JPH02199886A - Optical hybrid integrated circuit - Google Patents

Optical hybrid integrated circuit

Info

Publication number
JPH02199886A
JPH02199886A JP1750989A JP1750989A JPH02199886A JP H02199886 A JPH02199886 A JP H02199886A JP 1750989 A JP1750989 A JP 1750989A JP 1750989 A JP1750989 A JP 1750989A JP H02199886 A JPH02199886 A JP H02199886A
Authority
JP
Japan
Prior art keywords
light source
optical waveguide
semiconductor light
diffraction grating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1750989A
Other languages
Japanese (ja)
Inventor
Toshihiro Shintaku
新宅 敏宏
Yoshiaki Tachikawa
吉明 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1750989A priority Critical patent/JPH02199886A/en
Publication of JPH02199886A publication Critical patent/JPH02199886A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Abstract

PURPOSE:To reduce the degree of freedoms of aligning and to facilitate it by forming a diffraction grating in which a period is specified in a semiconductor light source or an optical waveguide, and so adhering the surfaces of the semiconductor light source and the optical waveguide that the propagating directions of both the lights substantially coincide. CONSTITUTION:A diffraction grating 200 is provided on a P-type InGaAsP contact layer 5 in a window 9a formed at the electrode 9 of a semiconductor light source 100, adhered to an optical waveguide, and the part of the light is thereby introduced into the optical waveguide via the diffraction grating. When the equivalent refractive index of the light source 100 is n1 and the equivalent refractive index of the optical waveguide is n2, the period A of the diffraction grating 200 satisfies ALPHA=Nlambda/¦n1+ or -n2¦. In order to adhere the light source 100 to the waveguide, the light source 100 is inverted upside down, so placed on a board 11 that the propagating directions of both the lights coincide, so ally adjusted that the emitting light from the waveguide becomes maximum, and the electrode 9 is adhered to an electrode 13 by heating. Thus, the coupling is performed only by aligning in a plane.

Description

【発明の詳細な説明】 〈産業上の利用分針〉 本発明は、半導体光源と光導波路とを結合してなる光混
成集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Minute Hand> The present invention relates to an optical hybrid integrated circuit formed by coupling a semiconductor light source and an optical waveguide.

〈従来の技術〉 従来、半導体光源と光導波路とは第5図に示す方法によ
り結合されている。すなわち、半導体光源としての半導
体レーザ51から出射した光52をレンズ53を用いて
集光させ、これを基板54上の光導波路55の端面に入
射させている。
<Prior Art> Conventionally, a semiconductor light source and an optical waveguide have been coupled by a method shown in FIG. That is, light 52 emitted from a semiconductor laser 51 as a semiconductor light source is focused using a lens 53, and is made incident on the end face of an optical waveguide 55 on a substrate 54.

〈発明が解決しようとする課題〉 前述した結合方法によると、レンズ53の焦点距離が一
定であることからも、各部品の位置及び角度を高精度に
調整しなければならないため、高度な位置合せ固定技術
が不可欠であり、コストもかさむという間哩がある。
<Problems to be Solved by the Invention> According to the above-described combining method, since the focal length of the lens 53 is constant, the position and angle of each component must be adjusted with high precision, and therefore, a high level of alignment is required. Fixation technology is essential and costs are high.

このように従来の半導体光源と光導波路とを結合する技
術では、多自由度・高精度の位置合せを必要としている
As described above, the conventional technology for coupling a semiconductor light source and an optical waveguide requires alignment with multiple degrees of freedom and high precision.

本発明はこのような事情に艦み、位置合せの自由度を減
らし、位置合せ技術を容易にすることにより安価となっ
た光混成集積回路を提供することを目的とする。
SUMMARY OF THE INVENTION In view of these circumstances, it is an object of the present invention to provide an optical hybrid integrated circuit which is inexpensive by reducing the degree of freedom in positioning and facilitating the positioning technique.

