JPH0219922B2 - - Google Patents

Info

Publication number
JPH0219922B2
JPH0219922B2 JP55155595A JP15559580A JPH0219922B2 JP H0219922 B2 JPH0219922 B2 JP H0219922B2 JP 55155595 A JP55155595 A JP 55155595A JP 15559580 A JP15559580 A JP 15559580A JP H0219922 B2 JPH0219922 B2 JP H0219922B2
Authority
JP
Japan
Prior art keywords
core
cladding
fiber
ionic
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55155595A
Other languages
Japanese (ja)
Other versions
JPS5778507A (en
Inventor
Takao Shioda
Toshikatsu Sasagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP55155595A priority Critical patent/JPS5778507A/en
Publication of JPS5778507A publication Critical patent/JPS5778507A/en
Publication of JPH0219922B2 publication Critical patent/JPH0219922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/008Polycrystalline optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01288Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by extrusion, e.g. of glass powder and binder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/84Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 この発明はコア−クラツド型のイオン結晶光フ
アイバの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a core-clad ionic crystal optical fiber.

アルカリ金属のハロゲン化物、アルカリ土類金
属のハロゲン化物、銅族元素のハロゲン化物およ
び亜鉛族元素のハロゲン化物からなるイオン結晶
で形成された光フアイバは赤外域で低損失であ
り、光フアイバ通信用、レザーエネルギーなどの
パワー伝送用等の用途が考えられている。
Optical fibers made of ionic crystals consisting of alkali metal halides, alkaline earth metal halides, copper group element halides, and zinc group element halides have low loss in the infrared region and are used for optical fiber communications. Applications are being considered for power transmission such as , laser energy, etc.

ところで、これらイオン結晶を用いたコア−ク
ラツド構造を有する光フアイバの製造方法として
は、従来単結晶タイプのものでは溶融塩からの二
重引き上げ法などが、多結晶タイプのものでは二
重押出し法などがあるが、これらの製造方法にお
いては、コアとクラツドの形成を同時に行わね
ば、平滑で均一なコア−クラツド界面が得られ
ず、損失の少ないイオン結晶光フアイバが製造す
ることができなかつたり、また、コアとクラツド
とを同時形成する方法では、用いられるイオン結
晶の種類が制限され、例えば二重引き上げ法にあ
つてはコアとクラツドのイオン結晶の融点が近い
温度域にあつて、且つコアのイオン結晶の融点が
クラツドのそれよりも高くなければならないなど
が問題があつた。
By the way, conventional methods for producing optical fibers with a core-clad structure using these ionic crystals include a double pulling method from molten salt for single crystal types, and a double extrusion method for polycrystalline types. However, in these manufacturing methods, unless the core and cladding are formed at the same time, a smooth and uniform core-cladding interface cannot be obtained, and an ionic crystal optical fiber with low loss cannot be manufactured. In addition, in the method of forming the core and cladding simultaneously, the type of ionic crystal that can be used is limited; for example, in the double pulling method, the melting points of the ionic crystals of the core and cladding are close to each other, and Problems included the fact that the melting point of the core ionic crystal had to be higher than that of the cladding.

この発明の上記事情に鑑みてなされたもので、
上記欠点を解消して、コアとクラツドの密着性が
よく、コアとクラツドとの界面が平滑で且つ均一
であり、イオン結晶の材料面の制約のないコア−
クラツド型イオン結晶光フアイバの製造方法を提
供することを目的とし、あらかじめイオン結晶で
形成された単結晶または多結晶のコアフアイバに
クロスヘツドダイを有する押出機を用いてイオン
結晶の単結晶あるいは多結晶のクラツドを形成
し、クロスヘツドダイのマンドレルとコアフアイ
バとの間隙を真空吸引して減圧することを特徴と
するものである。
This invention was made in view of the above circumstances,
By solving the above disadvantages, the core has good adhesion between the core and the cladding, the interface between the core and the cladding is smooth and uniform, and there are no restrictions on the material surface of the ionic crystal.
The purpose of the present invention is to provide a method for manufacturing a clad type ionic crystal optical fiber, in which a monocrystalline or polycrystalline core fiber made of ionic crystals is produced using an extruder having a crosshead die. The method is characterized in that the gap between the mandrel of the crosshead die and the core fiber is vacuum-suctioned to reduce the pressure.

