JPH02199832A - Wafer polishing apparatus - Google Patents

Wafer polishing apparatus

Info

Publication number
JPH02199832A
JPH02199832A JP1017800A JP1780089A JPH02199832A JP H02199832 A JPH02199832 A JP H02199832A JP 1017800 A JP1017800 A JP 1017800A JP 1780089 A JP1780089 A JP 1780089A JP H02199832 A JPH02199832 A JP H02199832A
Authority
JP
Japan
Prior art keywords
polishing
polishing cloth
cloth
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1017800A
Other languages
Japanese (ja)
Inventor
Koichi Tanaka
好一 田中
Isao Uchiyama
勇雄 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP1017800A priority Critical patent/JPH02199832A/en
Publication of JPH02199832A publication Critical patent/JPH02199832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To prevent a defective flatness caused by an uneven heat distribution on the surface of a polishing cloth and to process an extremely highly accurate flatness of a wafer by a method wherein the surface itself of the polishing cloth is cooled directly and, in addition, only a part where processing heat has been generated inside the surface of the polishing cloth is cooled locally. CONSTITUTION:An inside passage 6 used to circulate a cooling liquid 6a via introduced exists 12, 13 of the cooling liquid which have been installed at side parts of a shaft 11 is formed on the back side of a surface plate 8; heat is removed from the back side of the surface plate 8. In addition, the following are arranged, on the surface of a turntable 1, by using the shaft 11 of the surface plate 8 as the center in symmetrical positions in its peripheral direction; a polishing station 30 which holds a wafer 5; a cooling station 20 which removes processing heat generated when the wafer 5 is polished. Compressed air whole pressure has been adjusted in accordance with a polishing pressure and a speed of revolution and which has been cooled and controlled to a prescribed temperature is sprayed toward a face of a polishing cloth 2 from a air nozzle 21; the processing heat is removed.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は研磨時における研磨布表面の温度の制御及びそ
の分布の均一さを実現し、よって半導体ウェーハ表面を
高平坦度に鏡面仕上げを行う為の研磨装置に係り、特に
研磨剤を介して前記ウェーハ表面を摺擦する研磨布表面
の冷却のための冷却手段又は/および加熱手段を配した
研磨装置に関する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention realizes control of the temperature of the surface of the polishing cloth during polishing and uniformity of its distribution, thereby achieving mirror finishing of the semiconductor wafer surface with a high degree of flatness. The present invention relates to a polishing apparatus for polishing, and particularly to a polishing apparatus equipped with cooling means and/or heating means for cooling the surface of a polishing cloth that rubs the surface of the wafer through an abrasive.

「従来の技術」 従来より、ダイオード、トランジスタ、IC(集積回路
)、LSI(大規模集積回路)等の半導体装置を製造す
る為の基体となるべき半導体ウェーハは、シリコン、ゲ
ルマニウム等の半導体単結晶インボッFをスライスして
ウェーハ化した後、更にラッピング並びにエツチングを
行い、次いでその少なくとも一側表面をいわゆるメカノ
ケミカルボリジング法と呼ばれる研磨方法(Il械的研
磨と化学研磨を組み合わせた研磨方法)に基づいて鏡面
研磨する事により形成される。
"Conventional Technology" Traditionally, semiconductor wafers, which serve as the base for manufacturing semiconductor devices such as diodes, transistors, ICs (integrated circuits), and LSIs (large-scale integrated circuits), have been made of single crystal semiconductors such as silicon and germanium. After slicing the inbod F into wafers, it is further lapped and etched, and then at least one surface is subjected to a polishing method called mechanochemical boring (a polishing method that combines mechanical polishing and chemical polishing). It is formed by mirror polishing the base.

かかる研磨装置は例えば第1図に示す(第1図に示す装
置は本発明の実施例であるが、従来技術を説明する為に
参考的に利用するものである。)ように、研磨布2が貼
設され外部よりの駆動力を受けて回転するターンテーブ
ルlと、研磨布2を介して該テーブルl上に位置し、下
面に−又は複数の半導体ウェーハ5を固定させたプレー
ト3と、該プレート3の上面側より押圧力を付勢するヘ
ッド部4とからなり、スラリー管5とターンテーブルl
の回転により生じる遠心力を利用して前記研磨布2上に
5i02等の砥粒を含む液状化学研磨剤7を分散させな
がら、半導体ウェーハ5と研磨布2 (研磨剤7)間の
摺擦運動によりメカノケミカルボリジングを行うように
構成しているが、前記ウェーハ5を精度よくボリシング
する為には、前記テーブル1の平面度、ウェーハ5の品
質、研磨$2の物性等に影響を与える加工温度を一定に
する必要がある。
Such a polishing device is, for example, as shown in FIG. 1 (the device shown in FIG. 1 is an embodiment of the present invention, but is used for reference in order to explain the prior art). a turntable l which is attached with a turntable 1 and rotates by receiving a driving force from the outside; a plate 3 which is positioned on the table l via an abrasive cloth 2 and has one or more semiconductor wafers 5 fixed to its lower surface; It consists of a head part 4 that applies a pressing force from the upper surface side of the plate 3, and a slurry pipe 5 and a turntable l.
While dispersing the liquid chemical polishing agent 7 containing abrasive grains such as 5i02 onto the polishing cloth 2 using the centrifugal force generated by the rotation of the semiconductor wafer 5 and the polishing cloth 2 (abrasive agent 7). However, in order to accurately borize the wafer 5, it is necessary to perform processing that affects the flatness of the table 1, the quality of the wafer 5, the physical properties of the polishing process, etc. It is necessary to keep the temperature constant.

