JPH02199421A - Light beam scanner - Google Patents
Light beam scannerInfo
- Publication number
- JPH02199421A JPH02199421A JP1018559A JP1855989A JPH02199421A JP H02199421 A JPH02199421 A JP H02199421A JP 1018559 A JP1018559 A JP 1018559A JP 1855989 A JP1855989 A JP 1855989A JP H02199421 A JPH02199421 A JP H02199421A
- Authority
- JP
- Japan
- Prior art keywords
- hologram
- wave
- rotating body
- light beam
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 7
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
ホログラムディスクを用いた光ビーム走査装置に関し、
ホログラムディスクの回転中心を中心とする面ぷれに起
因する走査位置のずれを防止することを目的とし、
複数個に分割された回転体面上の部分に再生点を設定し
、該再生点を通る法線面に対して、R/ l °cos
”θd= cosoH−cosθd但し、sin θ
、 −3−UJE’P〒”’FIFT上式中、R−再
生点の入射半径、!=結像距離、θ、−人射角、θ4=
出射角、S=λ2 (再生波波長)/λ1 (作成波波
長)、F1一回転体面から参照波点光源までの法線距離
、
を満足する位置から発散球面波である参照波と物体波を
照射して該部分にホログラムを作成し、かつ上式を満足
する入射する入射角で入射し該ホログラムが作成された
回転体を回転し、直線走査を行う出射光ビームを得るよ
うに構成する。[Detailed Description of the Invention] [Summary] Regarding a light beam scanning device using a hologram disk, the object is to prevent deviation of the scanning position due to surface wobbling around the rotation center of the hologram disk, and a plurality of light beam scanning devices are provided. A reproduction point is set on the part of the rotating body surface divided into R/l °cos with respect to the normal plane passing through the reproduction point.
”θd=cosoH−cosθdHowever, sin θ
, -3-UJE'P〒"'FIFTIn the above formula, R-incidence radius of reproduction point, !=imaging distance, θ,-incidence angle, θ4=
Output angle, S = λ2 (reproduced wave wavelength) / λ1 (created wave wavelength), normal distance from the F1 rotating body surface to the reference wave point light source, the reference wave and object wave, which are diverging spherical waves, are generated from a position that satisfies the following: The beam is irradiated to create a hologram in the area, and is incident at an incident angle that satisfies the above equation, rotating the rotating body on which the hologram was created to obtain an output light beam that performs linear scanning.
〔産業上の利用分野]
本発明はホログラムディスクを用いて、直線走査を行う
光ビーム走査装置に関する。[Industrial Application Field] The present invention relates to a light beam scanning device that performs linear scanning using a hologram disk.
最近バーコードの読み取りや、レーザプリンタにおける
レーザ光の走査等に複雑で高価な回転多面鏡の代わりに
、構造が簡単で製造が容易なホログラムを用いた光ビー
ム走査装置が検討されている。Recently, a light beam scanning device using a hologram, which has a simple structure and is easy to manufacture, is being considered for bar code reading, laser beam scanning in a laser printer, etc. instead of a complicated and expensive rotating polygon mirror.
第2図に、ホログラムを用いた光ビーム走査装置の基本
構成を示す。図示されたように、回転軸1の回りに高速
に回転する透明な光学回転円板(ホログラムディスク)
10上に所定のパターンのホログラムファセット3が形
成されており、レーザ光源4よりレンズ5を介して照射
された再生光ビーム6がホログラムファセットに照射さ
れ、このホログラムファセット内に形成されている干渉
縞によって回折された出射光ビーム7が走査ビームにな
ってスクリーン8上を走査する。FIG. 2 shows the basic configuration of a light beam scanning device using a hologram. As shown in the figure, a transparent optical rotating disk (hologram disk) that rotates at high speed around the rotation axis 1
A hologram facet 3 having a predetermined pattern is formed on the hologram facet 10, and a reproduction light beam 6 irradiated from a laser light source 4 through a lens 5 is irradiated onto the hologram facet, and interference fringes are formed within the hologram facet. The emitted light beam 7 diffracted by the scanning beam 7 becomes a scanning beam and scans the screen 8.