以下、この発明を詳しく説明する。まず、コア
となるイオン結晶のフアイバを作る。これに用い
られるイオン結晶としては、LiF、NaF、NaCl、
KCl、KBr、KI、CsBr、CaIなどのアルカリ金属
のハロゲン化物、CaF2、BaF2、MgF2などのア
ルカリ土類金属のハロゲン化物、CuCl2、AgCl、
AgBrなどの銅族元素のハロゲン化物、ZnCl2
どの亜鉛族元素のハロゲン化物、TlCl、TlBr、
TlIなどのタリウムのハロゲン化物からなる群か
ら選ばれたすくなくとも1種以上のイオン結晶が
用いられる。このイオン結晶を精製高純化したも
のを原料として単結晶フアイバあるいは多結晶フ
アイバが既知の方法で製造される。単結晶フアイ
バを得る場合は溶融塩からの引上げ法や多結晶プ
リフオームのゾーンメルト法などによつて多結晶
フアイバを得る場合にはプリフオームの押し出法
などによつて製造される。
This invention will be explained in detail below. First, the ionic crystal fiber that will serve as the core is made. Ionic crystals used for this include LiF, NaF, NaCl,
Alkali metal halides such as KCl, KBr, KI, CsBr, CaI, alkaline earth metal halides such as CaF 2 , BaF 2 , MgF 2 , CuCl 2 , AgCl,
Halides of copper group elements such as AgBr, halides of zinc group elements such as ZnCl2 , TlCl, TlBr,
At least one type of ionic crystal selected from the group consisting of thallium halides such as TlI is used. A monocrystalline fiber or a polycrystalline fiber is manufactured using a highly purified ionic crystal as a raw material by a known method. A single crystal fiber is produced by a pulling method from a molten salt or a zone melt method using a polycrystalline preform, and a polycrystalline fiber is produced by a preform extrusion method.

以上のようにして得れたイオン結晶からなるコ
アフアイバはついで、クロスヘツドダイを有する
押出機を用いてイオン結晶からなるクラツドを設
ける。このクラツドの形成にあたつては、各種の
クロスヘツドダイを有する押出機を用いることが
できるが、その代表例を第1図および第2図に示
す。第1図において、繰り出し機(図示せず)か
ら繰り出される前記コアフアイバ1は押出機2の
クロスヘツドダイ3の中心部に設けられたマンド
レル4の貫通孔5に導びかれる。一方、押出機2
のバレル6内にはクラツドとなる精製されたイオ
ン結晶粉末7が充填されている。このイオン結晶
としては、前記したアルカリ金属のハロゲン化
物、アルカリ土類金属のハロゲン化物、銅族元素
のハロゲン化物、亜鉛族元素のハロゲン化物、タ
リウムのハロゲン化物からなる群から選ばれた1
種以上のイオン結晶で、屈折率がコアのイオン結
晶のそれよりも低いものが用いられる。このイオ
ン結晶粉末7はヒータ8で、その融点以下に加熱
され、かつラム9で押圧されて加圧され可塑化さ
れ、更にラム9の押圧により、バレル6の先端か
らクロスヘツドダイ3内に流入され、クロスヘツ
ドダイ3のリツプ10部にて貫通孔5から導びか
れたコアフアイバ1の外周に付着せしめられ、ク
ラツド11となる。クラツド11を設けられて仕
上げられたコア−クラツド型イオン結晶光フアイ
バ12は図示しない巻取機によつて一定速度で巻
き取られる。このクラツド形成の際、押出機2内
のイオン結晶粉末7の温度を押出機2およびクロ
スヘツドダイ3全体にわたつてクラツドとなるイ
オン結晶7の融点よりも少し低い温度に保てば多
結晶のクラツド11が生成し、リツプ10部分を
融点に、クロスヘツドダイ3を融点よりもわずか
に低く保ち、且つコア−クラツド型イオン結晶光
フアイバ12の巻取り速度およびラム9の押圧速
度を調節することに単結晶のクラツド11が生成
する。また、マンドレル4の一端を管13を経て
真空ポンプ14に接続し、マンドレル4内を減圧
下にすることによりコアフアイバ1とクラツド1
1との密着性が向上し、平滑な界面を得ることが
できるとともにコアフアイバ1にゴミなどが付着
することも防止でき、界面が一層均一となる。
The core fiber made of ionic crystals obtained as described above is then provided with a cladding made of ionic crystals using an extruder having a crosshead die. In forming this cladding, various types of extruders having crosshead dies can be used, typical examples of which are shown in FIGS. 1 and 2. In FIG. 1, the core fiber 1 fed out from a feeding machine (not shown) is guided into a through hole 5 of a mandrel 4 provided at the center of a crosshead die 3 of an extruder 2. On the other hand, extruder 2
The inside of the barrel 6 is filled with purified ionic crystal powder 7 which becomes a cladding. The ionic crystal is one selected from the group consisting of the alkali metal halides, alkaline earth metal halides, copper group element halides, zinc group element halides, and thallium halides.
A seed or higher ionic crystal with a refractive index lower than that of the core ionic crystal is used. This ionic crystal powder 7 is heated to below its melting point by a heater 8 and is pressed by a ram 9 to be pressurized and plasticized, and further pressed by the ram 9 to flow into the crosshead die 3 from the tip of the barrel 6. The fiber is then attached to the outer periphery of the core fiber 1 guided from the through hole 5 at the lip 10 of the crosshead die 3 to form a cladding 11. The finished core-clad ion crystal optical fiber 12 provided with the cladding 11 is wound up at a constant speed by a winding machine (not shown). When forming this cladding, if the temperature of the ionic crystal powder 7 in the extruder 2 is maintained throughout the extruder 2 and the crosshead die 3 at a temperature slightly lower than the melting point of the ionic crystal 7 that will form the cladding, polycrystalline powder can be formed. The cladding 11 is generated, the lip 10 portion is kept at the melting point, the crosshead die 3 is kept slightly lower than the melting point, and the winding speed of the core-clad type ionic crystal optical fiber 12 and the pressing speed of the ram 9 are adjusted. A single crystal cladding 11 is formed. In addition, one end of the mandrel 4 is connected to a vacuum pump 14 through a pipe 13, and by reducing the pressure inside the mandrel 4, the core fiber 1 and the cladding 1 are connected.
The adhesion with the core fiber 1 is improved, a smooth interface can be obtained, and it is also possible to prevent dust from adhering to the core fiber 1, resulting in a more uniform interface.