この為公知の装置においては、前記ターンテーブルl内
に内部通路Bを設け、該通路内に流量及び温度制御され
た冷却液6aを還流させつつ、前記研磨布面上に分散さ
れる研磨剤7の温度を制御する車により前記加工時にお
ける温度変動を極力抑制するとともに、更に前記テーブ
ル1表面の高平坦度化と内部通路6の形成の容易化を図
る為に。
For this purpose, in a known device, an internal passage B is provided in the turntable l, and while a cooling liquid 6a whose flow rate and temperature are controlled is circulated in the passage, the abrasive 7 is dispersed on the surface of the polishing cloth. In order to suppress temperature fluctuations during the processing as much as possible using a wheel that controls the temperature of the table 1, and to further improve the flatness of the surface of the table 1 and facilitate the formation of the internal passage 6.

該テーブルlを前記内部通路8形成位置を境にして高平
坦な上面を有する定盤8と該定盤8を剛性的に支持する
定盤受8とから構成し、両者を螺子等により一体的に固
定させている。
The table l is composed of a surface plate 8 having a high and flat upper surface bordering on the position where the internal passage 8 is formed, and a surface plate support 8 that rigidly supports the surface plate 8, and both are integrally connected by screws or the like. It is fixed to

そして前記定盤受8と定盤8とは熱歪による平坦度不良
を極力防止する為に熱膨張率がほぼ一致する材料で形成
するとともに、該定盤8の上面形状は、冷却液8a温度
とほぼ同等な常温下においては僅かに凸或いは凹面状に
なるように構成し、前記ウェーハ5の摺擦による摩擦熱
によりほぼ加工温度まで上昇した際に上面形状が平坦に
なるように構成している。
The surface plate support 8 and the surface plate 8 are formed of materials having substantially the same coefficient of thermal expansion in order to prevent flatness defects due to thermal distortion as much as possible, and the upper surface shape of the surface plate 8 is adjusted to the temperature of the cooling liquid 8a. The top surface is configured to have a slightly convex or concave shape at room temperature, which is approximately equivalent to , and the top surface shape becomes flat when the temperature rises to approximately the processing temperature due to frictional heat caused by the rubbing of the wafer 5. There is.

「発明が解決しようとする問題点」 さて前記研磨布2はウェーハ5により全面均一に摺擦さ
れるのではなく、研磨負荷が不均等であるため加工熱の
蓄積量従って研磨布表面の温度分布が不均一となり、結
果としてウェーハ平坦度不良の原因となる。
"Problems to be Solved by the Invention" Now, the polishing cloth 2 is not rubbed uniformly over the entire surface by the wafer 5, but the polishing load is uneven, resulting in the amount of processing heat accumulated and the temperature distribution on the surface of the polishing cloth. becomes non-uniform, resulting in poor wafer flatness.

したがってチップ上に形成される半導体素子の微細化、
高集積化に伴い、ウェーハ53表面の平坦度、平行度等
の表面仕上げ精度がサブミクロン以下に設定されつつあ
る現況下においては、前記のような微小な平坦不良まで
考慮して研磨装置の設計を行う必要がある。
Therefore, miniaturization of semiconductor elements formed on chips,
In the current situation where surface finishing accuracy such as flatness and parallelism of the wafer 53 surface is being set to sub-micron or less due to higher integration, polishing equipment must be designed taking into account even the minute flatness defects as mentioned above. need to be done.

従来より、加工熱を除去するため前記定918を熱伝導
率の大なる材料で形成したり、又前記定盤8背面側を貫
流する冷却液6aの奪熱エネルギー量(流量又は加工温
度との温度差)を大にする等の手段で前記欠点の解消を
計る試みがなされているが、下記の理由により必ずしも
好ましい結果が得られていない。
Conventionally, in order to remove machining heat, the constant 918 has been formed of a material with high thermal conductivity, and the amount of heat absorbed energy (flow rate or machining temperature) of the cooling liquid 6a flowing through the back side of the surface plate 8 has been conventionally used. Attempts have been made to eliminate the above-mentioned drawbacks by increasing the temperature difference, etc., but favorable results have not always been obtained for the following reasons.

即ち前者の方法では定盤8自体の均熱化は達成されるが
、定盤8表面に貼設されている研磨布2は不織布又は樹
脂系材料で形成され1而も該研磨布2に微小空隙が多数
内蔵されている為に断熱効果が大であり、前記欠点の解
消にはつながらない。
That is, in the former method, the temperature of the surface plate 8 itself is equalized, but the polishing cloth 2 attached to the surface of the surface plate 8 is made of non-woven fabric or resin material, and the polishing cloth 2 has minute particles. Since many voids are built-in, the heat insulation effect is large, and the above-mentioned drawbacks cannot be solved.

更に、ウェー/15を保持するプレート3の背面側より
冷却液8a等により熱除去を行う、いわゆる加工熱が発
生する部分のみを局所的に冷却する装置も存在するが、
かかる装置においても前記欠点の解決は出来ない。
Furthermore, there is also a device that removes heat from the back side of the plate 3 holding the wafer 3 using a cooling liquid 8a or the like, which locally cools only the area where processing heat is generated.
Even in such a device, the above-mentioned drawbacks cannot be solved.