従来、上述のようなホログラムを用いて、レーザプリン
タ等に用いられる高精度直線走査を行う装置においては
、印字品質を良くするために、111Qに副走査方向に
対するくり返しのレーザ光の走査線の投射角度変動を±
10数秒以下とすることか要求される。この投射角度変
動はホログラムが作成された回転円板の面ふれまたは軸
ずれ等のわずかな変動(数秒または数マイクロメートル
程度)によって生じ、回転円板の機械的な精度を」二げ
てごれを減少させることは非常に困難であり、問題点で
あった。又、ホログラムスキャナの光使用効率も低いも
のであった。Conventionally, in devices that perform high-precision linear scanning using the above-mentioned hologram and used in laser printers, etc., in order to improve printing quality, repeated scanning lines of laser light are projected in the sub-scanning direction in 111Q. ± angle fluctuation
It is required that the time be less than 10 seconds or less. This projection angle variation is caused by slight variations (on the order of a few seconds or several micrometers) such as surface wobbling or axis deviation of the rotating disk on which the hologram is created, and can impair the mechanical accuracy of the rotating disk. It was very difficult to reduce the amount of water, which was a problem. Furthermore, the light usage efficiency of the hologram scanner was also low.
上記の如き問題点を解決するために、本願出願人は特開
昭60−19441.9号において、物体波と参照波(
共に発散球面波)を再生点を通る面法線に対して対称の
位置から照射してホログラムを作成し、再生光ビームを
入射角と回折角が等しくなるように該再生点に照射する
ことにより、ボログラムディスクの面ふれおよび軸ずれ
の許容値が大きくなるようにすると共に光使用効率の高
いホログラムスキャナを得る技術を開示した。In order to solve the above problems, the applicant of the present application proposed an object wave and a reference wave (
A hologram is created by irradiating a hologram (both divergent spherical waves) from a position symmetrical to the surface normal passing through the reproducing point, and by irradiating the reproducing light beam to the reproducing point so that the incident angle and the diffraction angle are equal. disclosed a technique for increasing the permissible values for surface runout and axis misalignment of a hologram disk, and for obtaining a hologram scanner with high light usage efficiency.
即ち、第4図に示す如く、ボログラムディスク10上の
ボログラ1、ファセットに再生点Pを設定し、該再生点
を通る面法線Xに対して対称又はほぼ対称の位置A、、
A2からいずれも発散球面波である参照波W、と物体波
W2を照射して該部分にホログラムを作成する。こうし
てホログラl、が作成された物体(ホログラムディスク
)10を回転しながら再生光を照射することにより、結
像面T上で所定方向に走査する回折光出射光ビームが得
られる。このように従来は、面振れに対する位置の変動
を防止するために、上述の如く入射角と出射角とを等し
くしていた。しかし、これは第3図に示すようなディス
クのビーム入射位置を回転中心とした面振れに対して大
きな効果があるもののディスク回転中心に対する面振れ
(第1図)に対する走査位置の変動については十分な効
果が得られないことが判明した。That is, as shown in FIG. 4, a reproducing point P is set on the facet of the vologram 1 on the vologram disk 10, and a position A is symmetrical or almost symmetrical with respect to the surface normal X passing through the reproducing point.
A reference wave W and an object wave W2, both of which are divergent spherical waves, are irradiated from A2 to create a hologram in the area. By irradiating the reproduction light while rotating the object (hologram disk) 10 on which the hologram l has been created in this way, a diffracted light output light beam that scans in a predetermined direction on the imaging plane T is obtained. As described above, conventionally, in order to prevent positional fluctuations due to surface runout, the incident angle and the exit angle were made equal as described above. However, although this has a large effect on surface runout with the beam incidence position of the disk as the center of rotation as shown in Figure 3, it is insufficient for fluctuations in the scanning position with respect to surface runout (Figure 1) with respect to the disk rotation center. It turned out that no significant effect could be obtained.
本発明の目的は、特にホログラムディスクの回転中心に
対するディスク面振れに対する走査位置の変動を防止す
ることにある。An object of the present invention is to prevent fluctuations in the scanning position, particularly with respect to disk surface runout with respect to the center of rotation of the hologram disk.