く課題を解決するための手段〉 前記目的を達成する本発明にかかる光混成集積回路は、
活性層を含む多層構造を有する半導体光源の光を基板に
形成された先導波路に結合する光混成集積回路において
、 光波長をλ、半導体光源の等両局折率をn8、光導波路
の等両局折率をn2、回折次数をNとするときに、光の
進行方向に平行な回折格子であってその周期Aが次の関
係式、 を近似的に満たしている回折格子を、上記半導体光源又
は光導波路の内部又は表面に形成し、これら半導体光源
及び光導波路を両者の光の進行方向がほぼ一致するよう
表面同志を接合することにより半導体光源の光を光導波
路に導くようにしたことを特徴とする。
Means for Solving the Problems> The optical hybrid integrated circuit according to the present invention that achieves the above objects has the following features:
In an optical hybrid integrated circuit that couples light from a semiconductor light source with a multilayer structure including an active layer to a guiding waveguide formed on a substrate, the optical wavelength is λ, the equipolarization index of the semiconductor light source is n8, and the equipolarization index of the optical waveguide is λ. When the polarization index is n2 and the diffraction order is N, the semiconductor light source is a diffraction grating that is parallel to the traveling direction of light and whose period A approximately satisfies the following relational expression. Alternatively, it is formed inside or on the surface of an optical waveguide, and the surfaces of the semiconductor light source and the optical waveguide are bonded together so that the traveling directions of the light from both are substantially the same, so that the light from the semiconductor light source is guided to the optical waveguide. Features.

く作   用〉 前記構成により、半導体光源と光導波路との光のモード
結合が生じ、半導体光源の光は回折格子を介して光導波
路に導かれるが、該回折格子の周期式が前述の式をほぼ
満足することにより両モード間の位相整合条件がほぼ満
たされ、結合係数の大きな結合が実現されろ。
Effect> With the above configuration, mode coupling of light between the semiconductor light source and the optical waveguide occurs, and the light from the semiconductor light source is guided to the optical waveguide via the diffraction grating, but the periodic expression of the diffraction grating satisfies the above-mentioned expression. By almost satisfying the condition, the phase matching condition between both modes will be almost satisfied, and coupling with a large coupling coefficient will be realized.

く夾 施 例〉 以下、本発明を実施例に基づいて説明する。Kujo Example Hereinafter, the present invention will be explained based on examples.

第1図は一実施例にかかる光混成集積回路の断面図、第
2図及び第3図はその半導体光源及び基板に形成された
光導波路をそれぞれ示す斜視図である。
FIG. 1 is a sectional view of an optical hybrid integrated circuit according to an embodiment, and FIGS. 2 and 3 are perspective views showing a semiconductor light source and an optical waveguide formed on a substrate, respectively.

まず、第2図を参照しながら半導体光源100の構成を
説明する。同図中、lはn−1nP基板)2はn−1n
Pクラッド層、3はI nGaAgP活性層、4はp−
1nPクラッド層、5はp−InGaAsPコンタクト
層、6はp−1nP埋め込み層、7はn−1nP埋め込
み層、8及び9は電極であり、電極9に形成した窓9a
内のp−1nGaAsP:2ンタクト45上には回折格
子200が設けられている。
First, the configuration of the semiconductor light source 100 will be explained with reference to FIG. In the figure, l is n-1nP substrate) 2 is n-1n
P cladding layer, 3 is InGaAgP active layer, 4 is p-
1nP cladding layer, 5 a p-InGaAsP contact layer, 6 a p-1nP buried layer, 7 an n-1nP buried layer, 8 and 9 electrodes, and a window 9a formed in the electrode 9.
A diffraction grating 200 is provided on the inner p-1nGaAsP:2 contact 45.

かかる素子を実現するためには、まず、n−I n P
基板1上に、液相成長法等により、n−I n Pクラ
ッド層2、InGaAsP1性層3、p−1nPクラッ
ド層4及びp−1nGaAsP=+ンタクト層5を順次
成長させた後、フォトエツチング技術を用い、スパッタ
S i 0gl膜をマスクとして各成長膜にストライブ
を形成し、次いでその側面にp−1nP埋め込み層6及
びn−1nP埋め込みN7を液相成長法等により順次成
長させる。次に、5in2膜除去後、基板1側にn形電
極8としてAu−Ge−Ni合金を、結晶成長相側にp
形電極9としてAu−Zn合金を蒸着する。そして、こ
の電8119の一部をフォトエツチングにより除去して
窓9a内のp−1nGaAsPコンタクト層5上に、二
光束干渉法、電子ビーム露光法等のフォトリソグラフを
用いたエツチングによ塾回折格子200を形成する。な
お、この回折格子200を先に形成しておき、その上に
一部重なるように電沌9を形成してもよい。
In order to realize such an element, first, n-I n P
After sequentially growing an n-I nP cladding layer 2, an InGaAsP monolayer 3, a p-1nP cladding layer 4, and a p-1nGaAsP contact layer 5 on a substrate 1 by a liquid phase growth method or the like, photoetching is performed. Using a technique, a stripe is formed on each grown film using the sputtered S i 0gl film as a mask, and then a p-1nP buried layer 6 and an n-1nP buried layer N7 are successively grown on the side surfaces of the stripe by a liquid phase growth method or the like. Next, after removing the 5in2 film, an Au-Ge-Ni alloy is placed on the substrate 1 side as an n-type electrode 8, and a p-type electrode is placed on the crystal growth phase side.
An Au-Zn alloy is deposited as a shaped electrode 9. Then, a part of this electrode 8119 is removed by photoetching, and a diffraction grating is formed on the p-1nGaAsP contact layer 5 within the window 9a by etching using photolithography such as two-beam interference method or electron beam exposure method. Form 200. Note that this diffraction grating 200 may be formed in advance, and the electrochaos 9 may be formed so as to partially overlap thereon.

かかる構造を有する半導体光源は、端面を反射器とする
半導体レーザとして動作するが、回折格子200を介し
て後述する光導波路と接合することにより、その光の一
部が回折格子により光導波路へ導かれる。なお、本実施
例では光導波路との結合係数を大きくするため、I)I
nPnチクド層4は通常のクラッド層の厚み、約2.5
声に比べ、約1声と薄くしている。
A semiconductor light source having such a structure operates as a semiconductor laser with its end face as a reflector, but by connecting it to an optical waveguide, which will be described later, via the diffraction grating 200, a part of the light is guided to the optical waveguide by the diffraction grating. It will be destroyed. In this example, in order to increase the coupling coefficient with the optical waveguide, I) I
The thickness of the nPn cladding layer 4 is approximately 2.5 mm, which is the thickness of a normal cladding layer.
Compared to the voice, it is about 1 voice thinner.

次に第3図を参照しながら光導波路の構成を説明する。Next, the configuration of the optical waveguide will be explained with reference to FIG.

同図中、11はL i N b 03基板、12は光導
波路のコア、13は上記半導体光源を接続するための電
極であり、コア12はTiを熱拡散して形成し、又、電
極13はCrとA u −S n合金とを連続蒸着して
形成したものである。
In the figure, 11 is a L i N b 03 substrate, 12 is a core of an optical waveguide, 13 is an electrode for connecting the semiconductor light source, the core 12 is formed by thermally diffusing Ti, and the electrode 13 is formed by successive vapor deposition of Cr and Au-Sn alloy.

以上説明した半導体光源100と光導波路とを接合する
ためには、第1図に示すように、半導体光源100をひ
っくり返し、両者の光の進行方向が一致するように基板
11上に乗せ、光導波路からの出射光が最大になるよう
に軸調整した後、加熱により電fM9と電極13とを接
着する。これにより、回折格子200を介して半導体光
源100と光導波路とはモード結合され、半導体光源1
00中の前進波14及び後進波15の一部が光導波路中
の前進波16及び後進波17として出射する。
In order to join the semiconductor light source 100 and the optical waveguide described above, as shown in FIG. After adjusting the axis so that the light emitted from the wave path is maximized, the electric fM9 and the electrode 13 are bonded together by heating. Thereby, the semiconductor light source 100 and the optical waveguide are mode-coupled via the diffraction grating 200, and the semiconductor light source 100 and the optical waveguide are mode-coupled.
A part of the forward wave 14 and the backward wave 15 in 00 are emitted as the forward wave 16 and the backward wave 17 in the optical waveguide.

ここで、半導体光111100の等両局折率をn8、光
導波路の等両局折率をn2とすると、回折格子2000
周期Aは次式をほぼ満たしている。
Here, if the equiambipolar refractive index of the semiconductor light 111100 is n8 and the equiambipolar refractive index of the optical waveguide is n2, then the diffraction grating 2000
The period A almost satisfies the following equation.

したがって、半導体光源100と光導波路とのモード間
の位相整合条件がほぼ満たされ、結合係数の大きな結合
が実現されろことになる。
Therefore, the phase matching condition between the modes of the semiconductor light source 100 and the optical waveguide is almost satisfied, and coupling with a large coupling coefficient can be realized.

