JPH02199505A - Method of forming working program for cylindrical groove shape - Google Patents

Method of forming working program for cylindrical groove shape

Info

Publication number
JPH02199505A
JPH02199505A JP1020066A JP2006689A JPH02199505A JP H02199505 A JPH02199505 A JP H02199505A JP 1020066 A JP1020066 A JP 1020066A JP 2006689 A JP2006689 A JP 2006689A JP H02199505 A JPH02199505 A JP H02199505A
Authority
JP
Japan
Prior art keywords
groove shape
axis
cylindrical groove
machining
machining program
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1020066A
Other languages
Japanese (ja)
Inventor
Naoki Fujita
直樹 藤田
Teruyuki Matsumura
松村 輝幸
Noritake Nagashima
範武 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP1020066A priority Critical patent/JPH02199505A/en
Priority to PCT/JP1990/000029 priority patent/WO1990008990A1/en
Publication of JPH02199505A publication Critical patent/JPH02199505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40931Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of geometry
    • G05B19/40932Shape input
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36185Application, for cylindrical groove shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To easily form a working program by defining a groove shape corresponding to the one-peripheral side face of a work on a required plane by means of a conversational format. CONSTITUTION:The one-peripheral side face of the work is allowed to correspond to an area 22a in the 0 to 360 deg. angle range of an axis C obtained by linearly developing a rotary shaft on the plane of a rectangular coordinate system formed by the developed axis C and the longitudinal axis 2 of a cylinder. When data are conversationally inputted by using a coordinate value in the rectangular coordinate system to define the shape of the groove and the working program of a tool 24 is formed as numerical data based upon the definition, the working program of the shape of cylindrical groove can easily be formed by the method using the two-dimensional coordinate system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は円筒形のワークの側面に溝形状を加工する対話
型数値制御装置の円筒溝形状の加工プログラムの作成方
法に関し、特にワークの側面を平面の特定の領域に対応
させて、対話形式で加工プログラムを作成可能にした円
筒溝形状の加工プログラムの作成方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for creating a machining program for a cylindrical groove shape for an interactive numerical control device for machining a groove shape on the side surface of a cylindrical workpiece. The present invention relates to a method for creating a machining program for a cylindrical groove shape, which enables the creation of a machining program in an interactive format by making the machining program correspond to a specific region of a plane.

〔従来の技術〕[Conventional technology]

従来、数値制御装置(CNC)を使用して円筒形のワー
クの側面に溝形状の加工を行う場合には、Gコード等を
用いて溝形状を定義し、加工プログラムを作成していた
Conventionally, when machining a groove shape on the side surface of a cylindrical workpiece using a numerical control device (CNC), the groove shape was defined using a G code or the like, and a machining program was created.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の方法ではオペレータにNCテープフォー
マットや自動プログラミングの言語規約等の知識が充分
にないとプログラミングが容易でなく、また熟練したオ
ペレータでも三次元形状のプログラミングには相当な時
間がかかる。
However, in the conventional method, programming is not easy unless the operator has sufficient knowledge of the NC tape format, automatic programming language conventions, etc., and programming of three-dimensional shapes takes a considerable amount of time even for experienced operators.

本発明はこのような点に鑑みてなされたものであり、ワ
ークの側面を平面の特定の領域に対応させて、対話形式
で加工プログラムを作成可能とした円筒溝形状の加工プ
ログラムの作成方法を提供することを目的とする。
The present invention has been made in view of these points, and provides a method for creating a machining program for a cylindrical groove shape, which allows the creation of a machining program in an interactive format by making the side surface of a workpiece correspond to a specific area on a plane. The purpose is to provide.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では上舵課題を解決するために、円筒形のワーク
の側面に溝形状を加工する対話型数値制御装置の円筒溝
形状の加工プログラムの作成方法において、回転軸を直
線状に展開した軸と円筒の長手方向の軸とで構成される
直交座標系の平面上の、前記展開した回転軸のO°以上
360°未満の角度の範囲の領域に前記ワークの一周の
側面を対応させ、前記直交座標系の座標値を用いて対話
形式で所要のデータを入力して前記溝形状を定義し、加
工プログラムを作成することを特徴さする円筒溝形状の
加工プログラムの作成方法が提供される。
In the present invention, in order to solve the problem of the upper rudder, in a method for creating a machining program for a cylindrical groove shape for an interactive numerical control device that machines a groove shape on the side surface of a cylindrical workpiece, an axis in which the rotation axis is expanded linearly is used. The circumferential side surface of the workpiece is made to correspond to an area within an angle range of 0° or more and less than 360° of the developed rotational axis on a plane of an orthogonal coordinate system constituted by the longitudinal axis of the cylinder, and the There is provided a method for creating a machining program for a cylindrical groove shape, characterized in that the groove shape is defined by inputting required data in an interactive format using coordinate values of an orthogonal coordinate system, and a machining program is created.