本願発明者は2つの作成発散球面波の対称性を若干くず
すごとに着眼し、それによりホログラムディスクの回転
中心に対する而振れによる位置の変動をさらに小さくで
きる条件を見出した。即ち、本発明に係る光ビーム走査
装置によれば、複数個に分割された回転体面上の部分に
再生点を設定し、該再生点を通る法線面に対して次式を
満足する位置から発散球面波である参照波と物体波を照
射して該部分にホログラムを作成するようにしたことを
特徴とする;
R#!・cos2θ、 = cosθi −CO3θd
・・・ (1)但し、sin θ1−3−R/、/−
m〒1]71η−上式中、R−再生点の入射半径、l−
結像距離、θ、−人射角、θd=出射角、S=λ2 (
再生波波長)/λ、(作成波波長)、F、一回転体面か
ら参照波点光源までの法線距離。The inventor of the present invention paid attention to slightly breaking the symmetry of the two created diverging spherical waves, and thereby found conditions that could further reduce the fluctuation in position due to vibration with respect to the center of rotation of the hologram disk. That is, according to the light beam scanning device according to the present invention, a reproduction point is set at a portion on the surface of the rotating body divided into a plurality of parts, and the reproduction point is set from a position satisfying the following equation with respect to the normal plane passing through the reproduction point. The feature is that a hologram is created in the area by irradiating a reference wave and an object wave which are diverging spherical waves; R#!・cos2θ, = cosθi −CO3θd
... (1) However, sin θ1-3-R/, /-
m〒1]71η-In the above formula, R-Incidence radius of the reproduction point, l-
Imaging distance, θ, - human angle of incidence, θd=output angle, S=λ2 (
Reproduced wave wavelength)/λ, (Created wave wavelength), F, normal distance from the surface of the one-rotor body to the reference wave point light source.
第1図において、結像距離を!、ホログラムへの入射角
をO1、出射角(ホログラムによる回折角)をO4、ま
た回転中心に対する面振れをdφとする。このとき、面
振れに対しての回折角度のずれをdθ4とすると次の一
次近似式が成立する。In Figure 1, the imaging distance! , the incident angle to the hologram is O1, the exit angle (diffraction angle by the hologram) is O4, and the surface deflection with respect to the center of rotation is dφ. At this time, if the deviation of the diffraction angle with respect to the surface runout is dθ4, the following first-order approximation formula holds true.
dθd−[CO5θ; / cos θd−1]dφ・
・・(1)一方、この回折角度のずれが次の関係を満た
せば、位置の変動は防止できる。dθd−[CO5θ; / cos θd−1]dφ・
(1) On the other hand, if the deviation of this diffraction angle satisfies the following relationship, the positional fluctuation can be prevented.
り
、°、dθa = R/ Cj2/ cos θ6
〕 ・dφ ・・・(2)したがって、(1)、
(2)式より次式(3)の関係が得られる。ri, °, dθa = R/ Cj2/ cos θ6
] ・dφ ...(2) Therefore, (1),
From equation (2), the following equation (3) is obtained.
R/42・cos θd = CO5θt / cos
θa−i・ (a)(3)式を整理すると次式となる。R/42・cos θd = CO5θt / cos
θa-i・ (a) Rearranging the equation (3) gives the following equation.
R/I!、・cos2θd =CO3θi −CO3θ
a ・(4)ここで、(4)式を満足し、しかもホロ
グラムディスクにより直線走査を行うことは明白ではな
い。R/I! ,・cos2θd =CO3θi −CO3θ
a・(4) Here, it is not obvious that equation (4) is satisfied and linear scanning is performed using the hologram disk.
次に、このことが可能であることを以下に述べる。Next, it will be explained below that this is possible.
ここで入射角度は次式を満足するものとする(第4図参
照)。Here, it is assumed that the incident angle satisfies the following equation (see FIG. 4).
sinθエ = S・
・・・ (5)、r[7丁「7
但し、S=λ2/λI (A1 :ホログラム作成波波
長、ス2 ;ホログラム再生波波長)F、−参照波の点
光源A、とディスク10の面との垂直距離
R−再生点Pの入射半径
上記入射角条件(5)は一般に回折効率が最大となるよ
うに、即ちブラッグ角に選定されるがそれには何ら限定
されない。sin θ = S・
... (5), r [7 digits 7 However, S = λ2/λI (A1: hologram creation wave wavelength, S2: hologram reproduction wave wavelength) F, - Point light source A of the reference wave and Perpendicular distance R to the plane - incidence radius of the reproduction point P The incident angle condition (5) is generally selected to maximize the diffraction efficiency, that is, the Bragg angle, but is not limited thereto.