一般に、半導体光源と光導波路との伝撮ベクトルをそれ
ぞれβ5.β、とすると、この2波が結合するためには
、次式(2) %式%(2) Kは格子ベクトル を満足しなければならないが、 βb =n t 2 x /λ、β、=n 22 r 
/λ、に=2yr/λ。
Generally, the transmission vectors of the semiconductor light source and the optical waveguide are respectively β5. Assuming that β, in order for these two waves to combine, the following equation (2) %Formula %(2) K must satisfy the lattice vector, βb = nt 2 x /λ, β, = n 22 r
/λ, to=2yr/λ.

q=Nを、式(2)に代入すると、 A=Nλ/ (n −n ) また、β、=n、2+r/λ、β、=n 22 x /
λ、に=2π/λp q=Nを1式(2)に代入すると
、A=Nλ/(n+n) となる。
Substituting q=N into equation (2), A=Nλ/ (n - n ) Also, β, = n, 2+r/λ, β, = n 22 x /
λ, =2π/λp Substituting q=N into equation (2) yields A=Nλ/(n+n).

したがって、半導体光源と先導波路とのモード間の位相
整合条件がほぼ満たされ、結合係数の大きな結合が実現
されることになる。
Therefore, the phase matching condition between the modes of the semiconductor light source and the guiding waveguide is almost satisfied, and coupling with a large coupling coefficient is realized.

なお、回折格子200の周期Aが式(1)の条件から多
少ずれた場合にも結合係数が小きくなるだけであゆ、両
者の結合は可能である。
Note that even if the period A of the diffraction grating 200 deviates somewhat from the condition of equation (1), the coupling coefficient will only become smaller, and the coupling of the two is possible.

このように本発明によれば、平面内での位置合せt!げ
により、半導体光源と光導波路との結合が可能である。
Thus, according to the present invention, the in-plane alignment t! This allows coupling of the semiconductor light source and the optical waveguide.

すなわち、従来のように自由度が多い結合方法に比べて
本発明では自由度が2と大幅に少なく、位置合せが非常
に簡単になる。
That is, compared to the conventional coupling method which has many degrees of freedom, the present invention has two degrees of freedom, which is significantly smaller, and alignment becomes very simple.

第4図には他の実施例にかかる光混成集積回路を示す。FIG. 4 shows an optical hybrid integrated circuit according to another embodiment.

同図に示すように、本実施例の半導体光源110は上記
実施例の半導体回路100とほぼ同様であゆ、同様な部
材には同符号を付して重複した説明は省略するが、回折
格子210は電極9の一部をフォトエツチング又はリフ
トオフすることにより形成されている。このように、回
折格子を電極などの金属に形成することにより、製造コ
ストを低減することができる。
As shown in the figure, the semiconductor light source 110 of this embodiment is almost the same as the semiconductor circuit 100 of the above embodiment, and similar members are given the same reference numerals and redundant explanations will be omitted. is formed by photoetching or lifting off a portion of the electrode 9. By forming the diffraction grating on a metal such as an electrode in this way, manufacturing costs can be reduced.

一方、先導波路は石英基板18上にコーニング7059
ガラスからなるコア層19及びSiOのクラッド層20
を順次スパッタしたものであり、半導体光源110との
結合係数を大きくするために、半導体光源110を接合
する部分のクラッド層20を薄くしている。
On the other hand, the leading waveguide is formed using Corning 7059 on the quartz substrate 18.
Core layer 19 made of glass and cladding layer 20 made of SiO
In order to increase the coupling coefficient with the semiconductor light source 110, the cladding layer 20 is thinned at the portion where the semiconductor light source 110 is bonded.

また、半導体光源110の一方の端面には、Ws電体多
層膜又は金属等からなる高反射膜21が形成され、この
端面での光損失をほぼ無くしている。なお、このような
高反射膜は半導体光源の両端面に設けてもよい。
Further, a high reflection film 21 made of a Ws electric multilayer film, metal, or the like is formed on one end face of the semiconductor light source 110 to substantially eliminate optical loss at this end face. Note that such high reflection films may be provided on both end faces of the semiconductor light source.