(作用〕 回転軸を直線状に展開した軸と円筒の長手方向の軸とで
構成される平面上の、且つ展開した回転軸の0°以上3
60°未満の角度の範囲の領域にワークの一周の側面を
対応させて対話形式で溝形状を定義する。二次元の座標
系で、且つ対話形式で容易に加工プログラムを作成する
ことができる。
(Operation) On a plane consisting of the linearly developed axis of the rotational axis and the longitudinal axis of the cylinder, and at least 0 degrees 3 of the developed rotational axis.
The groove shape is defined interactively by making the side surfaces of the workpiece correspond to a region having an angle of less than 60 degrees. Machining programs can be easily created in a two-dimensional coordinate system and in an interactive format.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。な
お、以下の説明では回転軸をC軸、円筒の長手方向の軸
をZ軸と記す。
Hereinafter, one embodiment of the present invention will be described based on the drawings. In the following description, the rotation axis will be referred to as the C axis, and the axis in the longitudinal direction of the cylinder will be referred to as the Z axis.

第4図は円筒溝形状の加工の一例を示した斜視図である
。図において、加工形状2oは長さ65mmの円筒状の
ワーク2■の側面22に所定の幅で、且つ円筒直径が2
7mmとなるような深さの溝形状23を有する。溝形状
23は工具24をZ軸方向に制御しながら、ワーク21
をC軸方向に720° (2回転)回転させることによ
り製作されるものである。
FIG. 4 is a perspective view showing an example of machining of a cylindrical groove shape. In the figure, the machining shape 2o has a predetermined width on the side surface 22 of a cylindrical workpiece 2■ with a length of 65 mm and a cylindrical diameter of 2
The groove shape 23 has a depth of 7 mm. The groove shape 23 controls the workpiece 21 while controlling the tool 24 in the Z-axis direction.
It is manufactured by rotating 720° (2 rotations) in the C-axis direction.

次に、この溝形状23を本発明の円筒溝形状の加工プロ
グラムの作成方法によって加工プログラムを作成する方
法について説明する。
Next, a method for creating a machining program for this groove shape 23 using the method for creating a machining program for a cylindrical groove shape according to the present invention will be described.

第1図(a)は本発明の一実施例の概念図であり、第4
図の加工形状20を側面22に関して展開した図に相当
する。本図の座標系の横軸はZ軸であり、座標値の単位
はrrimである。縦軸はC軸を直線状に展開した軸で
あり、座標値の単位は角度じ)である。領域22aは第
4図の側面22に対応する。
FIG. 1(a) is a conceptual diagram of one embodiment of the present invention;
This corresponds to a diagram in which the processed shape 20 in the figure is developed with respect to the side surface 22. The horizontal axis of the coordinate system in this figure is the Z axis, and the unit of coordinate values is rrim. The vertical axis is a linear expansion of the C-axis, and the units of coordinate values are angles. Region 22a corresponds to side surface 22 in FIG.

第1図(b)は本発明の一実施例の円筒溝形状の加工プ
ログラムの作成方法の手順を示した表である。定義ステ
ップ1はSTI〜ST9の各ステップより成り、各ステ
ップ毎に、形状構成要素2と数値データ3の設定を行う
。この設定は、対話型数値制御装置の表示画面に表示さ
れた質問事項に対し、その都度オペレータが所定の形状
記号キー及び数値キーを操作して答える形式で行う。以
下、第1図(a)も同時に参照して、定義ステップの順
序に従ってオペレータの操作手順を詳細に説明する。
FIG. 1(b) is a table showing a procedure for creating a machining program for a cylindrical groove according to an embodiment of the present invention. Definition step 1 consists of steps STI to ST9, and shape constituent elements 2 and numerical data 3 are set for each step. This setting is performed in such a way that the operator answers questions displayed on the display screen of the interactive numerical control device each time by operating predetermined shape symbol keys and numerical keys. Hereinafter, with reference also to FIG. 1(a), the operator's operation procedure will be described in detail in accordance with the order of the definition steps.

(STI)形状構成要素の問いに対し、下方向の形状構
成要素を設定する。
(STI) In response to the shape component question, set the shape component in the downward direction.

次に始点のC座標とZ座標、及び円筒直径の問いに対し
、それぞれ0°、20mm、27mmの値を設定する。
Next, in response to questions about the C and Z coordinates of the starting point and the diameter of the cylinder, set values of 0°, 20 mm, and 27 mm, respectively.

切削方向のパラメータの問いに対してはrlJを設定す
る。ここで、パラメータr1gは形状構成要素の進行方
向に対して左側を切削することを意味する。なお、形状
構成要素の進行方向に対して右側あるいは要素上を切削
させる場合には、パラメータの値をそれぞれtr−14
あるいは「0」に設定する。終点座標の問いに対しては
C座標を1206に設定する。
In response to the question about the cutting direction parameter, rlJ is set. Here, the parameter r1g means cutting on the left side with respect to the advancing direction of the shape component. In addition, when cutting on the right side or on the element with respect to the direction of movement of the shape component, the value of the parameter is set to tr-14.
Or set it to "0". In response to the question about the end point coordinates, the C coordinate is set to 1206.

ここまでの操作によって定義された加工通路は第1図(
a)の点Paを始点として、工具24を図のような位置
に置いて、点Pbまで移動する通路である。
The machining path defined by the operations up to this point is shown in Figure 1 (
This is a passage starting from point Pa in a), placing the tool 24 at the position shown in the figure, and moving to point Pb.

rsT2)形状構成要素の問いに対しては丸みの形状構
成要素を、半径の問いに対しては10mmを設定する。
rsT2) For the shape component question, set the shape component of roundness, and for the radius question, set 10 mm.

(Sr1)形状構成要素の問いに対しては左下方向の要
素を設定する。終点座標の問いに対してはZ座標を50
mm、C座標を240°に設定する。
(Sr1) For the question of shape constituent elements, set the element in the lower left direction. For the question of end point coordinates, set the Z coordinate to 50
Set the mm and C coordinates to 240°.

この操作により、点Pbにおいて半径10mmの面取り
を行った後、工具24を点Pcまで移動する加工il路
が定義される。
This operation defines a machining path in which the tool 24 is moved to point Pc after chamfering with a radius of 10 mm at point Pb.

(Sr4)形状構成要素の問いに対しては丸みの形状構
成要素を、半径の問いに対しては10mmを設定する。
(Sr4) For the shape component question, set the shape component of roundness, and for the radius question, set 10 mm.

(Sr5)形状構成要素の問いに対しては下方向の形状
構成要素を設定する。終点座標の問いに対してはC座標
を480°に設定する。
(Sr5) For the shape component question, set the shape component in the downward direction. For the question of end point coordinates, set the C coordinate to 480°.

この操作により、点Pcにおいて半径10mmの面取り
を行った後、工具24を点Pdまで移動する加工通路が
定義される。
This operation defines a machining path in which the tool 24 is moved to point Pd after chamfering with a radius of 10 mm at point Pc.

(Sr6)形状構成要素の問いに対しては丸みの形状構
成要素を、半径の問いに対しては10mmを設定する。
(Sr6) For the shape component question, set the shape component of roundness, and for the radius question, set 10 mm.

(Sr7)形状構成要素の問いに対しては右下方向の形
状構成要素を設定する。終点座標の問いに対してはZ座
標を20mm、C座標を600°に設定する。
(Sr7) In response to the shape component question, set the shape component in the lower right direction. Regarding the question of end point coordinates, set the Z coordinate to 20 mm and the C coordinate to 600°.

