JPH02199402A - Production of die for press forming of diffraction grating and production of diffraction grating - Google Patents
Production of die for press forming of diffraction grating and production of diffraction gratingInfo
- Publication number
- JPH02199402A JPH02199402A JP2002589A JP2002589A JPH02199402A JP H02199402 A JPH02199402 A JP H02199402A JP 2002589 A JP2002589 A JP 2002589A JP 2002589 A JP2002589 A JP 2002589A JP H02199402 A JPH02199402 A JP H02199402A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- press
- carbide
- tungsten
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims abstract description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000010948 rhodium Substances 0.000 claims abstract description 10
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 7
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 239000010937 tungsten Substances 0.000 claims abstract description 7
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910003470 tongbaite Inorganic materials 0.000 claims abstract description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims abstract description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000011195 cermet Substances 0.000 claims abstract description 5
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 5
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052762 osmium Inorganic materials 0.000 claims abstract description 5
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 5
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 5
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 5
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 238000000465 moulding Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 19
- 239000010409 thin film Substances 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 7
- 239000005357 flat glass Substances 0.000 claims description 4
- 239000004568 cement Substances 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 14
- 238000005530 etching Methods 0.000 description 11
- 239000010408 film Substances 0.000 description 9
- 230000001681 protective effect Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229910002848 Pt–Ru Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は微細加工を施した高精度な光学素子の一つであ
る、様々な形状の回折格子を容易に且つ大量に作製する
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for easily manufacturing large quantities of diffraction gratings of various shapes, which are one type of highly accurate microfabricated optical elements. .
従来の技術
高精度な回折格子を作製するためには、非常に微細な加
工が必要である。従来は機械加工により、軟らかい材料
の表面に一本一木溝を形成することによって、回折格子
を作製していた。しかしながら、このような方法では溝
の間隔は数μmにするのが限界であり、ザブミクロンの
加工はできない。BACKGROUND ART In order to produce a highly accurate diffraction grating, extremely fine processing is required. Conventionally, diffraction gratings have been fabricated by forming grooves one by one on the surface of a soft material using mechanical processing. However, with this method, the groove spacing is limited to several μm, and submicron processing is not possible.
そこで、最近では、半導体技術を応用した加工方法が検
討されている。Therefore, recently, processing methods that apply semiconductor technology are being considered.
例えば、1rNIKKEI MECHANICAJ1
9B5.6.17.P、85に示されているように、レ
ジスト上に等間隔で他のレジストをライン状に形成し、
イオン流によって物理的に斜方エツチングを行い、のこ
ぎり刃状にレジストを加工する方法や、特願昭61−3
31972号に示されているように、レジストに、三光
束干渉露光法によって、ホログラム回折格子を形成する
方法等が提案されている。For example, 1rNIKKEI MECHANICAJ1
9B5.6.17. As shown in P. 85, another resist is formed in a line shape at equal intervals on the resist,
A method of physically performing oblique etching using an ion flow and processing the resist into a sawtooth shape, and a patent application filed in 1986-3
As shown in Japanese Patent No. 31972, a method of forming a hologram diffraction grating on a resist using a three-beam interference exposure method has been proposed.
発明が解決しようとする課題
しかしながら、これらの方法では一つの回折格子を作製
するのに大変時間がかかり、また、再現性にも問題があ
り、同じものを大量に作製することは大変困難であり、
作製時間およびコストが非常にかかってしまう。Problems to be Solved by the Invention However, with these methods, it takes a lot of time to produce one diffraction grating, and there are also problems with reproducibility, making it extremely difficult to produce large quantities of the same grating. ,
The production time and cost are extremely high.
また、これらの方法で作製さた回折格子はレジスト等の
軟らかい材料であるので、耐久性に欠ける。Furthermore, since the diffraction gratings produced by these methods are made of a soft material such as resist, they lack durability.
本発明では上記課題に鑑み、物理的方法で高強度な材料
の表面に直接、所望の形状の回折格子を作製することを
目的としている。In view of the above problems, the present invention aims to produce a diffraction grating of a desired shape directly on the surface of a high-strength material by a physical method.
課題を解決するための手段
上記課題を解決するために、本発明では母材にタングス
テンカーバイド(WC)を主成分とする超硬合金または
チタンナイトライド(T i N)、チタンカーバイド
(TiC)、クロムカーバイド(Cr3C,、)あルイ
はアルミ+ (A、ffi、、 03)を主成分とする
サーメットを用い、プレス面には白金(Pt)、パラジ
ウム(Pd)、イリジウム(Ir)、ロジウム(Rh)
、オスミウム(Os )、ルテニウム(Ru)、レニウ
ム(Re)、タングステン(W)、タンタル(Ta)の
うち、少なくとも一種類以上の金属を含む合金薄膜をコ
ーティングして構成される光学素子のプレス成形用平型
の表面に感光性樹脂を塗布し、適当な間隔でラインアン
ドスペースのパターンを形成し、イオン流に対して経時
的に入射角を変化させながら、全体を均一に物理的にエ
ツチングし、コーティングした合金薄膜上に所望の形状
の回折格子を形成して、プレス成形用金型を作製し、該
金型を用いてガラスをプレス成形することによって、ガ
ラス表面に所望の形状の回折格子を転写して、ガラス製
の回折格子を作製することによって、耐久性の優れた回
折格子を容易に、且つ、再現性良く、大量に作製できる
ようにしたものである。Means for Solving the Problems In order to solve the above problems, the present invention uses cemented carbide whose main component is tungsten carbide (WC), titanium nitride (T i N), titanium carbide (TiC), The chromium carbide (Cr3C, ) alloy uses a cermet whose main component is aluminum + (A, ffi,, 03), and the press surface contains platinum (Pt), palladium (Pd), iridium (Ir), rhodium ( Rh)
, osmium (Os), ruthenium (Ru), rhenium (Re), tungsten (W), and tantalum (Ta). A photosensitive resin is applied to the surface of a flat mold, a line-and-space pattern is formed at appropriate intervals, and the entire surface is physically etched uniformly while changing the angle of incidence with respect to the ion flow over time. By forming a diffraction grating in the desired shape on the coated alloy thin film, producing a press molding mold, and press-molding the glass using the mold, the diffraction grating in the desired shape is formed on the glass surface. By transferring the above image to produce a glass diffraction grating, it is possible to easily produce a large quantity of highly durable diffraction gratings with good reproducibility.
作用
本発明は上記した方法によって、微細加工を施した光学
素子のプレス成形用型を作製し、この型を用いることに
よって光学性能の良い高精度な光学素子を直接プレスし
て、大量に成形することを可能としたものである。Function The present invention uses the method described above to produce a press-molding mold for microfabricated optical elements, and by using this mold, high-precision optical elements with good optical performance can be directly pressed and molded in large quantities. This made it possible.
実施例
以下、本発明の一実施例を図面を参照しながら説明する
。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.
実施例1
最初に、母材として直径20mm、厚さ6mmのWCを
主成分とする超硬合金を用い、この型の表面を超微細な
ダイヤモンド砥粒を用いて鏡面に研摩した。次に、この
鏡面上にスパッタ法により5μmの厚みでPt−Ru合
金薄膜を保護膜とじてコーティングして平面形状のプレ
ス成形用型を作製した。このようにして構成される未加
工のプレス成形用型の断面構造間を第1図に示した。第
1図において、11は母材、12は保護膜である。Example 1 First, a cemented carbide mainly composed of WC with a diameter of 20 mm and a thickness of 6 mm was used as a base material, and the surface of this mold was polished to a mirror surface using ultrafine diamond abrasive grains. Next, a Pt-Ru alloy thin film was coated on this mirror surface to a thickness of 5 μm by sputtering, along with a protective film, to produce a planar press-molding mold. FIG. 1 shows the cross-sectional structure of the unprocessed press molding die constructed in this manner. In FIG. 1, 11 is a base material, and 12 is a protective film.
次に、第1図に示した平型の表面にP MMA(ポリメ
チルメタアクリレ−1−)樹脂をスピンコーティングに
より、0.5μmの厚みで成膜し、120°Cで20分
間プリベークした後、エキシマレーザを光源として、線
幅1μmのラインアンドスペースのマスクパターンを密
着露光法により樹脂に焼き付けて現像を行った。このよ
うにして平型の表面に線幅1μm1段差0.5μmのラ
インアンドスペースのパターンをPMMA樹脂で作製し
た。この状態での断面図を第2図に示した。第2図にお
いて、21は母材、22は保護膜、23はPMMA樹脂
である。Next, PMMA (polymethyl methacrylate-1-) resin was formed into a film with a thickness of 0.5 μm on the surface of the flat mold shown in Figure 1 by spin coating, and prebaked at 120°C for 20 minutes. Thereafter, using an excimer laser as a light source, a line-and-space mask pattern with a line width of 1 μm was printed onto the resin by a contact exposure method and developed. In this way, a line-and-space pattern with a line width of 1 μm and a step difference of 0.5 μm was formed using PMMA resin on the surface of the flat mold. A cross-sectional view in this state is shown in FIG. In FIG. 2, 21 is a base material, 22 is a protective film, and 23 is a PMMA resin.
この金型を、イオン流に対する角度を経時的に変化させ
ることができるECR(エレクトロンサイクロトロン共
鳴)プラズマイオンシャワーエツチング装置にセットし
た。第3図には、このECRプラズマイオンシャワーエ
ツチング装置の概略図を示した。第3図において、31
はECRプラズマ発生装置、32はイオン引き出し電極
、33はシャッター、34は傾斜角の制御可能な基板ホ
ルダー、35は排気装置である。初め金型はイオン流に
対して直角にセットされているが、基板傾斜角の制御装
置のスイッチを入れると制御装置にプログラムした通り
に基板傾斜角がイオン流に対して経時的に変化する。本
実施例では基板傾斜角をイオン流に対して45°から1
35°までの間で経時的に種々変化させた。This mold was set in an ECR (electron cyclotron resonance) plasma ion shower etching device that can change the angle to the ion flow over time. FIG. 3 shows a schematic diagram of this ECR plasma ion shower etching apparatus. In Figure 3, 31
32 is an ion extraction electrode, 33 is a shutter, 34 is a substrate holder whose tilt angle can be controlled, and 35 is an exhaust device. Initially, the mold is set perpendicular to the ion flow, but when the substrate tilt angle controller is turned on, the substrate tilt angle changes over time relative to the ion flow as programmed into the controller. In this example, the substrate inclination angle was changed from 45° to 1° with respect to the ion flow.
The angle was varied over time up to 35°.
まず、第1の例としては角速度を一定にしてPMMA樹
脂が全てエツチングされるまでエツチングを行った。こ
の方法で作製した回折格子のプレス成形用金型の断面図
を第4図に示す。第4図において、41は母材、42は
保護膜、43は加工後の回折格子の断面形状である。第
4図から明らかなように、角速度を一定にした場合は、
2μmピッチで段差が0.8μmで左右対称のウェーブ
形状の回折格子のプレス成形用金型が得られていること
がわかる。First, as a first example, etching was performed at a constant angular velocity until all of the PMMA resin was etched. A cross-sectional view of a press molding die for a diffraction grating produced by this method is shown in FIG. In FIG. 4, 41 is a base material, 42 is a protective film, and 43 is a cross-sectional shape of the diffraction grating after processing. As is clear from Figure 4, when the angular velocity is constant,
It can be seen that a press molding die of a symmetrical wave-shaped diffraction grating with a pitch of 2 μm and a step difference of 0.8 μm was obtained.
別の例として、イオン流に対する基板傾斜角が45°か
ら90°までと90°から135°で角速度を大きく変
化させてPMMA樹脂が総てエツチングされるまでエツ
チングを行った。この方法で作製した回折格子のプレス
成形用金型の断面図を第5図に示す。第5図において、
51は母材、52は保護膜、53は加工後の回折格子の
断面形状である。第5図から明らかなように、イオン流
に対する基板傾斜角が45°から90°までと90°か
ら135°で角速度が大きく異なる場合には、ピッチは
2μmで一定であるが、波の頂点が左右いずれかに偏っ
たウェーブ形状の回折格子のプレス成形用金型が得られ
ていることがわかる。As another example, etching was performed with the substrate tilt angle relative to the ion flow ranging from 45° to 90° and from 90° to 135° while changing the angular velocity greatly until all the PMMA resin was etched. A cross-sectional view of a press molding die for a diffraction grating produced by this method is shown in FIG. In Figure 5,
51 is a base material, 52 is a protective film, and 53 is a cross-sectional shape of the diffraction grating after processing. As is clear from Fig. 5, when the angular velocity is significantly different from 45° to 90° and from 90° to 135° with respect to the ion flow, the pitch is constant at 2 μm, but the peak of the wave is It can be seen that a press molding die having a wave-shaped diffraction grating biased to either the left or right side was obtained.
以上のようにイオン流に対する基板傾斜角の角速度を変
化させることによって、回折格子のプレス成形用金型の
ウェーブ形状を制御することができる。また、エツチン
グする前の平型の表面に形成したPMMA樹脂のライン
アンドスペースのパターンを変えることによって、回折
格子のプレス成形用金型のピッチおよび段差を制御する
ことができる。By changing the angular velocity of the substrate inclination angle with respect to the ion flow as described above, the wave shape of the press molding die for the diffraction grating can be controlled. Furthermore, by changing the line-and-space pattern of the PMMA resin formed on the surface of the flat mold before etching, the pitch and level difference of the press molding die for the diffraction grating can be controlled.
従って、本発明の方法によって耐久性の優れたガラス製
の回折格子を容易に、且つ、再現性良く作製する為の高
強度で耐熱性の優れた回折格子のプレス成形用金型を得
るこ“とができるようになった。なお、実施例1におい
て、母材としてWCを主成分とする超硬合金を用い、保
護膜としてptRu合金薄膜を用いた金型について示し
たが、母材としてはWCを主成分とした超硬合金と同様
の強度を持ったチタンナイトライド(TiN)、チタン
カーバイド(T i C) 、クロムカーバイド(Cr
3C2)あるいはアルミナ(Aj2208)を主成分と
するサーメットを用いても、また、保護膜としてはPt
−Ru合金薄膜と同様にガラスプレスに対する耐久性の
ある白金(Pt)、パラジウム(Pd)、イリジウム(
Ir)、ロジウム(Rh)、オスミウム(Os)、ルテ
ニウム(Ru)、レニウム(Re)、タングステン(W
)。Therefore, by the method of the present invention, it is possible to obtain a press-molding mold for a diffraction grating with high strength and excellent heat resistance for easily manufacturing a glass diffraction grating with excellent durability and with good reproducibility. In Example 1, a mold was shown in which a cemented carbide whose main component was WC was used as the base material, and a ptRu alloy thin film was used as the protective film. Titanium nitride (TiN), titanium carbide (T i C), and chromium carbide (Cr) have the same strength as cemented carbide mainly composed of WC.
3C2) or a cermet whose main component is alumina (Aj2208), or Pt as a protective film.
- Platinum (Pt), palladium (Pd), and iridium (Pt), which have the same durability against glass presses as Ru alloy thin films
Ir), rhodium (Rh), osmium (Os), ruthenium (Ru), rhenium (Re), tungsten (W
).
クンタル(Ta)のうち、少なくとも一種類以上の金属
を含む合金薄膜を用いても同様の金型が得られることは
言うまでもない。It goes without saying that a similar mold can be obtained by using an alloy thin film containing at least one metal among Kuntal (Ta).
また、実施例1において、物理的なエツチング方法とし
てECRプラズマイオンシャワーエツチングを用いたが
、反応性イオンエツチング、反応性イオンビームエツチ
ングやスパッタエツチング等のエツチング方法を用いて
も、同様の効果が得られることは言うまでもない。Further, in Example 1, ECR plasma ion shower etching was used as the physical etching method, but similar effects can be obtained by using etching methods such as reactive ion etching, reactive ion beam etching, and sputter etching. Needless to say, it can be done.
実施例2
実施例1に示した方法で作製することができた回折格子
のプレス成形用金型を用いてガラス表面に金型形状をプ
レス成形して、ガラス製回折格子を作製した例を示す。Example 2 An example is shown in which a glass diffraction grating was manufactured by press-molding a mold shape on a glass surface using a press-molding mold for a diffraction grating that could be manufactured by the method shown in Example 1. .
実施例1の第4図および第5図に示した金型を上型に、
そして、超硬合金にPt−Ru合金薄膜をコーティング
した平型を下型にして、第6図に示したプレス成形機に
セットする。第6図において、61は上型用固定ブロッ
ク、62は上型用加熱ヒーター、63は上型、64は平
板ガラス、65は下型、66は下型用加熱ヒーター、6
7は下型用固定ブロック、68は上型用熱電対、69は
下型用熱電対、610はプランジャー、611は位置決
め用センサー、612はストッパー613は覆いである
。The mold shown in FIGS. 4 and 5 of Example 1 was used as the upper mold,
Then, a flat mold made of cemented carbide coated with a Pt-Ru alloy thin film was used as a lower mold and set in the press molding machine shown in FIG. In FIG. 6, 61 is a fixing block for the upper mold, 62 is a heating heater for the upper mold, 63 is the upper mold, 64 is a flat glass, 65 is the lower mold, 66 is the heating heater for the lower mold, 6
7 is a fixing block for the lower mold, 68 is a thermocouple for the upper mold, 69 is a thermocouple for the lower mold, 610 is a plunger, 611 is a positioning sensor, 612 is a stopper 613 is a cover.
次に、酸化鉛(PbO)70重量%、シリカ(Sin)
27重量%および残りが微量成分からなる半径10mm
、厚さ2胴の円板状の平板ガラス64を上下の型63お
よび65の下型65の上に置き、その上に上型63を置
き、そのまま520°Cまで昇温し、窒素雰囲気で約4
0kg/c+llのプレス圧によりプレスして2分間保
持し、その後、そのままの状態で上下の型を300°C
まで冷却して、プレス成形されたガラス製回折格子を取
り出して、ガラス製回折格子成形の工程を完了する。Next, lead oxide (PbO) 70% by weight, silica (Sin)
27% by weight and the rest made up of trace components with a radius of 10mm
A disk-shaped flat glass 64 with a thickness of 2 cylinders was placed on the lower mold 65 of the upper and lower molds 63 and 65, and the upper mold 63 was placed on top of it, and the temperature was raised to 520°C and heated in a nitrogen atmosphere. Approximately 4
Press with a press pressure of 0 kg/c+ll and hold for 2 minutes, then heat the upper and lower molds at 300°C while keeping them as they are.
The press-molded glass diffraction grating is then taken out to complete the process of molding the glass diffraction grating.
以上の工程を繰り返して10000回目のプレス終了時
に、上型63をプレス成形機より取りはずして、プレス
面の状態を光学顕微鏡で観察し、その時のプレス面の表
面粗さ(RMS値、入)を測定して、型精度を評価した
。After repeating the above process and completing the 10,000th press, remove the upper die 63 from the press molding machine, observe the condition of the press surface with an optical microscope, and calculate the surface roughness (RMS value, input) of the press surface at that time. The mold accuracy was evaluated by measuring.
プレス試験の結果を第1表に示した。試料No、 1お
よび2のように、ここで作製した型においては、100
00回プレス後でも、表面粗さ(RMS値)で、それぞ
れ、11.5人および11.4人でほとんど荒れず、型
形状も変化していないことがわかる。The results of the press test are shown in Table 1. In the molds produced here, as in samples No. 1 and 2, 100
It can be seen that even after 00 presses, the surface roughness (RMS value) was hardly roughened by 11.5 and 11.4 people, respectively, and the mold shape did not change.
このように、本発明によって高精度なガラス製回折格子
をプレス成形により容易に、且つ、大量に作製すること
が可能となった。As described above, the present invention has made it possible to easily produce high-precision glass diffraction gratings in large quantities by press molding.
(以 下 余 白)
発明の効果
本発明の方法により、所望の形状のガラス製回折格子を
プレス成形するための金型を作製することが可能となり
、この金型を用いることによって、耐久性の優れたガラ
ス製回折格子を容易に、かつ、大量に作製できるように
なった。(Margins below) Effects of the Invention The method of the present invention makes it possible to produce a mold for press-molding a glass diffraction grating of a desired shape, and by using this mold, durability can be improved. Excellent glass diffraction gratings can now be manufactured easily and in large quantities.
第1図、第2図、第4図および第5図は本発明の回折格
子のプレス成形用型の断面の概略図、第3図はECRプ
ラズマイオンシャワーエツチング装置の概略図、第6図
は実施例における回折格子のプレス成形用型を組み込ん
だプレス成形機の概略図である。
11・・・・・・母材、12・・・・・・保護膜。
代理人の氏名 弁理士 粟野重孝 はか1名似!1, 2, 4, and 5 are schematic cross-sectional views of a press-molding mold for a diffraction grating according to the present invention, FIG. 3 is a schematic view of an ECR plasma ion shower etching device, and FIG. FIG. 2 is a schematic diagram of a press molding machine incorporating a press molding die for a diffraction grating in an example. 11... Base material, 12... Protective film. Agent's name Patent attorney Shigetaka Awano Looks just like him!
Claims (2)
分とする超硬合金またはチタンナイトライド(TiN)
、チタンカーバイド(TiC)、クロムカーバイド(C
r_3C_2)あるいはアルミナ(Al_2O_3)を
主成分とするサーメットを用い、プレス面には白金(P
t)、パラジウム(Pd)、イリジウム(Ir)、ロジ
ウム(Rh)、オスミウム(Os)、ルテニウム(Ru
)、レニウム(Re)、タングステン(W)、タンタル
(Ta)のうち、少なくとも一種類以上の金属を含む合
金薄膜をコーティングして構成される光学素子のプレス
成形用平型の表面に感光性樹脂を塗布し、等間隔でライ
ンアンドスペースのパターンを形成し、イオン流に対し
て、経時的に入射角を変化させながら、全体を均一に物
理的にエッチングし、コーティングした合金薄膜上に所
望の形状の回折格子を形成することを特徴とする回折格
子のプレス成形用金型の作製方法。(1) The base material is a cemented carbide whose main component is tungsten carbide (WC) or titanium nitride (TiN).
, titanium carbide (TiC), chromium carbide (C
A cermet whose main component is r_3C_2) or alumina (Al_2O_3) is used, and the press surface is coated with platinum (P
t), palladium (Pd), iridium (Ir), rhodium (Rh), osmium (Os), ruthenium (Ru
), rhenium (Re), tungsten (W), and tantalum (Ta), the surface of a flat mold for press molding of an optical element is coated with an alloy thin film containing at least one metal of rhenium (Re), tungsten (W), and tantalum (Ta). A pattern of lines and spaces is formed at regular intervals, and the entire surface is uniformly physically etched while changing the incident angle over time to form the desired pattern on the coated alloy thin film. A method for producing a press-molding mold for a diffraction grating, the method comprising forming a diffraction grating in the shape of a diffraction grating.
分とする超硬合金またはチタンナイトライド(TiN)
、チタンカーバイド(TiC)、クロムカーバイド(C
r_3C_2)あるいはアルミナ(Al_2O_3)を
主成分とするサーメットを用い、プレス面には白金(P
t)、パラジウム(Pd)、イリジウム(Ir)、ロジ
ウム(Rh)、オスミウム(Os)、ルテニウム(Ru
)、レニウム(Re)、タングステン(W)、タンタル
(Ta)のうち、少なくとも一種類以上の金属を含む合
金薄膜をコーティングして構成される光学素子のプレス
成形用平型の表面に感光性樹脂を塗布し、等間隔でライ
ンアンドスペースのパターンを形成し、イオン流に対し
て、経時的に入射角を変化させながら、全体を均一に物
理的にエッチングし、コーティングした合金薄膜上に所
望の形状の回折格子を形成して作製した回折格子のプレ
ス成形用金型を用いて、平板ガラスを加熱加圧して、平
板ガラスの表面に回折格子を転写して、ガラス製の回折
格子を作製することを特徴とする回折格子の作製方法。(2) The base material is cemented carbide whose main component is tungsten carbide (WC) or titanium nitride (TiN).
, titanium carbide (TiC), chromium carbide (C
A cermet whose main component is r_3C_2) or alumina (Al_2O_3) is used, and the press surface is coated with platinum (P
t), palladium (Pd), iridium (Ir), rhodium (Rh), osmium (Os), ruthenium (Ru
), rhenium (Re), tungsten (W), and tantalum (Ta), the surface of a flat mold for press molding of an optical element is coated with an alloy thin film containing at least one metal of rhenium (Re), tungsten (W), and tantalum (Ta). A pattern of lines and spaces is formed at regular intervals, and the entire surface is uniformly physically etched while changing the incident angle over time to form the desired pattern on the coated alloy thin film. Using a press-molding mold for a diffraction grating created by forming a shaped diffraction grating, a flat glass is heated and pressurized to transfer the diffraction grating onto the surface of the flat glass to create a glass diffraction grating. A method for producing a diffraction grating characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1020025A JPH0823602B2 (en) | 1989-01-30 | 1989-01-30 | Method for manufacturing die for press-molding diffraction grating and method for manufacturing diffraction grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1020025A JPH0823602B2 (en) | 1989-01-30 | 1989-01-30 | Method for manufacturing die for press-molding diffraction grating and method for manufacturing diffraction grating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02199402A true JPH02199402A (en) | 1990-08-07 |
JPH0823602B2 JPH0823602B2 (en) | 1996-03-06 |
Family
ID=12015542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1020025A Expired - Fee Related JPH0823602B2 (en) | 1989-01-30 | 1989-01-30 | Method for manufacturing die for press-molding diffraction grating and method for manufacturing diffraction grating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0823602B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04110903A (en) * | 1990-08-31 | 1992-04-13 | Hoya Corp | Optical filter, solid state image pickup element having this optical filter and production of this optical filter |
JPH04170502A (en) * | 1990-11-01 | 1992-06-18 | Matsushita Electric Ind Co Ltd | Manufacture of diffraction grating |
US5405652A (en) * | 1992-07-21 | 1995-04-11 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing a die for use in molding glass optical elements having a fine pattern of concavities and convexities |
US5436764A (en) * | 1992-04-21 | 1995-07-25 | Matsushita Electric Industrial Co., Ltd. | Die for forming a micro-optical element, manufacturing method therefor, micro-optical element and manufacturing method therefor |
EP0878291A1 (en) * | 1997-05-14 | 1998-11-18 | Eastman Kodak Company | Method for fabricating tools for molding diffractive surfaces on optical lenses |
US6156243A (en) * | 1997-04-25 | 2000-12-05 | Hoya Corporation | Mold and method of producing the same |
EP1588989A2 (en) | 2004-04-23 | 2005-10-26 | Schott AG | Method for producing a master, master and method for producing an optical element and optical element |
JP2006316347A (en) * | 2005-04-12 | 2006-11-24 | Nippon Steel Corp | Metallic material, surface-treated metallic material, and metallic product |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50155202A (en) * | 1974-06-05 | 1975-12-15 | ||
JPS56113108A (en) * | 1980-02-12 | 1981-09-05 | Rikagaku Kenkyusho | Preparation for echelette grating |
JPS60186806A (en) * | 1984-03-06 | 1985-09-24 | Agency Of Ind Science & Technol | Manufacture of blazed grating |
-
1989
- 1989-01-30 JP JP1020025A patent/JPH0823602B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50155202A (en) * | 1974-06-05 | 1975-12-15 | ||
JPS56113108A (en) * | 1980-02-12 | 1981-09-05 | Rikagaku Kenkyusho | Preparation for echelette grating |
JPS60186806A (en) * | 1984-03-06 | 1985-09-24 | Agency Of Ind Science & Technol | Manufacture of blazed grating |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04110903A (en) * | 1990-08-31 | 1992-04-13 | Hoya Corp | Optical filter, solid state image pickup element having this optical filter and production of this optical filter |
JPH04170502A (en) * | 1990-11-01 | 1992-06-18 | Matsushita Electric Ind Co Ltd | Manufacture of diffraction grating |
US5436764A (en) * | 1992-04-21 | 1995-07-25 | Matsushita Electric Industrial Co., Ltd. | Die for forming a micro-optical element, manufacturing method therefor, micro-optical element and manufacturing method therefor |
US5405652A (en) * | 1992-07-21 | 1995-04-11 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing a die for use in molding glass optical elements having a fine pattern of concavities and convexities |
US6156243A (en) * | 1997-04-25 | 2000-12-05 | Hoya Corporation | Mold and method of producing the same |
EP0878291A1 (en) * | 1997-05-14 | 1998-11-18 | Eastman Kodak Company | Method for fabricating tools for molding diffractive surfaces on optical lenses |
EP1588989A2 (en) | 2004-04-23 | 2005-10-26 | Schott AG | Method for producing a master, master and method for producing an optical element and optical element |
EP1588989A3 (en) * | 2004-04-23 | 2006-03-22 | Schott AG | Method for producing a master, master and method for producing an optical element and optical element |
JP2006316347A (en) * | 2005-04-12 | 2006-11-24 | Nippon Steel Corp | Metallic material, surface-treated metallic material, and metallic product |
JP4660401B2 (en) * | 2005-04-12 | 2011-03-30 | 新日本製鐵株式会社 | Metal materials, surface-treated metal materials and metal products |
Also Published As
Publication number | Publication date |
---|---|
JPH0823602B2 (en) | 1996-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4842633A (en) | Method of manufacturing molds for molding optical glass elements and diffraction gratings | |
JP3147481B2 (en) | Mold for forming glass diffraction grating, method for manufacturing the same, and method for manufacturing glass diffraction grating | |
JPH0634805A (en) | Press molding die for diffraction grating, production therefor and manufacture of diffraction grating | |
JP2011505066A (en) | Method for generating a template using a lift-off process | |
JPH02199402A (en) | Production of die for press forming of diffraction grating and production of diffraction grating | |
JPH1148258A (en) | Tool for molding diffraction surface of optical lens and its manufacture | |
US7344990B2 (en) | Method of manufacturing micro-structure element by utilizing molding glass | |
JP2005132679A (en) | Manufacturing method of optical element having non-reflective structure and optical element having non-reflective structure manufactured through the method | |
JPH04170502A (en) | Manufacture of diffraction grating | |
JP2641192B2 (en) | Method for manufacturing glass optical element having fine pattern on surface | |
JP2973534B2 (en) | Manufacturing method of glass mold | |
JPH03242333A (en) | Manufacture of mold for press-molding optical element and production of optical element | |
JP3134583B2 (en) | Press mold for optical glass element and method for producing the same | |
JPH01218808A (en) | Manufacture of optical element press molding die | |
JPH08227007A (en) | Formation of surface shape of object and production of metal mold | |
JPH10231129A (en) | Mold for press molding and glass molded product by the mold | |
JP4554835B2 (en) | Mold for glass and method for producing glass molded product | |
JPS60264330A (en) | Mold for press molding of optical glass element | |
JPH0725628A (en) | Mold for forming precision optical glass element and production of the mold | |
JPH06144850A (en) | Mold for forming optical glass element and method of forming optical glass element | |
JPH01298184A (en) | Mold for press-molding optical element and production | |
JP2008040322A (en) | Method for manufacturing antireflection structure | |
JPH0844042A (en) | Transmittancee modulation type photomask and its production and production of optical element formed by using the same | |
JP2004352584A (en) | Mold for shaping and its manufacturing method | |
JPH06183755A (en) | Optical glass element forming die and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |