressure Ps, and a signal from the sensing device determines the operating compression ratio.
and a regulator that generates a signal by calculating the optimal value of the design volume ratio that provides the minimum required power for Pd/Ps, and the signal from the regulator is used to control the first and second slides. A device for changing the opening degree of a discharge port and controlling the capacity of a screw compressor, which is configured to be able to change the opening degree of a discharge port by sliding a valve as one unit.

(作用) 油圧シリンダの連結される油圧配管を通じて油
圧ピストンに適宜油圧を加えることによつて、2
個のスライド弁を別体でなく一体として軸方向の
前後に摺動させることによつて吐出ポートの開度
を容易にかつ確実に変更させることができ、また
第1スライド弁のみを軸方向の前後に摺動させる
ことにより容量を制御することができる。
(Function) By applying appropriate hydraulic pressure to the hydraulic piston through the hydraulic piping to which the hydraulic cylinder is connected, 2.
The opening degree of the discharge port can be changed easily and reliably by sliding the two slide valves as one body rather than as separate pieces back and forth in the axial direction. Capacity can be controlled by sliding back and forth.

また、スクリユー式圧縮機の吸入部、吐出部に
設けられた吸入圧力センサ、吐出圧力センサによ
つて吸入圧力と吐出圧力を感知し、これを電気信
号として調節器へ発信し、調節器において運転圧
縮比に対して最小所要動力が得られる設計容積比
の最適値を演算し、その信号により油圧を切換え
て第1スライド弁と第2スライド弁を一体として
摺動させて吐出ポートの開度を変更することによ
り、スクリユー式圧縮機を運転条件の変化に対応
して常に最適の運転状態に保つことができる。
In addition, the suction pressure and discharge pressure are sensed by the suction pressure sensor and discharge pressure sensor installed in the suction and discharge parts of the screw compressor, and these are sent as electrical signals to the regulator, which then operates the compressor. The optimal value of the design volume ratio that provides the minimum required power for the compression ratio is calculated, and the hydraulic pressure is switched based on the signal to slide the first slide valve and the second slide valve as a unit to adjust the opening of the discharge port. By making this change, the screw compressor can be kept in the optimum operating state at all times in response to changes in operating conditions.

(実施例) 本発明の実施の一例を図面により説明する。(Example) An example of implementation of the present invention will be explained with reference to the drawings.

1はケーシングでこのケーシング1の一部であ
る、雄ねじロータ2と雌ねじロータ(図示しな
い)が噛合う位置の下方に、吐出ポート16の側
の端面と吸入ポート17の側の端面をともに貫通
するくぼみ円形溝18を形成し、このくぼみ円形
溝18にシリンダ内壁の一部を構成する第1スラ
イド弁3と第2スライド弁4を挿嵌させ、第1ス
ライド弁3と固着する連結杆5が油圧ピストン8
とまた第2スライド弁4と固着する連結杆6が油
圧ピストン7とそれぞれ連結させ、第1スライド
弁3と第2スライド弁4が同軸心上において、ま
た油圧ピストン7と油圧ピストン8が同軸心上に
おいて作動するように構成される。この油圧ピス
トン7,8は同一の油圧ピストン9の内壁に接す
る外周面にOリングやキヤツプシール等を備えて
油圧シリンダ9に嵌装され、隔壁空間10,1
1,12を形成している。油圧シリンダ9には油
圧の配管24,29,25,28の接続孔13,
14,15が穿孔されており、配管24または2
5から接続孔13または15に交互に油圧を加え
ることによりスライド弁3,4を一体として軸方
向の前後に摺動させることができ(この場合、空
間11内の油の出入はない)、また切換電磁弁2
2を閉にすることによつてスライド弁4の位置を
任意の位置に固定させ、更にまた配管29または
28に交互に油圧を加えることによりスライド弁
3を前後に摺動させることにより従来の容量制御
装置の働きができるようになつている。また19
は吸入圧力センサ、20は吐出圧力センサで調節
器(マイコンコントローラ)21に接続されて、
電磁式四方弁22,27も調節器21に接続され
ている。
Reference numeral 1 denotes a casing, which is a part of the casing 1 and passes through both the end face on the discharge port 16 side and the end face on the suction port 17 side below the position where the male threaded rotor 2 and the female threaded rotor (not shown) mesh. A recessed circular groove 18 is formed, into which the first slide valve 3 and the second slide valve 4 which constitute a part of the inner wall of the cylinder are inserted, and a connecting rod 5 fixed to the first slide valve 3 is inserted. hydraulic piston 8
In addition, a connecting rod 6 fixedly attached to the second slide valve 4 connects the hydraulic piston 7, so that the first slide valve 3 and the second slide valve 4 are coaxial, and the hydraulic piston 7 and the hydraulic piston 8 are coaxial. configured to operate on. The hydraulic pistons 7 and 8 are fitted into the hydraulic cylinder 9 with O-rings, cap seals, etc. on the outer peripheral surface that contacts the inner wall of the same hydraulic piston 9, and are fitted into the hydraulic cylinder 9.
1 and 12 are formed. The hydraulic cylinder 9 has connection holes 13 for hydraulic piping 24, 29, 25, 28,
14 and 15 are perforated, and the pipe 24 or 2
By alternately applying hydraulic pressure from 5 to the connecting holes 13 or 15, the slide valves 3 and 4 can be slid back and forth in the axial direction as a unit (in this case, oil does not enter or exit the space 11), and Switching solenoid valve 2
By closing the slide valve 2, the position of the slide valve 4 is fixed at an arbitrary position, and furthermore, by alternately applying hydraulic pressure to the piping 29 or 28, the slide valve 3 is slid back and forth. It is now capable of functioning as a control device. Also 19
20 is a suction pressure sensor, and 20 is a discharge pressure sensor connected to a regulator (microcomputer controller) 21.
The four-way electromagnetic valves 22 and 27 are also connected to the regulator 21.

次に実施例の作動を第3図により説明する。ス
クリユー式圧縮機の吸入部、吐出部に設けられた
吸入圧力センサ19、吐出圧力センサ20によつ
て吸入圧力Psと吐出圧力Pdを感知し、これを電
気信号として調節器21へ発信し、調節器21に
おいて運転圧縮比Pd/Psに対して最小所要動力
が得られる設計容積比の最適値を演算する。冷媒
としてR22を使用するときはVi=1.0+0.51×
Pd/Ps式によりViを演算し、その電気信号を電
磁式四方弁22に与えて給油ヘツダ23よりの油
圧を配管24または25を介して油圧シリンダ9
の空間10または12の何れかに加え、他方の空
間の油を配管26を介して圧縮機の吸入部に逃す
ことによつて第1及び第2スライド弁3,4を一
体として軸方向の前後に摺動させる。これにより
全負荷における設計容積比Viを最適値に変換す
ることができる。
Next, the operation of the embodiment will be explained with reference to FIG. The suction pressure Ps and discharge pressure Pd are detected by the suction pressure sensor 19 and the discharge pressure sensor 20 provided at the suction and discharge parts of the screw compressor, and these are sent as electrical signals to the regulator 21 for adjustment. In the device 21, the optimum value of the design volume ratio that provides the minimum required power for the operating compression ratio Pd/Ps is calculated. When using R22 as a refrigerant, Vi=1.0+0.51×
Vi is calculated using the Pd/Ps formula, and the electrical signal is given to the electromagnetic four-way valve 22 to transfer the hydraulic pressure from the oil supply header 23 to the hydraulic cylinder 9 via the piping 24 or 25.
The first and second slide valves 3, 4 are integrally moved forward and backward in the axial direction by releasing oil from the other space into the suction section of the compressor through the piping 26. slide it. This allows the design volume ratio Vi at full load to be converted to an optimal value.

また吸入圧力センサ19により検出される吸入
圧力Psが調節器21の設定圧力よりも低くなつ
た場合は、その差を調節器21で演算し、電気信
号によつて電磁式四方弁27を作動させ、配管2
8を介して油圧シリンダ9の空間12に油圧を加
え、一方、空間11の油を配管29及び配管30
を介して吸入低圧部に逃すことによつて第1スラ
イド弁3のみを吐出ポート16の方向へ摺動さ
せ、吸入圧力Psが設定圧力に戻るようにし、負
荷を軽減させる。
Furthermore, when the suction pressure Ps detected by the suction pressure sensor 19 becomes lower than the set pressure of the regulator 21, the difference is calculated by the regulator 21, and the electromagnetic four-way valve 27 is operated by an electric signal. , piping 2
Hydraulic pressure is applied to the space 12 of the hydraulic cylinder 9 through the pipe 8, while the oil in the space 11 is supplied to the pipe 29 and the pipe 30.
By releasing the pressure to the suction low pressure section through the suction port 16, only the first slide valve 3 is slid in the direction of the discharge port 16, so that the suction pressure Ps returns to the set pressure, and the load is reduced.

つぎに冷媒としてR22を使用する場合、Vi=
1.0+0.51×Pd/Psにより最適値が得られる理由
を説明する。
Next, when using R22 as a refrigerant, Vi=
The reason why the optimum value is obtained by 1.0+0.51×Pd/Ps will be explained.

ここで、R22とは万国共通に用いられる冷媒番
号による呼称の1つであつて、化学式CClF2H
(クロロジフルオロメタン)で表わされる冷媒を
言う。
Here, R22 is one of the universally used refrigerant number designations, and has the chemical formula CClF 2 H
(chlorodifluoromethane).