なお、一般に半導体光源は両端面の反射膜の作用によし
TEモードだけが発振されるようになっているが1、上
述したように高反射膜を設けた場合には、半導体光源の
クラッド上に金属を装荷して、例えば7Mモードの不要
モードを減衰除去するようにすればよい。実施例では回
折格子210を形成した部分以外電極9がTEモード透
過フィルタとして動作している。
Generally, semiconductor light sources are designed to oscillate only in the TE mode due to the effect of the reflective films on both end faces.1 However, when a high reflective film is provided as described above, For example, unnecessary modes such as the 7M mode may be attenuated and removed by loading metal. In the embodiment, the electrode 9 other than the portion where the diffraction grating 210 is formed operates as a TE mode transmission filter.

また、本実施例においては、先導波路210の一方の端
面22に高反射率膜を形成することにより結合効率を上
げることもできる。
Furthermore, in this embodiment, the coupling efficiency can be increased by forming a high reflectance film on one end surface 22 of the leading waveguide 210.

以上、本発明を実施例に基づいて説明したが、勿論、T
JSレーザ、DBRレーザ、DFBレーザなどと光導波
路とを同様に回折格子を介して結合することにより、光
混成集積回路とすることができる。
The present invention has been described above based on examples, but it goes without saying that T
By similarly coupling a JS laser, DBR laser, DFB laser, etc. and an optical waveguide via a diffraction grating, an optical hybrid integrated circuit can be obtained.

〈発明の効果〉 以上説明したように、本発明にかかる光混成集積回路は
半導体光源と光導波路とを直接回折格子を介して結合す
ることにより、非常に簡単な位置合せたけで高い結合係
数の結合を得ることができるという効果を奏する。
<Effects of the Invention> As explained above, the optical hybrid integrated circuit according to the present invention can achieve a high coupling coefficient with very simple alignment by directly coupling a semiconductor light source and an optical waveguide through a diffraction grating. This has the effect that it is possible to obtain a bond.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる光屁成集積回路の断
面図、第2図はその半導体光源の斜視図、第3図は光導
波路の斜視図、第4図は他の実施例にかかる光混成#S
積回路の断面図、第5図は従来技術にかかる半導体光源
と光導波路との結合方法を示す説明図である。 図  面  中、 100.110は半導体光源、 200.210は回折格子、 1はB−1nP基板、 2はn−夏nPクラッド層、 3はInGaASP活性層、 4はp−1n Pクラッド層、 5はp−[nGaAsPコニzタクト層、6はp−1n
P埋め込み層、 7はn−1nP埋め込み層、 8.9は電極、 11は基板、 12は光導波路のコア、 13は電極、 14は半導体光源中の前進波、 15は半導体光源中の後進波、 16は光導波路中の前進波、 17は光導波路中の後進波、 18は基板、 19はコア層、 20はクラッド層、 21は高反射膜、 22は端面である。
FIG. 1 is a sectional view of an optical fart synthesis integrated circuit according to an embodiment of the present invention, FIG. 2 is a perspective view of its semiconductor light source, FIG. 3 is a perspective view of an optical waveguide, and FIG. 4 is another embodiment. Light hybrid #S applied to
FIG. 5, which is a cross-sectional view of the integrated circuit, is an explanatory diagram showing a method of coupling a semiconductor light source and an optical waveguide according to the prior art. In the drawing, 100.110 is a semiconductor light source, 200.210 is a diffraction grating, 1 is a B-1nP substrate, 2 is an n-nP cladding layer, 3 is an InGaASP active layer, 4 is a p-1nP cladding layer, 5 is p-[nGaAsP co-tact layer, 6 is p-1n
P buried layer, 7 is n-1nP buried layer, 8.9 is electrode, 11 is substrate, 12 is core of optical waveguide, 13 is electrode, 14 is forward wave in semiconductor light source, 15 is backward wave in semiconductor light source , 16 is a forward wave in the optical waveguide, 17 is a backward wave in the optical waveguide, 18 is a substrate, 19 is a core layer, 20 is a cladding layer, 21 is a high reflection film, and 22 is an end face.