この操作により、点Pdにおいて半径10mmの面取り
を行った後、工具24を点Peまで移動する加工通路が
定義される。
This operation defines a machining path in which the tool 24 is moved to point Pe after chamfering with a radius of 10 mm at point Pd.

rsT8)形状構成要素の問いに対しては丸みの形状構
成要素を、半径の問いに対しては10mmを設定する。
rsT8) For the shape component question, set the shape component of roundness, and for the radius question, set 10 mm.

(Sr9)形状構成要素の問いに対しては下方向の形状
構成要素を設定する。終点座標の問いに対してはC座標
を720°に設定する。
(Sr9) In response to the shape component question, set the shape component in the downward direction. For the question of end point coordinates, set the C coordinate to 720°.

この操作により、点Peにおいて半径10mmの面取り
を行った後、工具24を点Paまで移動する加工通路が
定義される。
This operation defines a machining path in which the tool 24 is moved to point Pa after chamfering with a radius of 10 mm at point Pe.

第2図に上記の操作を実行した後の対話型数値制御装置
の表示画面を示す。図において、表示画面4には設定し
た順序に従って形状構成要素2が表示され、また領域2
2aの内部に溝形状23に相当する加工通路23aが描
画されている。
FIG. 2 shows the display screen of the interactive numerical control device after performing the above operations. In the figure, the shape constituent elements 2 are displayed on the display screen 4 according to the set order, and the area 2
A machining passage 23a corresponding to the groove shape 23 is drawn inside 2a.

第3図は本発明の円筒溝形状の加工プログラムの作成方
法を実施するための対話型数値制御装置のハードウェア
の概略構成図である。プロセッサ11はROM12に格
納されたシステムプログラムに従って対話型数値制御装
置全体を制御する。
FIG. 3 is a schematic diagram of the hardware configuration of an interactive numerical control device for implementing the method of creating a machining program for cylindrical groove shapes according to the present invention. The processor 11 controls the entire interactive numerical control device according to a system program stored in the ROM 12.

ROM12にはEFROMあるいはEEFROMが使用
される。RAM13はDRAM等が使用され、各種のデ
ータ及び入出力信号が格納される。
EFROM or EEFROM is used as the ROM 12. A DRAM or the like is used as the RAM 13, and various data and input/output signals are stored therein.

不揮発性メモリ14にはバッテリバックアップされたC
MO3が使用され、電源切断後も保持すべきパラメータ
、ピッチ誤差補正量及び工具補正量等が格納されている
The nonvolatile memory 14 has battery-backed C
MO3 is used and stores parameters, pitch error correction amount, tool correction amount, etc. that should be retained even after the power is turned off.

グラフィック制御回路15はディジタル信号を表示用の
信号に変換し、表示器16に与える。表示器16はCR
Tあるいは液晶表示装置等が使用され、各軸の位置表示
、入出力信号の状態、パラメータ等が表示される。操作
盤17はキーボード等から構成され、各種のデータの入
力あるいは工作機械18の操作に使用される。これらは
バス29によって結合されている。
The graphic control circuit 15 converts the digital signal into a display signal and supplies it to the display 16. Display 16 is CR
A T or liquid crystal display device is used to display the position of each axis, the status of input/output signals, parameters, etc. The operation panel 17 includes a keyboard and the like, and is used for inputting various data or operating the machine tool 18. These are connected by a bus 29.

なお、上記の説明では対話型数値制御装置を使用したが
、本発明の円筒溝形状の加工プログラムの作成方法は自
動プログラム作成装置にも適用することができる、 〔発明の効果〕 以上説明したように本発明では、回転軸を直線状に展開
した軸と円筒の長手方向の軸とで構成される平面上で、
且つ展開した回転軸のO°以上360°未満の角度の範
囲の領域にワークの一周の側面を対応させ、この領域を
対話型数値制御装置の表示画面に表示して、対話形式で
溝形状を定義するので、熟練し先オペレータでなくても
加工プログラムを容易に作成できる。
Although the above explanation uses an interactive numerical control device, the method for creating a machining program for cylindrical grooves according to the present invention can also be applied to an automatic program creation device. [Effects of the Invention] As explained above. In the present invention, on a plane composed of an axis obtained by expanding the rotation axis into a linear shape and an axis in the longitudinal direction of the cylinder,
In addition, the side surface of the workpiece is made to correspond to an angle range of 0° or more and less than 360° of the unfolded rotation axis, and this region is displayed on the display screen of the interactive numerical control device to interactively determine the groove shape. Because it is defined, machining programs can be easily created even by non-skilled operators.

また、展開した回転軸の座標値は角度を単位とし、さら
に360°以上の回転角度の加工通路も一つの領域に重
ねて描画するので、実際のワークの側面との対応がし易
(、加工プログラムの作成時間が短縮する。
In addition, the coordinate values of the developed rotation axis are expressed in angle units, and machining paths with rotation angles of 360° or more are also drawn in one area, making it easy to correspond to the side surface of the actual workpiece. Program creation time is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の円筒溝形状の加工プ
ログラ・ムの作成方法の概念図、第1図(b)は本発明
の一実施例の円筒溝形状の加工プログラムの作成方法の
手順を示した表、第2図は本発明の一実施例の円筒溝形
状の加工プログラムの作成方法による対話型数値制御装
置の表示画面、 第3図は本発明を実施するための対話型数値制御装置の
ハードウェアの概略構成図、 第4図は円筒溝形状の加工の一例を示した図である。 2−・− 4−・−・ 2a 3a −・定義ステップ 一形状構成要素 一数値データ ・表示画面 プロセッサ ワークの側面 溝形状 領域 加工通路 工具 特許出願人 ファナック株式会社 代理人   弁理士  服部毅巖 第1図(0) 第1 図(b) 第4 図
FIG. 1(a) is a conceptual diagram of a method for creating a machining program for a cylindrical groove shape according to an embodiment of the present invention, and FIG. 1(b) is a conceptual diagram of a method for creating a machining program for a cylindrical groove shape according to an embodiment of the present invention. A table showing the steps of the creation method, FIG. 2 is a display screen of an interactive numerical control device according to the method for creating a machining program for a cylindrical groove shape according to an embodiment of the present invention, and FIG. 3 is a diagram showing the steps for implementing the present invention. A schematic configuration diagram of the hardware of the interactive numerical control device, FIG. 4 is a diagram showing an example of machining of a cylindrical groove shape. 2-・- 4-・-・ 2a 3a -・Definition Step - Shape Component - Numerical Data/Display Screen Processor Work Side Groove Shape Area Machining Passage Tool Patent Applicant Fanuc Co., Ltd. Agent Patent Attorney Takeshi Hattori No. 1 Figure (0) Figure 1 (b) Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)円筒形のワークの側面に溝形状を加工する対話型
数値制御装置の円筒溝形状の加工プログラムの作成方法
において、 回転軸を直線状に展開した軸と円筒の長手方向の軸とで
構成される直交座標系の平面上の、前記展開した回転軸
の0°以上360°未満の角度の範囲の領域に前記ワー
クの一周の側面を対応させ、前記直交座標系の座標値を
用いて対話形式で所要のデータを入力して前記溝形状を
定義し、加工プログラムを作成することを特徴とする円
筒溝形状の加工プログラムの作成方法。
(1) In the method of creating a machining program for a cylindrical groove shape for an interactive numerical control device that processes a groove shape on the side surface of a cylindrical workpiece, the rotary axis is linearly expanded and the axis in the longitudinal direction of the cylinder is A side surface of one circumference of the workpiece is made to correspond to an area within an angle range of 0° or more and less than 360° of the developed rotation axis on a plane of the constructed orthogonal coordinate system, and using the coordinate values of the orthogonal coordinate system, A method for creating a machining program for a cylindrical groove shape, characterized in that the groove shape is defined by inputting required data in an interactive format, and a machining program is created.
(2)前記領域を表示画面に表示し、前記入力されたデ
ータに基づいて前記領域内に加工通路を描画することを
特徴とする特許請求の範囲第1項記載の円筒溝形状の加
工プログラムの作成方法。
(2) The program for machining a cylindrical groove shape according to claim 1, characterized in that the region is displayed on a display screen, and a machining path is drawn in the region based on the input data. How to make.
(3)前記展開した回転軸の座標値は角度を単位とする
ことを特徴とする特許請求の範囲第1項記載の円筒溝形
状の加工プログラムの作成方法。
(3) The method for creating a machining program for a cylindrical groove shape according to claim 1, wherein the coordinate values of the developed rotation axis are expressed in units of angle.
(4)前記回転軸の角度が0°未満または360°以上
に相当する範囲の溝形状は、前記領域に重ねて表示する
ことを特徴とする特許請求の範囲第1項記載の円筒溝形
状の加工プログラムの作成方法。
(4) A cylindrical groove shape according to claim 1, characterized in that the groove shape in a range corresponding to an angle of the rotation axis of less than 0 degrees or more than 360 degrees is displayed superimposed on the region. How to create a machining program.
JP1020066A 1989-01-30 1989-01-30 Method of forming working program for cylindrical groove shape Pending JPH02199505A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1020066A JPH02199505A (en) 1989-01-30 1989-01-30 Method of forming working program for cylindrical groove shape
PCT/JP1990/000029 WO1990008990A1 (en) 1989-01-30 1990-01-10 Preparation method of machining program of cylindrical groove shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020066A JPH02199505A (en) 1989-01-30 1989-01-30 Method of forming working program for cylindrical groove shape

Publications (1)

Publication Number Publication Date
JPH02199505A true JPH02199505A (en) 1990-08-07

Family

ID=12016720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020066A Pending JPH02199505A (en) 1989-01-30 1989-01-30 Method of forming working program for cylindrical groove shape

Country Status (2)

Country Link
JP (1) JPH02199505A (en)
WO (1) WO1990008990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496111A (en) * 1990-08-09 1992-03-27 Fanuc Ltd Tool locus plotting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039405A (en) * 1989-06-07 1991-01-17 Fanuc Ltd Method for forming working program of cylindrical groove shape

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293312A (en) * 1986-06-12 1987-12-19 Mitsubishi Electric Corp Numerical controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293312A (en) * 1986-06-12 1987-12-19 Mitsubishi Electric Corp Numerical controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496111A (en) * 1990-08-09 1992-03-27 Fanuc Ltd Tool locus plotting method

Also Published As

Publication number Publication date
WO1990008990A1 (en) 1990-08-09

Similar Documents

Publication Publication Date Title
US5465215A (en) Numerical control method and apparatus
EP3137955B1 (en) Beam tool pathing for 3d compound contours using machining path surfaces to maintain a single solid representation of objects
JP2002172543A (en) Control parameter setting system and control parameter setting method for machining device
KR0150064B1 (en) Apparatus and method for numerical control
JPH1094945A (en) Machining limit area designating method and manual machining method in numerical control device
US5126646A (en) Nc program drawing method
JPH02199505A (en) Method of forming working program for cylindrical groove shape
JP4059614B2 (en) Control device for 3D laser processing machine
JP2007172325A (en) Method of machining free curve and numerical control device
EP0509102A1 (en) Method of working simulation
JP3248081B2 (en) Automatic program creation device with automatic cutting axis change function
JPH0218602A (en) Play-back system
JP2002006913A (en) Numerical control equipment of machine tool and method for groove machining
JPH039405A (en) Method for forming working program of cylindrical groove shape
JPH03294906A (en) Editing system for working program
JPH0484203A (en) Generation method for work program
JPS61203251A (en) Tool interference check system
JP2780446B2 (en) Electric discharge machine
JPS62293312A (en) Numerical controller
JP3471644B2 (en) Control device for area machining operation
JPH03156506A (en) Nc program generating method for interactive numerical controller or automatic programming device
JPH04259012A (en) Numerical controller
JPH0719174B2 (en) Designated area offset method in NC data creation
JPH03184689A (en) Formation of three-dimensional processing program
JPH0926810A (en) Numerical controller