設計容積比Viは設計運転条件により決められ
るものであつて、 Vi=Vs/Vd、 π=Pd/Ps=(Vs/Vd)k=(Vi)k ここで、 Vi:設計容積比 π:設計圧力比 V:容積 P:圧力 k:断熱指数 d:吐出側 s:吸入側 このViは設計条件を外れた運転条件において
修正することにより成績係数を向上させることが
できる。
The design volume ratio Vi is determined by the design operating conditions, Vi=Vs/Vd, π=Pd/Ps=(Vs/Vd) k =(Vi) kwhere , Vi: Design volume ratio π: Design Pressure ratio V: Volume P: Pressure k: Adiabatic index d: Discharge side s: Suction side The coefficient of performance can be improved by correcting Vi under operating conditions outside of the design conditions.

運転条件(Pd/Ps=π)と最適Viとの間にど
のような関係があるかをスクリユー式圧縮機の2
つの機種(160SUD、160LUD)につき冷媒R22
を使用して実験した。
What is the relationship between the operating conditions (Pd/Ps=π) and the optimum Vi for the screw compressor?
Refrigerant R22 per model (160SUD, 160LUD)
I experimented using.

ここで、160SUDとはロータ径が163.2mmでロー
タ長さが180mm(押しのけ量413m3/H、すなわち
長さ/径/=L/D=1.1の場合であり、
160LUDとはロータ径が163.2mmでロータ長さが
270mm(押しのけ量619m3/H、すなわち長さ/径
=L/D=1.65の場合を言う。
Here, 160SUD means that the rotor diameter is 163.2 mm and the rotor length is 180 mm (displacement amount 413 m 3 /H, that is, length / diameter / = L / D = 1.1.
160LUD has a rotor diameter of 163.2mm and a rotor length.
270mm (referring to the case where the displacement is 619m 3 /H, that is, length/diameter = L/D = 1.65).

第4図〜第6図において、 ηv:体積効率=VR/Vth ηad:全断熱効率=Nad/BKW ただし、 BKW(KW):所要動力 Nad(KW):断熱圧縮動力 VR(m3/h):実際の吸入量 Vth(m3/h):理論押しのけ量 第4図は機種160LUDにつきaxial PortβM
30゜、回転数N=3000rpm、Pd=15.6Kg/cm2・a
としPsを変えて実験した結果である。
In Figures 4 to 6, ηv: Volumetric efficiency = V R /V th ηad: Total adiabatic efficiency = Nad/BKW However, BKW (KW): Required power Nad (KW): Adiabatic compression power V R (m 3 /h): Actual suction amount V th (m 3 /h): Theoretical displacement amount Figure 4 shows axial Portβ M = for model 160LUD.
30゜, rotation speed N = 3000rpm, Pd = 15.6Kg/cm 2・a
This is the result of an experiment with different Ps.

また、第5図は機種160SUDにつきaxial
PortβM=30゜、回転数N=3000rpm、Pd=12.9
Kg/cm2・aとしPsを変えて実験した結果である。
In addition, Figure 5 shows the axial
Portβ M = 30°, rotation speed N = 3000rpm, Pd = 12.9
These are the results of experiments with different Ps at Kg/cm 2・a.

設計容積比Viを固定式とした従来のスクリユ
ー式圧縮機を製作する場合、種々の吸入吐出圧力
条件等に対応させるために、3種類のVi値を準
備する。すなわち、Viの標準値として2.63、
3.65、5.80の3種類のものを一般にメーカーは準
備している。
When manufacturing a conventional screw compressor with a fixed design volume ratio Vi, three types of Vi values are prepared to accommodate various suction and discharge pressure conditions. That is, the standard value of Vi is 2.63,
Manufacturers generally prepare three types: 3.65 and 5.80.

したがつて、予め用途に応じて前記圧力条件が
分つているときは、前記3種類のVi値の中から
該条件に最適のものを選定すればよい。しかしス
クリユー式圧縮機を運転する圧力条件が変動する
場合(例えば冷蔵庫の温度を変える或は、ヒート
ポンプのように冷房と暖房とを兼用にする等)に
は、PdまたはPs或はPdとPsが変動するので、前
記のようなVi固定式のもでは能率の悪い運転領
域が多く、損失を生じてくることになる。
Therefore, when the pressure conditions are known in advance depending on the application, the one most suitable for the conditions may be selected from among the three types of Vi values. However, when the pressure conditions under which the screw compressor is operated change (for example, when changing the temperature of a refrigerator or using a heat pump for both cooling and heating), Pd or Ps or Pd and Ps may change. Since Vi fluctuates, the above-mentioned fixed Vi type has many operating regions with poor efficiency, resulting in losses.