以上より、cosθi 、CO3θ6は次式(6)、(
7)%式%
但し、F2−物体波の点光源A2とディスク10の面と
の垂直距離
Y z −A r点とA2点との間の垂直距離(6)、
(7)式においてY2=2R,F、 −F2とした場合
が上述の従来技術、即ち、A、とA2とを対称的に配置
した場合に相当することが理解されよう。この場合には
θ、−θ4となる。From the above, cosθi and CO3θ6 are calculated using the following formula (6), (
7) % formula % However, F2 - vertical distance between the point light source A2 of the object wave and the surface of the disk 10 Y z - A vertical distance between point r and point A2 (6),
It will be understood that the case where Y2=2R, F, -F2 in equation (7) corresponds to the above-mentioned conventional technique, that is, the case where A and A2 are arranged symmetrically. In this case, θ is -θ4.
一方、走査面Tで直線走査を行う条件は次式で与えられ
ることが知られている。On the other hand, it is known that the conditions for performing linear scanning on the scanning plane T are given by the following equation.
F2= 22−・CO3c ”・(
8)ここでθゎは走査軌跡が垂下状態から上昇する時の
変曲点でのホログラムディスクの回転角で直線性を決定
する重要な角度パラメータである。F2= 22-・CO3c”・(
8) Here, θゎ is the rotation angle of the hologram disk at the inflection point when the scanning locus rises from the drooping state, and is an important angle parameter that determines the linearity.
また、ホログラムディスクの偏心マージン(軸ずれ許容
値)を最大とする条件は次式で表される。Further, the condition for maximizing the eccentricity margin (axis misalignment tolerance) of the hologram disk is expressed by the following equation.
Fz” CF+” +R2) ”” = F+” (F
2+ (RY2)2) ””・・・(9)
上記(9)式の導び方は前述の特開昭60−19441
9に開示されている。Fz"CF+" +R2) "" = F+" (F
2+ (RY2)2) ””...(9) The method for deriving the above equation (9) is described in the above-mentioned Japanese Patent Application Laid-Open No. 60-19441.
9.
実際の設計に際しては、ディスク入射半径R1波長比S
、結像距離!、最適直線走査を決定するθ。をまず定め
る。残るパラメータはF、、F2.Y。In actual design, the disk incidence radius R1 wavelength ratio S
, imaging distance! , θ to determine the optimal straight line scan. First determine. The remaining parameters are F, , F2. Y.
となり、3つの連立方程式(4)、(8)、(9)から
、この3つのパラメータF I+ F z、Y zは決
定できる。These three parameters F I+ F z and Y z can be determined from the three simultaneous equations (4), (8), and (9).
以下に実施例(設計値例)を示す。 Examples (design value examples) are shown below.
A2 : 787nm(半導体レーザ)、λI: 3
25nm(He−Cd レーザ)
R= 40 mm、、Y2 =83.969mmθi
=41.956° 、θ、 = 48.90°
、j2=343mmこの場合、252mmにわたって
±0.15mm以内の良好な直線走査が可能であること
を確認した。A2: 787nm (semiconductor laser), λI: 3
25 nm (He-Cd laser) R = 40 mm, Y2 = 83.969 mmθi
=41.956°, θ, =48.90°
, j2=343 mm In this case, it was confirmed that good linear scanning within ±0.15 mm over 252 mm was possible.
また、面振れは許容位置変動を20声以内とすると従来
の対称なときには、±30″であったものが±60″と
大幅に緩和されることが判明した。It has also been found that surface runout can be significantly reduced from ±30'' in the conventional symmetrical case to ±60'' when the allowable positional variation is within 20 tones.
なお、参照波と物体波は収差補正のためにコマ収差波を
ともなったものでも上記の条件を適用できることは言う
までもない。It goes without saying that the above conditions can be applied to the reference wave and the object wave even if they are accompanied by a coma aberration wave for aberration correction.
以上に記載した通り、本発明によればホログラムディス
クの回転中心を中心とする面ぶれに起因する走査位置の
ずれを確実に防止することができる。As described above, according to the present invention, it is possible to reliably prevent deviation of the scanning position due to surface wobbling about the rotation center of the hologram disk.
第1図は本発明にかかるホログラムディスクによる面振
れに起因する走査位置の変動防止を説明する図、第2図
はホログラムキャナの基本原理を説明する図、第3図は
従来の面振れ対策を説明する図、第4図は従来のホログ
ラムディスクの作成方法を説明する図。
10・・・ホログラムディスク、
P・・・再生点、 X・・・法線面。Figure 1 is a diagram illustrating how the hologram disk according to the present invention prevents fluctuations in scanning position due to surface runout, Figure 2 is a diagram explaining the basic principle of a hologram scanner, and Figure 3 is a diagram explaining the conventional countermeasure against surface runout. FIG. 4 is a diagram illustrating a conventional method for creating a hologram disk. 10... Hologram disk, P... Reproduction point, X... Normal plane.