Claims (1)

【特許請求の範囲】 活性層を含む多層構造を有する半導体光源の光を基板に
形成された光導波路に結合する光混成集積回路において
、 光波長をλ、半導体光源の等価屈折率をn_1、光導波
路の等価屈折率をn_2、回折次数をNとするときに、
光の進行方向に平行な回折格子であってその周期Λが次
の関係式、 Λ=Nλ/|n_1±n_2| を近似的に満たしている回折格子を、上記半導体光源又
は光導波路の内部又は表面に形成し、これら半導体光源
及び光導波路を両者の光の進行方向がほぼ一致するよう
表面同志を接合することにより半導体光源の光を光導波
路に導くようにしたことを特徴とする光混成集積回路。
[Claims] In an optical hybrid integrated circuit that couples light from a semiconductor light source having a multilayer structure including an active layer to an optical waveguide formed on a substrate, the light wavelength is λ, the equivalent refractive index of the semiconductor light source is n_1, and the light guide When the equivalent refractive index of the wave path is n_2 and the diffraction order is N,
A diffraction grating that is parallel to the direction of light propagation and whose period Λ approximately satisfies the following relational expression, Λ=Nλ/|n_1±n_2|, is installed inside the semiconductor light source or optical waveguide or inside the semiconductor light source or optical waveguide. An optical hybrid integration characterized in that the semiconductor light source and the optical waveguide are formed on a surface, and the surfaces of the semiconductor light source and the optical waveguide are joined together so that the traveling directions of the light from both are substantially the same, so that the light from the semiconductor light source is guided to the optical waveguide. circuit.
JP1750989A 1989-01-30 1989-01-30 Optical hybrid integrated circuit Pending JPH02199886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1750989A JPH02199886A (en) 1989-01-30 1989-01-30 Optical hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1750989A JPH02199886A (en) 1989-01-30 1989-01-30 Optical hybrid integrated circuit

Publications (1)

Publication Number Publication Date
JPH02199886A true JPH02199886A (en) 1990-08-08

Family

ID=11945946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1750989A Pending JPH02199886A (en) 1989-01-30 1989-01-30 Optical hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JPH02199886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715095A (en) * 1993-05-06 1995-01-17 Cselt Spa (Cent Stud E Lab Telecomun) Horizontally radiated semiconductor laser and connection of such laser to optical waveguide
JP2012151327A (en) * 2011-01-20 2012-08-09 Fujitsu Ltd Optical semiconductor device and method of manufacturing the same
JP2016164630A (en) * 2015-03-06 2016-09-08 富士通株式会社 Optical device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715095A (en) * 1993-05-06 1995-01-17 Cselt Spa (Cent Stud E Lab Telecomun) Horizontally radiated semiconductor laser and connection of such laser to optical waveguide
JP2012151327A (en) * 2011-01-20 2012-08-09 Fujitsu Ltd Optical semiconductor device and method of manufacturing the same
JP2016164630A (en) * 2015-03-06 2016-09-08 富士通株式会社 Optical device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7471864B2 (en) Optical semiconductor device and optical semiconductor integrated circuit
US5710847A (en) Semiconductor optical functional device
JP3070016B2 (en) Optical waveguide device
US4831631A (en) Laser transmitter comprising a semiconductor laser and an external resonator
JPH0692892B2 (en) Optical interference gyro
JP2001004877A (en) Optical waveguide, optical module and optical system
US7437037B2 (en) Optical module having gain member and partial reflection section waveguides formed on a substrate
JPH02199886A (en) Optical hybrid integrated circuit
JPWO2014199831A1 (en) Optical path changing element, optical path changing element connection structure, light source device and optical mounting device
JP3200996B2 (en) Optical waveguide device
US7515804B2 (en) Optical waveguide device
WO2019159345A1 (en) Semiconductor optical integrated device
WO2006103850A1 (en) Waveguide element and laser generator
JPH01107589A (en) Optical amplifier
JP3198649B2 (en) Optical waveguide device
JPH02281777A (en) Semiconductor laser with optical isolator
JPH0675128A (en) Optical waveguide element
JPS60127778A (en) Semiconductor laser integrated photoconductive element
JPH0230195B2 (en)
JPS6139594A (en) Thin-film optical waveguide function element
JPS63216009A (en) Optical circuit for coupling optical fiber thin film optical waveguide
JPH04301625A (en) Optical function element
JPH04178604A (en) Connector of optical waveguide and optical fiber
JP2003315582A (en) Semiconductor optical waveguide element
JPH03252189A (en) Semiconductor laser