そして、このように圧力または運転条件が変動
する場合には、一般に前記Vi値のうちの中間値
である「Vi=3.65」のものを採用してπ=Pd/
Psが小さい方及び大きい方のそれぞれの運転損
失には目をつぶるケースが多い(従来技術)。本
実験において従来技術としてVi=3.65を選定した
理由もここにある。
When the pressure or operating conditions fluctuate in this way, generally the intermediate value of the above Vi values, "Vi=3.65", is adopted and π=Pd/
There are many cases in which the operating losses for smaller and larger Ps are ignored (conventional technology). This is also the reason why we selected Vi=3.65 as the conventional technology in this experiment.

第4図及び第5図は、本発明の装置(第3図)
を、その電気的制御回路を動作させないようにし
ておき、Pdを一定に固定してPsを変え、かつVi
値を2.2から4.5の範囲で手動的に変更したとき、
それがスクリユー式圧縮機の性能すなわちηv、
ηad、BKWにどのような影響を与えるかを実験
によりたしかめたものである。
Figures 4 and 5 show the apparatus of the present invention (Figure 3).
, its electrical control circuit is kept inactive, Pd is fixed constant, Ps is varied, and Vi
When I manually changed the value between 2.2 and 4.5,
This is the performance of the screw compressor, ηv,
The effect on ηad and BKW was confirmed through experiments.

これらの図面から理解できることを例示して説
明する。第4図によれば、吸入圧力Ps=2.5のと
き所要動力BKWが最小の値となる設計容積比Vi
の最適値は4.2であり、Ps=3.6のときのViの最適
値は3.2、Ps=5.1のときのViの最適値は2.6、Ps
=6.0のときのViの最適値は2.3であることが分
る。
What can be understood from these drawings will be explained using examples. According to Fig. 4, the design volume ratio Vi at which the required power BKW is the minimum value when the suction pressure Ps = 2.5
The optimal value of is 4.2, the optimal value of Vi when Ps = 3.6 is 3.2, the optimal value of Vi when Ps = 5.1 is 2.6, Ps
It can be seen that the optimal value of Vi when = 6.0 is 2.3.

このことより、Pdが一定であるとき、Psの値
が変るにつれて、Viの最適値が順次変ることが
分る。
From this, it can be seen that when Pd is constant, the optimal value of Vi changes sequentially as the value of Ps changes.

第5図についても同様のことが言える。 The same can be said about FIG.

第6図は前記実施例の結果をVi=3.65に固定し
た従来技術の性能と本発明装置による最適容積比
での性能とを比較した結果を改善率で表わしたも
のであり、第6図の3種類のカーブは第4図及び
第5図の実験結果に基いて描かれたものである。
FIG. 6 shows the results of the comparison of the performance of the prior art with Vi=3.65 fixed at Vi=3.65 and the performance of the device of the present invention at the optimum volume ratio, and the results are expressed as improvement rates. The three types of curves were drawn based on the experimental results shown in FIGS. 4 and 5.

今、第6図のカーブの内、全断熱効率ηadのカ
ーブの描き方を例にとつて説明する。
Now, of the curves in FIG. 6, how to draw the curve for the total adiabatic efficiency ηad will be explained as an example.

第4図において、従来型についてはVi=3.65に
固定したものを考えるので、同図の横軸上のVi
=3.65の点から垂直を立て、この線がηadのカー
ブ群と交わる点を求める。Psが4つあるので、
この交点も4つ求められる。今、この垂線とPs
=5.1のηadカーブとの交点を求めると、その値は
縦軸のスケールからみて約72(%)と読める。次
に、第4図において、Vi可変型について考える
と、Ps=5.1の場合の所要動力BKWのカーブにお
いてその最小値はVi=2.6位のところにある(こ
れはPd=15.6、Ps=5.1の場合にはVi=2.6が
BKWを最小にする最適値と言うことである)。
そこで、横軸上のVi=2.6の点から垂線を立て、
この線がηadのカーブ(Ps=5.1のカーブ)と交
わる点を求めると、この交点のηad値は縦軸のス
ケールからみて約79(%)と読める。
In Figure 4, we consider that the conventional type is fixed at Vi = 3.65, so Vi on the horizontal axis of the figure
Establish a vertical line from the point =3.65 and find the point where this line intersects the curve group of ηad. Since there are four Ps,
Four such intersection points are also found. Now, this perpendicular line and Ps
When we find the intersection with the ηad curve of =5.1, the value can be read as approximately 72 (%) from the scale of the vertical axis. Next, in Fig. 4, considering the Vi variable type, in the curve of required power BKW when Ps = 5.1, the minimum value is at Vi = 2.6 (this is the same as when Pd = 15.6 and Ps = 5.1). In this case, Vi=2.6
This is the optimal value that minimizes BKW).
Therefore, draw a perpendicular line from the point Vi = 2.6 on the horizontal axis,
If we find the point where this line intersects with the ηad curve (Ps = 5.1 curve), the ηad value at this intersection can be read as approximately 79 (%) from the scale of the vertical axis.

そこで、前記Vi固定型のηad値である72を分母
とし、Vi可変型のηad値である79を分子としてそ
の商を計算すると、79/72=1.097≒1.1となる。
ところで、今の例ではPs=5.1であるからπ=
Pd/Ps=15.6/5.1=3.0である。
Therefore, when the quotient is calculated using 72, which is the ηad value of the fixed Vi type, as the denominator and 79, which is the ηad value of the variable Vi type, as the numerator, it becomes 79/72=1.097≈1.1.
By the way, in the current example, Ps = 5.1, so π =
Pd/Ps=15.6/5.1=3.0.

そこで、第6図において横軸上のπ=3の点か
ら垂線を立て、この線上で縦軸のスケール1.10の
点を求める。このようにして計算を繰返して多数
の点を求めていき、これらの点を線で結ぶと同図
のηadのカーブが描かれる。
Therefore, in FIG. 6, draw a perpendicular line from the point π=3 on the horizontal axis, and find a point on this line with a scale of 1.10 on the vertical axis. By repeating the calculation in this way and finding many points, connecting these points with a line will draw the curve of ηad in the same figure.

これは、第4図の実験機種160LUDを用い、Pd
=1.56が一定でありPs=5.1となつた場合、Vi可
変型ではVi固定型に比べて全断熱効率ηadが1.10
と大きくなることを表わすものである(10%分だ
け全断熱効率が改善されている)。ηv及びBKW
についても、前記同様の手法で第6図のカーブを
それぞれ描くことができる。
This is done using the experimental model 160LUD shown in Figure 4, and Pd
= 1.56 is constant and Ps = 5.1, the total insulation efficiency ηad of the variable Vi type is 1.10 compared to the fixed Vi type.
(total insulation efficiency is improved by 10%). ηv and BKW
The curves shown in FIG. 6 can also be drawn using the same method as described above.

なお、所要動力BKWについては、Vi固定型の
BKWの値を分母とし、Vi可変型のBKWの値を
分子とすると、第6図においてπ(=Pd/Ps)=
5.2のとき改善率が1、すなわち分母と分子の値
が同一となつているが、これはVi=3.65に固定し
た従来型のときはπ=5.2が丁度そのスクリユー
式圧縮機の構造に適合した運転状態であることを
示している。
Regarding the required power BKW, the Vi fixed type
If the value of BKW is the denominator and the value of BKW of the Vi variable type is the numerator, in Figure 6, π (= Pd / Ps) =
When it is 5.2, the improvement rate is 1, that is, the denominator and numerator values are the same, but this means that in the case of the conventional type where Vi = 3.65 was fixed, π = 5.2 was exactly compatible with the structure of the screw type compressor. Indicates that it is in operation.

しかし、πの値がそれより小さくなつても大き
くなつてもVi可変型の方が所要動力BKWが小さ
くなり、換言すれば分子の値/分母の値<1とな
る。例えばBKWのカーブ上の点が縦軸のスケー
ルで0.95の値であるということは、その点では5
%だけ所要動力が節約されることになる(0.95と
いう改善率の意味)。
However, whether the value of π becomes smaller or larger, the required power BKW is smaller in the Vi variable type, in other words, the value of the numerator/value of the denominator is less than 1. For example, a point on the BKW curve has a value of 0.95 on the vertical axis scale, which means that the point is 5
% (meaning an improvement rate of 0.95).

第7図は前記の実施例の結果に基き、所要動力
BKWが最小値となるViすなわちViの最適値を
Pd/Ps(=π)ごとにプロツトして、この最適値
群より近似式(実線)を求めたものである。
Figure 7 shows the required power based on the results of the above example.
Find Vi where BKW is the minimum value, that is, the optimal value of Vi.
Pd/Ps (=π) is plotted and an approximate expression (solid line) is obtained from this group of optimum values.

なお図において破線はPd/Ps=Vik(断線指数、
k=1.184、R22)の理論式を表わしている。
In addition, the broken line in the figure is Pd/Ps=Vi k (broken line index,
k=1.184, R22).

本来、容積型の圧縮機において、その圧縮行程
を断熱変化と仮定するとP1V1 k=P2V2 kが成立す
るので、容積比と圧力比はV1/V2=(P2/P11/k
(=Vi)となる筈である。しかし実際のスクリユ
ー式圧縮機では実験したみた結果、所要動力
BKWが最小となる最適Viとπ(=Pd/Ps)との
関係は実際には第7図の実線のようになり、Vi
=(Pd/Ps)1/kの理論式から得られる破線とはズ
レがあることが分つた。実験の結果得られたこの
実線を一次近似すると、Vi=1.0+0.51×Pd/Ps
の近似式が得られる。
Originally, in a positive displacement compressor, assuming that the compression stroke is an adiabatic change, P 1 V 1 k = P 2 V 2 k holds, so the volume ratio and pressure ratio are V 1 /V 2 = (P 2 / P1 ) 1/k
(=Vi). However, as a result of experiments with an actual screw compressor, the required power
The relationship between the optimal Vi and π (=Pd/Ps) that minimizes BKW is actually as shown in the solid line in Figure 7, and Vi
= (Pd/Ps) It was found that there was a deviation from the broken line obtained from the theoretical formula of 1/k . By first approximating this solid line obtained from the experiment, Vi=1.0+0.51×Pd/Ps
An approximate expression is obtained.

したがつて、R22の場合はこの近似式によつて
Viの最適値が得られることが分る。
Therefore, in the case of R22, by this approximation formula,
It can be seen that the optimal value of Vi can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明はスクリユー式圧縮機において、雄雌ね
じロータの噛み合い位置に対向するケーシング内
壁に軸方向に吸入側の端面、吐出側の端面を軸方
向に貫通するくぼみ溝を形成し、このくぼみ溝に
シリンダー内壁の一部を形成する第1スライド
弁、第2スライド弁を直列に設け、第1スライド
弁を吐出ポート側とし、第1スライド弁及び第2
スライド弁は同軸心上に位置するようにしてそれ
ぞれ連結杆を設け、かつ該連結杆にそれぞれ固定
される油圧ピストンが同一の油圧シリンダ内で同
軸心上において作動できるようになつており、か
つこの第1、第2スライド弁を一体としてまた単
独に摺動させることができるように構成されてい
るので、比較的簡単な構成であるとともにスライ
ド弁の調節操作も容易であり、また第1、第2ス
ライド弁を一体として摺動させることにより吐出
ポートの開度を変更して運転条件に応ずる最適の
設計容積比を常に確実に得ることができ、また部
分負荷時においては第1スライド弁を単独に摺動
させることによつて容易に容量制御をも行なうこ
とができる。
The present invention provides a screw compressor in which a recessed groove is formed in the inner wall of the casing facing the meshing position of the male and female screw rotors, and the recessed groove is formed in the axial direction passing through the suction side end face and the discharge side end face, and the recessed groove is formed in the recessed groove. A first slide valve and a second slide valve that form part of the inner wall are provided in series, the first slide valve being on the discharge port side, and the first slide valve and the second slide valve forming a part of the inner wall.
The slide valves are each provided with a connecting rod so as to be located on the same axis, and the hydraulic pistons each fixed to the connecting rod can operate on the same axis within the same hydraulic cylinder. Since the first and second slide valves are configured to be able to slide integrally or independently, the configuration is relatively simple, and the adjustment operation of the slide valves is also easy. By sliding the two slide valves together, the opening degree of the discharge port can be changed to ensure that the optimum design volume ratio according to the operating conditions can always be obtained, and during partial loads, the first slide valve can be operated independently. Capacity can also be easily controlled by sliding it.

更に前記の構成において吐出圧力Pdと吸入圧
力Psとの比すなわち運転圧縮比Pd/Psに対して
最小所要動力が得られる設計容積比の最適値を演
算して信号を発生させる調節器とこの信号により
第1、第2スライド弁を一体として摺動させる吐
出ポートの開度変更機構を備えているので、相対
的に摺動する固定弁と可動弁との組合せからなる
スライド弁で吐出ポートの加減をしようとする従
来技術のように、圧縮空間の形成に困難をきたす
ようなおそれもなく、運転条件の変化に対応して
最適の設計容積比を容易に得てスクリユー式圧縮
機を常に最適の運転状態に保つことができる。
Further, in the above configuration, there is provided a regulator that generates a signal by calculating the optimal value of the design volume ratio that provides the minimum required power for the ratio of the discharge pressure Pd and the suction pressure Ps, that is, the operating compression ratio Pd/Ps, and this signal. Since it is equipped with a discharge port opening change mechanism that slides the first and second slide valves as one unit, the discharge port can be adjusted by using the slide valve, which is a combination of a fixed valve and a movable valve that slide relative to each other. Unlike the conventional technology, which attempts to create a compression space, there is no fear of difficulty in forming the compression space, and it is possible to easily obtain the optimal design volume ratio in response to changes in operating conditions, so that the screw compressor can always be operated at the optimal design volume ratio. Can be kept in running condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1、第2スライド弁を備え
たスクリユー式圧縮機部分の実施例の断面図、第
2図は第1図の実施例の油圧ピストン部分の拡大
断面図、第3図は第1図のスクリユー式圧縮機を
備えた本発明装置の全体構成の説明図、第4図及
び第5図は本発明装置を備えた2機種について行
なつた実験の結果を描いたグラフ、第6図及び第
7図は前記実験の結果に基いて作成したグラフで
ある。 1……ケーシング、2……雄ねじロータ、3…
…第1スライド弁、4……第2スライド弁、5,
6……連結杆、7,8……油圧ピストン、9……
油圧シリンダ、16……吐出ポート、17……吸
入ポート、18……くぼみ溝としてのくぼみ円形
溝、19……吸入圧力を感知する装置としての吸
入圧力センサ、20……吐出圧力を感知する装置
としての吐出圧力センサ、21……調節器、2
2,27……切換電磁弁としての電磁式四方弁、
23……給油ヘツダ、24,25,26,28,
29,30……油圧回路を形成するための配管。
FIG. 1 is a sectional view of an embodiment of a screw type compressor portion equipped with first and second slide valves of the present invention, FIG. 2 is an enlarged sectional view of a hydraulic piston portion of the embodiment of FIG. 1, and FIG. The figure is an explanatory diagram of the overall configuration of the device of the present invention equipped with the screw type compressor shown in FIG. 1, and FIGS. 4 and 5 are graphs depicting the results of experiments conducted on two models equipped with the device of the present invention. , FIG. 6, and FIG. 7 are graphs created based on the results of the above experiment. 1...Casing, 2...Male thread rotor, 3...
...First slide valve, 4...Second slide valve, 5,
6... Connecting rod, 7, 8... Hydraulic piston, 9...
Hydraulic cylinder, 16... Discharge port, 17... Suction port, 18... Concave circular groove as a depressed groove, 19... Suction pressure sensor as a device for sensing suction pressure, 20... Device for sensing discharge pressure. discharge pressure sensor, 21...regulator, 2
2, 27... Solenoid four-way valve as a switching solenoid valve,
23... Oil supply header, 24, 25, 26, 28,
29, 30...Piping for forming a hydraulic circuit.

Claims (1)

【特許請求の範囲】 1 互いに噛み合う一対の雄雌ねじロータ、該ロ
ータを内蔵しその歯溝空間を形成するケーシング
及び吸入ポート、吐出ポートを具える両端面を有
するスクリユー式圧縮機において、前記雄雌ねじ
ロータの噛み合い位置に対向する前記ケーシング
内壁に軸方向に吸入ポート側の端面、吐出ポート
側の端面を貫通するくぼみ溝を形成し、このくぼ
み溝に軸と平行の方向にシリンダ内壁の一部を形
成する第1スライド弁、第2スライド弁を同軸上
に直列に設け、前記第1スライド弁を吐出ポート
側とし、第1スライド弁及び第2スライド弁は同
軸心上に位置するようにしてそれぞれ連結杆を設
け、かつ該連結杆にそれぞれ固定される油圧ピス
トンが同一油圧シリンダ内で同軸心上において作
動できるようになつており、前記第1スライド弁
を単独に摺動させることによつて容量を制御でき
るようにし、吐出圧力Pdと吸入圧力Psを感知す
る装置と該感知装置よりの信号により運転圧縮比
Pd/Psに対して最小所要動力が得られる設計容
積比の最適値を演算してその信号を発生させる調
節器とを有し、該調節器よりの信号により、前記
の第1、第2スライド弁を一体として摺動させる
ことによつて吐出ポートの開度を変更できるよう
に構成したスクリユー式圧縮機の吐出ポートの開
度変更及び容量制御装置。 2 吐出圧力Pdと吸入圧力Psを感知する装置か
ら電気信号を入力し最適の設計容積比を演算して
電気信号を発生する調節器を有し、該調節器から
の前記電気信号により切換電磁弁を作動して油圧
回路を切換えることにより油圧ピストンを作動
し、第1、第2スライド弁を一体として摺動させ
る特許請求の範囲第1項記載のスクリユー式圧縮
機の吐出ポートの開度変更及び容量制御装置。 3 冷媒としてクロロジフルオロメタンを使用す
るとき、Vi=1.0+0.51×Pd/Psにより最適の設
計容積比を演算するようにした特許請求の範囲第
1項または第2項記載のスクリユー式圧縮機の吐
出ポートの開度変更及び容量制御装置。
[Scope of Claims] 1. A screw compressor having a pair of male and female threaded rotors that mesh with each other, a casing housing the rotors and forming a tooth space therein, and both end faces provided with a suction port and a discharge port, wherein the male and female threaded A recessed groove is formed in the inner wall of the casing facing the rotor engagement position, passing through the end face on the suction port side and the end face on the discharge port side in the axial direction, and a part of the inner wall of the cylinder is inserted into the recessed groove in a direction parallel to the axis. A first slide valve and a second slide valve to be formed are provided in series on the same axis, the first slide valve being on the discharge port side, and the first slide valve and the second slide valve being located on the same axis, respectively. A connecting rod is provided, and hydraulic pistons fixed to the connecting rods can operate coaxially within the same hydraulic cylinder, and the capacity can be increased by independently sliding the first slide valve. The operating compression ratio is determined by a device that detects the discharge pressure Pd and suction pressure Ps and a signal from the sensor.
and a regulator that generates a signal by calculating the optimal value of the design volume ratio that provides the minimum required power for Pd/Ps, and the signal from the regulator is used to control the first and second slides. A device for changing the opening degree of a discharge port and controlling the capacity of a screw compressor, which is configured to be able to change the opening degree of a discharge port by sliding a valve as one unit. 2. It has a regulator that inputs an electrical signal from a device that senses the discharge pressure Pd and the suction pressure Ps, calculates the optimal design volume ratio, and generates the electrical signal, and the switching solenoid valve is controlled by the electrical signal from the regulator. Changing the opening degree of the discharge port of the screw compressor according to claim 1, in which the hydraulic piston is operated by switching the hydraulic circuit by operating the hydraulic piston, and the first and second slide valves are slid as a unit; Capacity control device. 3. The screw compressor according to claim 1 or 2, wherein when chlorodifluoromethane is used as a refrigerant, the optimum design volume ratio is calculated by Vi=1.0+0.51×Pd/Ps. Discharge port opening change and capacity control device.
JP15835082A 1982-09-11 1982-09-11 Discharge port opening change and volume control device of screw-type compressor Granted JPS5949392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15835082A JPS5949392A (en) 1982-09-11 1982-09-11 Discharge port opening change and volume control device of screw-type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15835082A JPS5949392A (en) 1982-09-11 1982-09-11 Discharge port opening change and volume control device of screw-type compressor

Publications (2)

Publication Number Publication Date
JPS5949392A JPS5949392A (en) 1984-03-21
JPH021998B2 true JPH021998B2 (en) 1990-01-16

Family

ID=15669724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15835082A Granted JPS5949392A (en) 1982-09-11 1982-09-11 Discharge port opening change and volume control device of screw-type compressor

Country Status (1)

Country Link
JP (1) JPS5949392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436400U (en) * 1990-07-25 1992-03-26

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249695A (en) * 1984-05-16 1985-12-10 フリツク コムパニ− Device for controlling movable sliding stopper and movable sliding valve of spiral screw type rotary compressor by microprocessor
JPS60261991A (en) * 1984-06-05 1985-12-25 フリツク コムパニ− Method and apparatus for controlling compression ratio at time of full-load of screw type rotary compressor corresponding to compressor driving motor current by microprocessor
US4678406A (en) * 1986-04-25 1987-07-07 Frick Company Variable volume ratio screw compressor with step control
JP2616161B2 (en) * 1990-06-27 1997-06-04 ダイキン工業株式会社 Screw compressor capacity control device
DE19935041A1 (en) * 1999-07-26 2001-02-08 Bitzer Kuehlmaschinenbau Gmbh Screw compressor
JP4702639B2 (en) * 2005-10-31 2011-06-15 株式会社前川製作所 Liquid jet screw compressor
JP2011132835A (en) * 2009-12-22 2011-07-07 Daikin Industries Ltd Screw compressor
TWI715240B (en) * 2019-10-09 2021-01-01 復盛股份有限公司 Screw compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436400U (en) * 1990-07-25 1992-03-26

Also Published As

Publication number Publication date
JPS5949392A (en) 1984-03-21

Similar Documents

Publication Publication Date Title
EP1553300B1 (en) Variable inner volume ratio-type screw compressor controlled by a frequency converter
JPH0744775Y2 (en) Compressor capacity control device
EP3006848B1 (en) Heat pump device
JPH0240876B2 (en)
KR100312827B1 (en) Heat Pump Device
WO2013146674A1 (en) Two-stage compression device
JPH021998B2 (en)
CN105066493A (en) Air conditioning system
EP1994278B1 (en) Slide valve with hot gas bypass port
KR0183481B1 (en) Refrigerating apparatus, airconditioner using the same and method for driving the airconditioner
CN107893757B (en) Scroll compressor, air conditioner and control method of scroll compressor
US6626000B1 (en) Method and system for electronically controlled high side pressure regulation in a vapor compression cycle
CN112431759A (en) Compressor with high adjustment precision, control method thereof and air conditioning system
JP3470042B2 (en) Screw compressor pressure control method
JPH02191882A (en) Displacement control device for compressor and control method thereof
CN108387031A (en) A kind of heat pump system and control method
CN219299517U (en) Scroll compressor and heat pump air conditioning system
JP2777713B2 (en) Capacity control device for hermetic screw compressor
EP0245427B1 (en) Screw rotor compressor and refrigeration plant
CN219570337U (en) Compressor and refrigeration equipment
JP2002070779A (en) Screw-type fluid machine
US11953006B2 (en) Screw compressor and control method therefor
CN108894987B (en) Variable-capacity rotor compressor and temperature regulating device
JPH04359759A (en) Method and device of controlling capacity of screw type compressor
CN211059008U (en) Compressor and air conditioning system with same