第2図に示したものは、この発明の光フアイバ
の製造方法において用いられる別のタイプのクロ
スヘツドダイを有する押出機で、この押出機で
は、マンドレル4を二重構造とし、各々のマンド
ル4a,4bについて真空ポンプによる吸引を行
うことにより、コアフアイバ1とクラツド11と
の密着性がより向上し、より平滑な界面を得るこ
とができ、また、可塑化されたクラツドとなるイ
オン結晶7の熱がコアフアイバ1に伝わりにくい
ので、コアフアイバ1の融点がクラツドとなるイ
オン結晶7の融点よりも低い場合であつても、良
好にクラツド11を形成せしめることができる。
なお、第2図において第1図と同一構成部分には
同一符号を付し、その説明を省略した。
What is shown in FIG. 2 is an extruder having another type of crosshead die used in the optical fiber manufacturing method of the present invention. In this extruder, the mandrel 4 has a double structure, and each mandrel 4a , 4b by a vacuum pump, the adhesion between the core fiber 1 and the cladding 11 is further improved, a smoother interface can be obtained, and the heat of the ionic crystal 7, which becomes the plasticized cladding, is is difficult to be transmitted to the core fiber 1, so even if the melting point of the core fiber 1 is lower than the melting point of the ionic crystal 7 forming the cladding, the cladding 11 can be formed satisfactorily.
In FIG. 2, the same components as those in FIG. 1 are given the same reference numerals, and their explanations are omitted.

以下、実施例を示してこの発明を具体的に説明
する。
Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例 1〕 溶融塩からの引き上げ法により、直径0.6mmの
AgBrの単結晶からなるコアフアイバを作成し
た。このコアフアイバ1を第2図に示した二重マ
ンドレル構造を有し、ダイリツプ10の内径が2
mmのクロスヘツドダイ押出機1の内部マンドレル
4aの貫通孔5に挿通した。この押出機2のバレ
ル6内に精製したAgCl粉末を供給し、ヒータ8
で350℃に加熱し、ラム9で加圧し、可塑化して
クロスヘツドダイ3に送り込み、管13を介して
マンドレル4a,4bを20l/分のロータリー真
空ポンプで真空吸引し、減圧とし、AgBrのコア
フアイバ1の外周にAgClのクラツド11を形成
した。この時の巻き取り速度は400mm/分であつ
た。このようにして得られたコア−クラツド型イ
オン結晶光フアイバの外径は1.5mmで、コアが
AgBrの単結晶、クラツドがAgClの多結晶からな
り損失はλ=106μmで10mあたり0.7dBであつた。
[Example 1] Using the pulling method from molten salt, a material with a diameter of 0.6 mm was
A core fiber made of AgBr single crystal was fabricated. This core fiber 1 has a double mandrel structure shown in FIG. 2, and the inner diameter of the die lip 10 is 2.
It was inserted into the through hole 5 of the internal mandrel 4a of the mm crosshead die extruder 1. The purified AgCl powder is supplied into the barrel 6 of this extruder 2, and the heater 8
The mandrels 4a and 4b are heated to 350°C, pressurized with a ram 9, plasticized, and sent to a crosshead die 3 through a tube 13 using a rotary vacuum pump of 20 l/min to reduce the pressure. A cladding 11 of AgCl was formed around the outer periphery of the core fiber 1. The winding speed at this time was 400 mm/min. The outer diameter of the core-clad ion crystal optical fiber thus obtained was 1.5 mm, and the core
The loss was 0.7 dB per 10 m at λ = 10 6 μm, with a single crystal of AgBr and a polycrystal of AgCl for the cladding.

〔実施例 2〕 溶融塩からの引き出し法により、外径0.6mmの
TlBr42wt%とTlI58wt%とからなるイオン結晶
混合物(以下、KRS−5という。)の単結晶のコ
アフアイバを製造した。このコアフアイバ1を第
1図に示したダイリツプ10の内径が2mmのクロ
スヘツドダイ押出機3のマンドレル4内に挿通し
た。バレル6内にTlBr40wt%とTlCl60wt%とか
らなるイオン結晶混合物(以下、KRS−6とい
う。)を充填し、ヒータ8でラム9部分を350℃
に、クロスヘツドダイ3部分を410℃に、ダイリ
ツプ10部分を424℃(KRS−6の融点)に保
ち、ラム9で押圧して可塑化してクロスヘツドダ
イ3に送り込み、管13を介してマンドレル4を
20l/分のロータリー真空ポンプで真空吸引し減
圧とし、KRS−5のコアにKRS−6のクラツド
を形成した。この時の巻き取り速度は150mm/分
で、押出されたKRS−6は単結晶として生長し
た。このようにして得られたコア−クラツド型イ
オン結晶光フアイバは外径が1.8mmで、コアが
KRS−5の単結晶、クラツドがKRS−6の単結
晶からなり、その損失はλ=106μmで10m当り
0.3dBであつた。
[Example 2] A specimen with an outer diameter of 0.6 mm was produced by the drawing method from molten salt.
A single crystal core fiber of an ionic crystal mixture (hereinafter referred to as KRS-5) consisting of 42 wt% TlBr and 58 wt% TlI was manufactured. This core fiber 1 was inserted into a mandrel 4 of a crosshead die extruder 3 having a die lip 10 having an inner diameter of 2 mm as shown in FIG. An ionic crystal mixture (hereinafter referred to as KRS-6) consisting of 40 wt% TlBr and 60 wt% TlCl is filled into the barrel 6, and the 9 part of the ram is heated to 350°C using a heater 8.
Next, the 3rd part of the crosshead die is kept at 410°C and the 10th part of the die lip is kept at 424°C (the melting point of KRS-6), and the material is pressed with the ram 9 to plasticize it and sent to the crosshead die 3, and then passed through the pipe 13 to the mandrel. 4
The pressure was reduced by vacuum suction using a rotary vacuum pump of 20 l/min, and a cladding of KRS-6 was formed on the core of KRS-5. The winding speed at this time was 150 mm/min, and the extruded KRS-6 grew as a single crystal. The core-clad ion crystal optical fiber thus obtained has an outer diameter of 1.8 mm and a core of
The cladding is a single crystal of KRS-5, and the loss is λ = 10 6 μm per 10 m.
It was 0.3dB.

以上説明したようにこの発明のイオン結晶光フ
アイバの製造方法は、あらかじめイオン結晶で形
成された単結晶または多結晶のコアフアイバに、
クロスヘツドダイを有する押出機を用いてイオン
結晶で形成された単結晶または多結晶のクラツド
を形成し、クロスヘツドダイのマンドレルとコア
フアイバとの間隙を真空吸引するものであるか
ら、用いるイオン結晶の融点や屈折率の制約を受
けることが少なく、多結晶、単結晶のいずれタイ
プの光フアイバが容易に得られ、真空吸引してい
るので、コアとクラツドとの密着性が向上し、コ
ア/クラツドの界面が均一かつ平滑となり、また
界面にゴミ等が残ることがなく、損失の少ない光
フアイバが得られるなどの利点がある。
As explained above, the method for manufacturing an ionic crystal optical fiber of the present invention involves adding a single crystal or polycrystalline core fiber formed in advance from an ionic crystal to a single crystal or polycrystalline core fiber.
A single-crystal or polycrystalline cladding made of ionic crystals is formed using an extruder equipped with a crosshead die, and the gap between the mandrel of the crosshead die and the core fiber is vacuum-sucked. There are few restrictions on melting point or refractive index, and both polycrystalline and single-crystalline optical fibers can be easily obtained.Since vacuum suction is used, the adhesion between the core and cladding is improved, and the core/cladding This has the advantage that the interface becomes uniform and smooth, no dust remains on the interface, and an optical fiber with low loss can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明に用いられるク
ロスヘツドダイを有する押出機の概略説明図で、
第1図は一重マンドレル構造を、第2図は二重マ
ンドレル構造を有するものである。 1……コアフアイバ、2……押出機、3……ク
ロスヘツドダイ、4……マンドレル、11……ク
ラツド、12……コア−クラツド型イオン結晶光
フアイバ。
FIG. 1 and FIG. 2 are schematic explanatory diagrams of an extruder having a crosshead die used in this invention.
FIG. 1 shows a single mandrel structure, and FIG. 2 shows a double mandrel structure. DESCRIPTION OF SYMBOLS 1... Core fiber, 2... Extruder, 3... Crosshead die, 4... Mandrel, 11... Clad, 12... Core-clad type ionic crystal optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン結晶からなるコアフアイバを押出機の
クロスヘツドダイのマンドレル内に送り込み、押
出機のバレルからクロスヘツドダイに供給される
イオン結晶を上記コアフアイバの外周に付着せし
めてイオン結晶からなるクラツドを形成するとと
もにマンドレルとコアフアイバとの間隙を真空吸
引して減圧することを特徴とするイオン結晶光フ
アイバの製造方法。
1. A core fiber made of ionic crystals is fed into the mandrel of a crosshead die of an extruder, and the ionic crystals supplied from the barrel of the extruder to the crosshead die are attached to the outer periphery of the core fiber to form a cladding made of ionic crystals. A method for producing an ion crystal optical fiber, which also comprises reducing the pressure by vacuum suction in the gap between the mandrel and the core fiber.
JP55155595A 1980-11-05 1980-11-05 Production of ion crystal optical fiber Granted JPS5778507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55155595A JPS5778507A (en) 1980-11-05 1980-11-05 Production of ion crystal optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55155595A JPS5778507A (en) 1980-11-05 1980-11-05 Production of ion crystal optical fiber

Publications (2)

Publication Number Publication Date
JPS5778507A JPS5778507A (en) 1982-05-17
JPH0219922B2 true JPH0219922B2 (en) 1990-05-07

Family

ID=15609457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55155595A Granted JPS5778507A (en) 1980-11-05 1980-11-05 Production of ion crystal optical fiber

Country Status (1)

Country Link
JP (1) JPS5778507A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654237A (en) * 1979-10-03 1981-05-14 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber for infrared

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654237A (en) * 1979-10-03 1981-05-14 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber for infrared

Also Published As

Publication number Publication date
JPS5778507A (en) 1982-05-17

Similar Documents

Publication Publication Date Title
US4451116A (en) Infrared transmitting fiber optical waveguide extruded from halides of the metal thallium and the method of preparation
US4230472A (en) Method of forming a substantially continuous optical waveguide
CA1246913A (en) Low loss cladded optical fibers from halides and process for making same
US4253731A (en) Infrared fiber of AgCl clad AgBr and method of fabrication
JPS6053844B2 (en) Infrared optical fiber and its manufacturing method
US4428646A (en) Optical fibers having crystalline material and method of making same
EP0089220B1 (en) A crystalline fiber and a process for the production thereof
US5651083A (en) Core insertion method and apparatus for making optical fiber preforms and optical fibers fabricated therefrom
JPH0447285B2 (en)
EP0249886A1 (en) Method of manufacturing hollow core optical fibers
US4955689A (en) IR transmitting optical fiber
JPH0219922B2 (en)
JP2835385B2 (en) Manufacturing method of fluoride optical fiber
EP0787691B1 (en) Method for making core holes in cast optical fiber preforms
US7013678B2 (en) Method of fabricating graded-index optical fiber lenses
US5186870A (en) Process for fabricating an IR transmitting optical fiber
JPS6048722B2 (en) Method for manufacturing polycrystalline core-clad ion crystal optical fiber
JP2566128B2 (en) Mold for manufacturing preform for optical fiber and method for manufacturing preform for optical fiber using this mold
JP2502525B2 (en) Mold for manufacturing optical fiber preforms
JPS593030A (en) Manufacture of base material for infrared optical fiber
JPH0219921B2 (en)
JPS6321232A (en) Production of perform for optical fiber
JPS596265B2 (en) Optical fiber manufacturing method
JPS6311534A (en) Production of jacket pipe for drawing optical fiber
JPS60195029A (en) Preparation of optical fiber for transmitting infrared ray