これら従来の技術では、温度分布が均一とならないばか
りではなく、加工熱の除去を定盤あるいはプレート背面
を冷却して行っているため、それらを貫いて熱流を生じ
せしめるため表面と裏面の温度は異なり、この温度差に
起因して熱的歪を生じる。定盤並びにプレートは平坦な
ウェーハを得るときの基準面であるので、この基準面が
歪めば平坦なつ゛ニー八は得られない。
In these conventional techniques, not only is the temperature distribution not uniform, but processing heat is removed by cooling the surface plate or the back of the plate, which causes a heat flow to flow through them, resulting in a temperature difference between the front and back surfaces. However, this temperature difference causes thermal distortion. Since the surface plate and the plate are the reference planes for obtaining flat wafers, if these reference planes are distorted, flat knees cannot be obtained.

本発明はかかる従来技術の欠点に鑑み、定盤表面上及び
定盤表面上に貼設された研磨布の表面熱分布の不均一性
に起因する平坦度不良を防止し。
In view of the drawbacks of the prior art, the present invention prevents flatness defects caused by uneven surface heat distribution on the surface of the surface plate and of the polishing cloth attached to the surface of the surface plate.

サブミクロン単位の仕上げ精度を実現し得る研磨装置を
提供する事を目的とする。
The purpose is to provide a polishing device that can achieve finishing accuracy on the submicron level.

本発明の他の目的とする所は、簡単な構成にて極めて高
精度なウェーハの平坦度加工が可能な研磨装置を提供す
る事にある。
Another object of the present invention is to provide a polishing apparatus capable of extremely highly accurate wafer flatness processing with a simple configuration.

「問題点を解決しようとする手段」 請求項1)に記載の本第1発明は、前記従来技術のよう
に定盤8又はプレート3の背面側より研磨布2上に蓄積
された加工熱を除去せんとするものではなく、又定盤B
全体を冷却又は加熱せんとするものではなく、研磨布の
表面自体を直接冷却するとともに′、更に該研磨布の表
面の内、加工熱が発生した部位のみを局所的に冷却する
本により、前記目的を達成せんとするもので、その特徴
とする所は第1図波歪第3図に示すように、■前記研磨
布2上のウェーハが摺擦される部位上に直接奪熱エネル
ギが作用可能に研磨布上の所定個所に冷却手段21,2
5.28を配した点、■これにより前記研磨布上におけ
るウェーハ摺擦や前記冷却手段21,25.28よりの
摺擦等に起因する加工熱の除去を図り、研磨布表面の温
度分布の不均一性を極力低減させた点 を構成要件とするものである。
"Means for Solving the Problem" The first invention as set forth in claim 1) removes the machining heat accumulated on the polishing cloth 2 from the back side of the surface plate 8 or plate 3, as in the prior art. It is not intended to be removed, and the surface plate B
The method described above does not attempt to cool or heat the entire surface of the polishing cloth, but directly cools the surface of the polishing cloth itself, and further locally cools only the portion of the surface of the polishing cloth where processing heat is generated. As shown in Fig. 1 and Fig. 3, wave distortion is shown in Fig. 3. Cooling means 21, 2 can be installed at predetermined locations on the polishing cloth.
5.28 is arranged, (2) This aims to remove the processing heat caused by the wafer rubbing on the polishing cloth and the rubbing from the cooling means 21, 25.28, and improves the temperature distribution on the polishing cloth surface. The structural requirement is to reduce non-uniformity as much as possible.

このような構成は、例えば回転可能な円板定盤に研磨布
が貼設されている場合において、その研磨布上に配置さ
れる。ウェーハを保持する研磨ステーション30と、該
ウェーハ研磨時に発生する加工熱を除去する冷却ステー
ション20を、定盤の回転軸を中心としてその周方向の
対称位置に配置する事により容易に達成される。
Such a configuration is placed on the polishing cloth, for example, when the polishing cloth is attached to a rotatable disc surface plate. This can be easily achieved by arranging the polishing station 30 that holds the wafer and the cooling station 20 that removes processing heat generated during polishing the wafer at symmetrical positions in the circumferential direction of the surface plate with the rotation axis of the surface plate as the center.

かかる構成によれば、加工熱が発生した部位2Aのみを
直接的に冷却する為に熱除去効果が高く、速やかに加工
熱を除去する事が可能であり、この結果定盤表面上に貼
設された研磨布表面の温度分布が均一となるため、該研
磨布の局所的な熱分布差から起因するうねり等高平坦度
研磨を妨げる要因を防止出来、高平坦度の研磨加工が可
能である。
According to this configuration, since only the part 2A where machining heat is generated is directly cooled, the heat removal effect is high and the machining heat can be quickly removed. Since the temperature distribution on the surface of the polished polishing cloth becomes uniform, it is possible to prevent undulations caused by local differences in the heat distribution of the polishing cloth that hinder high flatness polishing, and it is possible to perform high flatness polishing. .

この際好ましくは、前記冷却ステーション20より研磨
布上に付与される除熱効果が、研磨圧、回転速度その他
の研磨条件の変動に対応して可変可能に構成する事によ
り前記効果が一層向上する。
In this case, it is preferable that the heat removal effect imparted to the polishing cloth from the cooling station 20 is configured to be variable in response to variations in polishing pressure, rotation speed, and other polishing conditions, thereby further improving the effect. .

更に前記冷却21,25.28の冷却媒体には、培体、
又は気体のいずれを用いてもよいが、例えば前記冷却手
段21の冷却媒体に圧力気体を用いる場合は、該気体を
研磨体上に噴射させながら、研磨布中に湿潤している液
状研磨剤中の水分を蒸発させ、この時奪われる蒸発潜熱
により冷却し、温度制御を行う。
Furthermore, the cooling medium for the cooling 21, 25, and 28 includes a culture medium,
For example, when pressure gas is used as the cooling medium of the cooling means 21, the gas is injected onto the polishing body while the liquid polishing agent moistened in the polishing cloth is heated. The water is evaporated, and the latent heat of vaporization removed at this time is used to cool and control the temperature.

尚、前記冷却手段2Bの冷却媒体として、加工温度に冷
却した液状研磨剤7を用いる場合は、研磨剤を噴流状で
研磨布表面に吹きつけ、研磨布空隙に保持されている加
工熱により高温となった研磨剤を冷却された研磨剤で置
換することにより冷却を行う、この方法では、常にフレ
ッシュな研磨剤によりウェーハの研磨ができる゛という
付随効果もある。
In addition, when the liquid abrasive 7 cooled to the processing temperature is used as the cooling medium of the cooling means 2B, the abrasive is blown onto the surface of the polishing cloth in the form of a jet, and the processing heat retained in the gaps of the polishing cloth lowers the temperature. This method, in which cooling is performed by replacing the abrasive that has become dry with a cooled abrasive, has the additional effect that wafers can always be polished with fresh abrasive.

さて前記第1発明は、圧力気体中の不純物により研磨剤
が汚染されることの防止のため、圧力気体の浄化が必要
であること、あるいは液状研磨剤が研磨布に吹きつけら
れる際発生する飛沫に起因する作業環境汚染防止が必要
である等の不都合がある。
Now, the first aspect of the invention is that in order to prevent the abrasive from being contaminated by impurities in the pressurized gas, the pressure gas must be purified, or the droplets generated when the liquid abrasive is sprayed onto the polishing cloth. There are disadvantages such as the need to prevent contamination of the working environment caused by.

かかる欠点がなく、前記発明と同じ効果、即ち研磨で発
生する加工熱による研磨布表面温度分布の不均一性を無
くすために、研磨布表面の低温域を加熱手段から熱輻射
で加熱する車を特徴とする研磨装置を請求項2)にて提
案する。これを第2の発明とする。
In order to avoid such drawbacks and to achieve the same effect as the invention described above, that is, to eliminate unevenness in the temperature distribution on the surface of the polishing cloth due to processing heat generated during polishing, we have developed a vehicle that heats the low-temperature region of the surface of the polishing cloth by thermal radiation from a heating means. A characteristic polishing apparatus is proposed in claim 2). This is the second invention.

この場合前記加熱手段も40の加熱領域や熱量も調整可
能に構成するのがよく、例えばヒータの輻射熱加熱コン
トロール板を介して研磨布上に照射可能に構成する事に
より温度分布差の改善を一層進める事が出来、これによ
り一暦高精度なウェーハの平坦度加工が可能となる。
In this case, it is preferable that the heating means is configured to be able to adjust the heating area and amount of heat. For example, by configuring the heater to be able to irradiate the polishing cloth with radiant heat via a heating control plate, the difference in temperature distribution can be further improved. This enables highly accurate wafer flatness processing.

尚2請求項3)に記載した発明は、主として前記第1発
明と第2発明を組み合わせたものであり、前記両発明の
作用効果を有する。この場合(冷)熱エネルギとは冷却
、加熱の両エネルギを含むものである。
The invention described in claim 2 (3) is mainly a combination of the first invention and the second invention, and has the effects of both the inventions. In this case, (cold) thermal energy includes both cooling and heating energy.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただし、この実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative positions of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative. Just an example.

第1図は本発明の第1実施例に係る研磨装置を示す正面
断面図である。
FIG. 1 is a front sectional view showing a polishing apparatus according to a first embodiment of the present invention.

ターンテーブルlは前記したように高平坦な上面に研磨
布2が貼設された定盤8と該定盤8を剛性的に支持する
定盤受8とを螺子等により一体的に固定させて構成する
とともに、該定盤受9の下方軸線上に設けた回転軸11
を中心として外部駆動により回転可能に構成している。
As described above, the turntable l is constructed by integrally fixing the surface plate 8 with the polishing cloth 2 attached to the high and flat upper surface and the surface plate support 8 that rigidly supports the surface plate 8 with screws or the like. and a rotating shaft 11 provided on the lower axis of the surface plate support 9.
It is configured to be rotatable around the center by an external drive.

そして前記定ff18と定盤受eは熱伝導率が良好で且
つ熱膨張率の類似する金属材料で形成するとともに、前
記定g18の背面側に、回転軸ll側部に設けた冷却液
8a導入出口12.13を介して冷却液6aを環流させ
る内部通路Bを形成し、前記定盤8の背面側より熱除去
を行っている。
The constant ff18 and the surface plate support e are made of metal materials having good thermal conductivity and similar coefficients of thermal expansion, and a cooling liquid 8a is introduced on the back side of the constant g18 on the side of the rotating shaft 11. An internal passage B is formed in which the cooling liquid 6a circulates through the outlet 12, 13, and heat is removed from the back side of the surface plate 8.

又前記ターンテーブル!の軸線上には研磨布21面に開
口するスラリー管5が貫設され、該テーブルlの回転に
より遠心力の作用によりスラリー管5より導入された液
状研磨剤7が研磨布2上に分散可能に構成する。尚前記
研磨剤7にはアルカリ水溶液にシリカを懸濁したものを
用いている′。
Also said turntable! A slurry pipe 5 that opens on the surface of the polishing cloth 21 is installed on the axis of the polishing cloth 21, and liquid abrasive 7 introduced from the slurry pipe 5 can be dispersed onto the polishing cloth 2 by the action of centrifugal force due to the rotation of the table l. Configure. The polishing agent 7 used is a suspension of silica in an alkaline aqueous solution.

一方前記ターンテーブル!上面には、ウェーハ5を保持
する研磨ステーション30と、前記ウェーハ5研磨時に
発生する加工熱を除去する冷却ステージ、ン20を、定
f118の回転軸11を中心としてその周方向の対称位
置に配置している。
Meanwhile said turntable! On the top surface, a polishing station 30 that holds the wafer 5 and a cooling stage 20 that removes processing heat generated during polishing of the wafer 5 are arranged at symmetrical positions in the circumferential direction around the rotation axis 11 having a constant f118. are doing.

研磨ステージ票ン30は前記したように、ウェーハ5を
高平坦状に保持するプレート3と該プレート3の背面側
に取付けられたマウントヘッド4よりなり、該ヘッド塩
は上方より所定押圧力を付勢しながら回転軸11を介し
て前記定盤8と同期させて同一回転数で回転可能に構成
するとともに、プレート3の背面側に1通路を介して冷
却液が循環する内部空隙40を設は研磨時に発生した熱
除去するように構成している。
As described above, the polishing stage plate 30 consists of the plate 3 that holds the wafer 5 in a highly flat state and the mount head 4 attached to the back side of the plate 3, and the head salt applies a predetermined pressing force from above. The plate 3 is configured to be rotatable at the same rotation speed in synchronization with the surface plate 8 through the rotating shaft 11 while being rotated, and an internal gap 40 is provided on the back side of the plate 3 through which a cooling liquid circulates through one passage. It is configured to remove the heat generated during polishing.

冷却ステージ重ン20は、研磨布2上方に位置するエア
ーノズル21と該ノズル21に供給する圧力空気の圧力
を調整する調整弁22と、該調整弁22の下流側に位置
し、所定圧力に調整された圧力空気を所定温度に冷却制
御する冷却器23.研磨圧、回転速変更には研磨ステー
ション30通過後の研磨布の表面温度に対応させて、前
記調整弁22の開閉度を制御するマイクロプロセッサ−
24及び圧力源28から構成する。
The cooling stage weight 20 includes an air nozzle 21 located above the polishing cloth 2, a regulating valve 22 that adjusts the pressure of the pressurized air supplied to the nozzle 21, and a regulating valve 22 located downstream of the regulating valve 22 to maintain a predetermined pressure. A cooler 23 that controls cooling of the regulated pressure air to a predetermined temperature. To change the polishing pressure and rotation speed, a microprocessor controls the degree of opening and closing of the regulating valve 22 in accordance with the surface temperature of the polishing cloth after passing through the polishing station 30.
24 and a pressure source 28.

そして前記エアーノズル21より研磨圧や回転速度に対
応させて圧力調整され、且つ所定温度に冷却制御された
圧力空気を研磨布2面に向は噴射する事により該圧力空
気による顕熱冷却とともに2該圧力空気が研磨布2上に
湿潤している研磨剤中の水分を蒸発させ、その時奪われ
る蒸発潜熱により加工熱の除去を行うよう構成している
Then, from the air nozzle 21, pressurized air whose pressure is adjusted according to the polishing pressure and rotational speed and which is cooled and controlled to a predetermined temperature is injected toward the surface of the polishing cloth 2, and the pressure air cools the polishing cloth with sensible heat. The pressurized air evaporates moisture in the polishing agent moistened on the polishing cloth 2, and processing heat is removed by the latent heat of vaporization taken away at that time.

そして本発明者は上記構成の装置を用いて未発明の確認
実験を行ってみた所、エアーノズル21より圧力空気を
吹き付けた場合と吹き付けない場合とでは、第4図に示
すように平坦度が大幅へ向上する事が確認された。
The inventor of the present invention conducted an uninvented confirmation experiment using the device with the above configuration, and found that the flatness was different when pressurized air was blown from the air nozzle 21 and when it was not blown. It was confirmed that there was a significant improvement.

本実施例では、研磨布表面に吹き付けられた空気は、室
温で且つその流量は1801 /winであった。エア
ーノズル21のノズル位置は研磨布から10cmの高さ
に置かれ、噴射空気は直径15c■の範囲で均一に拡が
るようノズルの形状を工夫した。研磨布表面上の温度分
布は、空気吹き付けによって温度分布が著しく改善され
ることがわかった。これを図に示す、この温度分布改善
の効果は、上述の第4図の研磨ウェーハの平坦度の大巾
向上と密接な関連がある。
In this example, the air blown onto the surface of the polishing cloth was at room temperature and had a flow rate of 1801/win. The nozzle position of the air nozzle 21 was placed at a height of 10 cm from the polishing cloth, and the shape of the nozzle was devised so that the jetted air spread uniformly over a range of 15 cm in diameter. It was found that the temperature distribution on the surface of the polishing cloth was significantly improved by air blowing. This effect of temperature distribution improvement, which is shown in the figure, is closely related to the above-mentioned significant improvement in the flatness of the polished wafer shown in FIG. 4.

尚、前記冷却ステーション20には、前記エアーノズル
21の他に、第2図に示すように内部に冷却液25aが
環流する金属製の筒体25を直接研磨布2面上に当接さ
せて冷却させるよう構成してもよい。
In addition to the air nozzle 21, the cooling station 20 has a metal cylinder 25 in which a cooling liquid 25a circulates, as shown in FIG. 2, which is brought into direct contact with the surface of the polishing cloth 2. It may be configured to be cooled.

更には、研磨布2上方に赤外線ランプを配して、研磨布
表面の低温度域に熱を付与してもよい。
Furthermore, an infrared lamp may be placed above the polishing cloth 2 to apply heat to the low temperature region of the surface of the polishing cloth.

この場合、前記定518との間に赤外線ランプ40より
の輻射熱の加熱領域を任意に調整可能な加熱領域コント
ロール位!t41を介在させる事、或いは電気的に赤外
線の強度を制御することにより、前記温度分布差の緩和
を一層進める事が出来、これにより一層高精度なウェー
ハ5の平坦度加工が可能となる。
In this case, there is a heating area control that can arbitrarily adjust the heating area of the radiant heat from the infrared lamp 40 between the above-mentioned constant 518! By intervening t41 or electrically controlling the intensity of the infrared rays, the temperature distribution difference can be further alleviated, and thereby the flatness processing of the wafer 5 can be performed with higher precision.

第3図は研磨剤自体を冷却媒体として利用した他の実施
例である。
FIG. 3 shows another embodiment in which the abrasive itself is used as a cooling medium.

本実施例においては、前記定盤8中心軸上にスラリー管
5を設置すずに、前記冷却ステーション2゜と対応する
定盤8上方位置に研磨剤の噴出ノズル28を取付け、該
噴出ノズル28を利用して所定温度に冷却した研磨剤7
を直接研磨布2上に噴出させて衝突させるように構成し
ている。
In this embodiment, the slurry pipe 5 is not installed on the central axis of the surface plate 8, but an abrasive jet nozzle 28 is installed at a position above the surface plate 8 corresponding to the cooling station 2°. Abrasive 7 cooled to a predetermined temperature
It is constructed so that it is ejected directly onto the polishing cloth 2 and collides with it.

かかる実施例によれば、研磨剤7自体の噴出圧力により
研磨布2内に空隙に保持されている加工熱により温度の
上昇した研磨剤が冷却されたフレッシュな研磨剤により
置換されることにより、加工熱の除去が行われる。又、
本実施例は冷却媒体として機能する圧力流体に液状研磨
剤7自体を用いている為に、該圧力流体を直接研磨布2
上に噴出させた場合でも研磨剤7の組成比が変化する事
なく好ましい。
According to this embodiment, the abrasive whose temperature has increased due to processing heat held in the voids in the polishing cloth 2 due to the ejection pressure of the abrasive 7 itself is replaced by cooled fresh abrasive. Processing heat is removed. or,
In this embodiment, since the liquid abrasive 7 itself is used as the pressure fluid that functions as a cooling medium, the pressure fluid is directly applied to the polishing cloth 2.
Even when the abrasive is ejected upward, the composition ratio of the abrasive 7 does not change, which is preferable.

尚前記研磨剤の置換を容易にするには2前記研磨布2と
して多孔質シートを用いるのが有利であり、このような
研磨布2としては不織布、高分子エラストマーを主体と
して微小連続気泡を形成した樹脂バット等を用いる事が
出来る。
In order to facilitate the replacement of the abrasive, it is advantageous to use a porous sheet as the abrasive cloth 2, and such a abrasive cloth 2 is made mainly of non-woven fabric or polymer elastomer with micro open cells formed therein. It is possible to use a resin bat etc.

「発明の効果」 以上記載した如く本発明によれば研磨布上の所定個所に
直接(冷)熱エネルギを作用する事により該研磨布表面
の温度分布の不均一性を極力低減させる事が出来、特に
研磨布自体を直接冷却する事により、モして該研磨布の
内、加工熱が発生した部位のみを局所的に冷却する事に
より、定盤及び定盤表面上に貼設された研磨布の局所的
な熱分布差に起因する平坦度不良を防止し、高精度なウ
ェーハの平坦度加工が可能となる為に、サブミクロン単
位の仕上げ精度を実現し得る研磨装置を提供する事が出
来る等の種々の効果を有す。
"Effects of the Invention" As described above, according to the present invention, by applying (cold) thermal energy directly to a predetermined location on the polishing cloth, it is possible to reduce as much as possible the non-uniformity of the temperature distribution on the surface of the polishing cloth. In particular, by directly cooling the polishing cloth itself, and by locally cooling only the part of the polishing cloth where processing heat is generated, the surface plate and the polishing material attached to the surface of the surface plate can be cooled. In order to prevent flatness defects caused by local heat distribution differences in the cloth and enable high-precision wafer flatness processing, it is possible to provide a polishing device that can achieve finishing accuracy on the submicron level. It has various effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) (B)及び第2図(A) (B)は請求
項2)に記載した発明の実施例に係る研磨装置を示す概
略断面図と平面図である、又第3図は請求項3)に記載
した発明の実施例に係る研磨装置を示す概略図である。 第4図(A)CB)は本発明の効果を確認する為のグラ
フ図で(A)は温度分布、CB)はウェーハの平坦度状
況を示す。 特許出願人:信越半導体株式会社 第 図 (/J 第 図 第 図 (A) 第4 図 (B) つf−ハ上の(立置[m′rIL1
FIGS. 1(A) and 2(B) are a schematic sectional view and a plan view showing a polishing apparatus according to an embodiment of the invention set forth in claim 2), and FIG. FIG. 2 is a schematic diagram showing a polishing apparatus according to an embodiment of the invention as set forth in claim 3). FIGS. 4(A) and 4(CB) are graphs for confirming the effects of the present invention, in which (A) shows the temperature distribution and CB) shows the flatness state of the wafer. Patent applicant: Shin-Etsu Semiconductor Co., Ltd.

Claims (1)

【特許請求の範囲】 1)研磨布上を周期的に相対移動させながらその摺擦運
動により半導体ウェーハの研磨を行う研磨装置において
、前記研磨布のウェーハが摺擦される部位において奪熱
可能に研磨布上の所定個所に冷却手段を配し、これによ
り研磨布上の高温域を直接奪熱しながら該研磨布表面の
温度分布の 不均一性を極力低減させた事を特徴とする研磨装置 2)研磨布上を周期的に相対移動させながらその摺擦運
動により半導体ウェーハの研磨を行う研磨装置において
、前記研磨布上の所定個所に加熱手段を配し、これによ
り研磨布上の低温域に直接熱付与しながら該研磨布表面
の温度分布の不均一性を極力低減させた事を特徴とする
研磨装置 3)研磨布上を周期的に相対移動させながらその摺擦運
動により半導体ウェーハの研磨を行う研磨装置において
、前記研磨布上の所定個所に、冷却手段と加熱手段を配
し、研磨布のウェーハが摺擦される部位又はその近傍で
冷却または加熱を可能に構成した事を特徴とする研磨装
置。 4)前記冷却手段及び加熱手段より研磨布上に付与又は
除去される熱エネルギー量が、研磨圧、回転速度その他
の研磨条件の変動に対応して可変可能に構成された請求
項1)、2)又は3)項記載の研磨装置。 5)前記冷却手段の冷却作用が液状研磨剤を用いて行わ
れ、該研磨剤を研磨布上に噴出させ研磨布空隙に保持さ
れている研磨剤を置換する事を特徴とする請求項1)又
は3)項記載の研磨装置。 6)前記冷却手段の冷却作用媒体として圧力気体を用い
、該気体を研磨布上に噴出させながら、研磨布中に含浸
している液状研磨剤の蒸発潜熱により冷却することを特
徴とする請求項1)又は3)項記載の研磨装置。 7)前記加熱手段にヒータを用い、該ヒータの輻射熱が
加熱領域コントロール板を介して研磨布上に照射可能に
構成した請求項2)又は3)項記載の研磨装置。
[Scope of Claims] 1) In a polishing apparatus that polishes a semiconductor wafer by the rubbing motion of a polishing cloth while periodically moving relative to the polishing cloth, heat can be removed from a portion of the polishing cloth where the wafer is rubbed. A polishing device 2 characterized in that a cooling means is disposed at a predetermined location on the polishing cloth, thereby directly absorbing heat from the high temperature region on the polishing cloth, and reducing non-uniformity of temperature distribution on the surface of the polishing cloth as much as possible. ) In a polishing apparatus that polishes a semiconductor wafer by the sliding movement of a polishing cloth while periodically moving the polishing cloth relative to the polishing cloth, a heating means is arranged at a predetermined location on the polishing cloth. A polishing device characterized by reducing the non-uniformity of the temperature distribution on the surface of the polishing cloth as much as possible while directly applying heat. 3) Polishing a semiconductor wafer by the sliding movement of the polishing cloth while periodically moving it relative to the polishing cloth. The polishing apparatus is characterized in that a cooling means and a heating means are arranged at predetermined locations on the polishing cloth, so that cooling or heating is possible at or near the portion of the polishing cloth where the wafer is rubbed. polishing equipment. 4) The amount of thermal energy applied to or removed from the polishing cloth by the cooling means and the heating means is configured to be variable in response to variations in polishing pressure, rotation speed, and other polishing conditions. ) or the polishing device described in 3). 5) Claim 1) characterized in that the cooling action of the cooling means is performed using a liquid abrasive, and the abrasive is ejected onto the polishing cloth to replace the abrasive retained in the abrasive cloth gap. Or the polishing device described in 3). 6) A claim characterized in that pressure gas is used as the cooling medium of the cooling means, and the gas is ejected onto the polishing cloth while cooling is performed by the latent heat of vaporization of the liquid polishing agent impregnated in the polishing cloth. The polishing device according to item 1) or 3). 7) The polishing apparatus according to claim 2) or 3), wherein a heater is used as the heating means, and the radiant heat of the heater is configured to be irradiated onto the polishing cloth via a heating area control plate.
JP1017800A 1989-01-30 1989-01-30 Wafer polishing apparatus Pending JPH02199832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017800A JPH02199832A (en) 1989-01-30 1989-01-30 Wafer polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017800A JPH02199832A (en) 1989-01-30 1989-01-30 Wafer polishing apparatus

Publications (1)

Publication Number Publication Date
JPH02199832A true JPH02199832A (en) 1990-08-08

Family

ID=11953790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017800A Pending JPH02199832A (en) 1989-01-30 1989-01-30 Wafer polishing apparatus

Country Status (1)

Country Link
JP (1) JPH02199832A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228569A (en) * 1990-02-02 1991-10-09 Fujikoshi Kikai Kogyo Kk Polishing device and method
JPH05129256A (en) * 1991-06-26 1993-05-25 Internatl Business Mach Corp <Ibm> Device and method of grinding semiconductor wafer
JPH05160088A (en) * 1991-12-05 1993-06-25 Fujitsu Ltd Semiconductor substrate manufacturing method and device
JPH09103957A (en) * 1995-06-29 1997-04-22 Delco Electronics Corp Apparatus and process for grinding back side of wafer with no coating film
WO1997032690A1 (en) * 1996-03-04 1997-09-12 Teikoku Denso Co., Ltd. Resin disk polishing method and apparatus
WO2007007683A1 (en) * 2005-07-07 2007-01-18 National University Corporation Kumamoto University Substrate, and method and device for polishing same
JP2010186917A (en) * 2009-02-13 2010-08-26 Shin-Etsu Chemical Co Ltd Method of manufacturing semiconductor wafer having uniform surface polishing margin
CN102343546A (en) * 2011-10-10 2012-02-08 沈阳理工大学 Method for carrying out high-speed lapping on sintered polycrystalline diamond cooled by cold plate
JP2012139739A (en) * 2010-12-28 2012-07-26 Ebara Corp Polishing device, and polishing method
JP2013042066A (en) * 2011-08-19 2013-02-28 Toshiba Corp Method of manufacturing semiconductor device
CN103029032A (en) * 2011-10-09 2013-04-10 沈阳理工大学 Sintered polycrystalline diamond cold plate cooling high-speed grinding device
JP2014011408A (en) * 2012-07-02 2014-01-20 Toshiba Corp Method of manufacturing semiconductor device and polishing apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228569A (en) * 1990-02-02 1991-10-09 Fujikoshi Kikai Kogyo Kk Polishing device and method
JPH05129256A (en) * 1991-06-26 1993-05-25 Internatl Business Mach Corp <Ibm> Device and method of grinding semiconductor wafer
JPH05160088A (en) * 1991-12-05 1993-06-25 Fujitsu Ltd Semiconductor substrate manufacturing method and device
JPH09103957A (en) * 1995-06-29 1997-04-22 Delco Electronics Corp Apparatus and process for grinding back side of wafer with no coating film
WO1997032690A1 (en) * 1996-03-04 1997-09-12 Teikoku Denso Co., Ltd. Resin disk polishing method and apparatus
WO1997032691A1 (en) * 1996-03-04 1997-09-12 Teikoku Denso Co., Ltd. Method of polishing hard disc and polishing apparatus therefor
US6116987A (en) * 1996-03-04 2000-09-12 Kubo; Yuzo Method of polishing hard disc and polishing apparatus therefor
JP4904506B2 (en) * 2005-07-07 2012-03-28 国立大学法人 熊本大学 Substrate, polishing method thereof, and polishing apparatus
WO2007007683A1 (en) * 2005-07-07 2007-01-18 National University Corporation Kumamoto University Substrate, and method and device for polishing same
US8008203B2 (en) 2005-07-07 2011-08-30 National Universtiy Corporation Kumamoto University Substrate, method of polishing the same, and polishing apparatus
JP2010186917A (en) * 2009-02-13 2010-08-26 Shin-Etsu Chemical Co Ltd Method of manufacturing semiconductor wafer having uniform surface polishing margin
JP2012139739A (en) * 2010-12-28 2012-07-26 Ebara Corp Polishing device, and polishing method
JP2013042066A (en) * 2011-08-19 2013-02-28 Toshiba Corp Method of manufacturing semiconductor device
CN103029032A (en) * 2011-10-09 2013-04-10 沈阳理工大学 Sintered polycrystalline diamond cold plate cooling high-speed grinding device
CN102343546A (en) * 2011-10-10 2012-02-08 沈阳理工大学 Method for carrying out high-speed lapping on sintered polycrystalline diamond cooled by cold plate
JP2014011408A (en) * 2012-07-02 2014-01-20 Toshiba Corp Method of manufacturing semiconductor device and polishing apparatus

Similar Documents

Publication Publication Date Title
US7156720B2 (en) Substrate holding apparatus
JP2985490B2 (en) Heat removal method of polishing machine
US8292694B2 (en) Substrate holding mechanism, substrate polishing apparatus and substrate polishing method
KR840002114B1 (en) Apparatus for improving flatness of polished wafers
US6000997A (en) Temperature regulation in a CMP process
US5957750A (en) Method and apparatus for controlling a temperature of a polishing pad used in planarizing substrates
CN104842259B (en) Substrate polishing equipment, substrate polishing method and in the polissoir be used for adjust polishing pad burnishing surface temperature equipment
US7837534B2 (en) Apparatus for heating or cooling a polishing surface of a polishing apparatus
JPH02199832A (en) Wafer polishing apparatus
KR100700807B1 (en) System for dispensing polishing liquid during chemical mechanical polishing of a semiconductor wafer
US20070135020A1 (en) Polishing apparatus and polishing method
US5980685A (en) Polishing apparatus
US20070123154A1 (en) Polishing apparatus
US20030119427A1 (en) Temprature compensated chemical mechanical polishing apparatus and method
JPH09123057A (en) Board polishing device
JPH11347935A (en) Polishing device
US6402597B1 (en) Polishing apparatus and method
KR20180127137A (en) Substrate polishing apparatus and substrate polishing method
KR101906770B1 (en) Polishing device for wafer
CN113442058A (en) Polishing solution conveying device and chemical mechanical polishing equipment
KR20090106886A (en) Apparatus of chemical mechanical polishing
CN115922534A (en) Polishing turntable with temperature adjusting function and chemical mechanical polishing equipment
JPH08139008A (en) Wafer temperature control device and semiconductor manufacturing apparatus using the same
JP2024131519A (en) Wafer grinding apparatus and method
KR20230133041A (en) Polishing apparatus for substrate and polishing method for substrate using the same