Claims (1)
を設定し、該再生点を通る法線面(X)に対して次式を
満足する発散球面波である参照波と、発散球面波である
物体波を照射して該部分にホログラムを作成し、かつ次
式を満足する入射角で入射し該ホログラムが作成された
回転体を回転し、直線走査を行う出射光ビームを得る光
ビーム走査装置: (R/l)・cos^2θ_d=cosθ_i−cos
θ_d但し、sinθ_i=S・R/√(F_1^2+
R^2)上式中、R=再生点の回転体入射半径、l=結
像距離、θ_i=入射角、θ_d=出射角、S=λ_2
(再生波波長)/λ_1(作成波波長)、F_1=回転
体面から参照波点光源までの法線距離。[Claims] A reproducing point (P) on the surface of the rotating body (10) divided into a plurality of parts.
, and create a hologram in that part by irradiating the normal plane (X) passing through the reproduction point with a reference wave that is a divergent spherical wave that satisfies the following equation, and an object wave that is a divergent spherical wave. , and a light beam scanning device that obtains an output light beam that enters at an incident angle that satisfies the following formula, rotates the rotating body on which the hologram is created, and performs linear scanning: (R/l)・cos^2θ_d=cosθ_i− cos
θ_d However, sin θ_i=S・R/√(F_1^2+
R^2) In the above formula, R = radius of incidence of the rotating body at the reproduction point, l = imaging distance, θ_i = incident angle, θ_d = exit angle, S = λ_2
(Reproduced wave wavelength)/λ_1 (Created wave wavelength), F_1 = Normal distance from the rotating body surface to the reference wave point light source.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1855989A JP2663948B2 (en) | 1989-01-28 | 1989-01-28 | Light beam scanning device |
EP89302835A EP0334631B1 (en) | 1988-03-25 | 1989-03-22 | Beam scanner |
DE68922773T DE68922773T2 (en) | 1988-03-25 | 1989-03-22 | Light beam scanner. |
KR1019890003776A KR920009190B1 (en) | 1988-03-25 | 1989-03-25 | Beam scanner |
US07/329,327 US4948213A (en) | 1988-03-25 | 1989-03-27 | Beam scanner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1855989A JP2663948B2 (en) | 1989-01-28 | 1989-01-28 | Light beam scanning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02199421A true JPH02199421A (en) | 1990-08-07 |
JP2663948B2 JP2663948B2 (en) | 1997-10-15 |
Family
ID=11974983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1855989A Expired - Fee Related JP2663948B2 (en) | 1988-03-25 | 1989-01-28 | Light beam scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2663948B2 (en) |
-
1989
- 1989-01-28 JP JP1855989A patent/JP2663948B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2663948B2 (en) | 1997-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0132956B1 (en) | Light beam scanning apparatus | |
US5162929A (en) | Single-beam, multicolor hologon scanner | |
JPH09500217A (en) | Holographic recording and scanning system and method | |
JPH10227992A (en) | Bessel beam generating method and optical scanning device using the same | |
JPS61282819A (en) | Hologram disk for optical deflection | |
JPS63244013A (en) | Optical scanner | |
JPS61149918A (en) | Light beam scanning device | |
JPH0341805B2 (en) | ||
JPH02199421A (en) | Light beam scanner | |
JP2767588B2 (en) | Light beam scanning device | |
JP2518505B2 (en) | Diffraction grating spectrometer | |
JPH0521210B2 (en) | ||
JP3078655B2 (en) | Light beam scanning device | |
JPS60194419A (en) | Method and apparatus for scanning optical beam | |
JPH0421813A (en) | Optical beam scanner | |
JP2972023B2 (en) | Hologram scanner | |
JP2571638B2 (en) | Hologram scanner | |
JPH08313840A (en) | Optical scanner | |
JP2782139B2 (en) | Hologram scanner | |
JPS59111620A (en) | Light beam scanner | |
JPH0560997A (en) | Optical scanner | |
JPH0617949B2 (en) | Hologram scanner | |
KR960014059B1 (en) | Scanning apparatus for hologram | |
JPS6163818A (en) | Scanning device of optical beam | |
JPH0772403A (en) | Optical scanner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |