JPH02198338A - Method for measuring human body - Google Patents

Method for measuring human body

Info

Publication number
JPH02198338A
JPH02198338A JP1646189A JP1646189A JPH02198338A JP H02198338 A JPH02198338 A JP H02198338A JP 1646189 A JP1646189 A JP 1646189A JP 1646189 A JP1646189 A JP 1646189A JP H02198338 A JPH02198338 A JP H02198338A
Authority
JP
Japan
Prior art keywords
laser
yag laser
human body
computer
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1646189A
Other languages
Japanese (ja)
Inventor
Tatsuya Ariga
達也 有我
Mamoru Tamura
守 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1646189A priority Critical patent/JPH02198338A/en
Publication of JPH02198338A publication Critical patent/JPH02198338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure a human body for a long time by projecting YAG laser on the human body, and detecting the YAG laser which is transmitted through said organism. CONSTITUTION:A YAG laser oscillator 6 undergoes laser control 8. The YAG laser which is outputted from the oscillator 6 passes through a laser transfer system 5 and a laser-light projecting part 3. The laser is projected on a human body on an image sensing region 2. The laser 15 which is transmitted through the human body is detected with a YAG laser detector 4. The projection data at this time are collected into a computer 9. This operation is performed at the entire angles around the human body. The two-dimensional tomogram image is obtained by reconstituting these one-dimensional data. A bed 13 on which a patient lies down so that the patient is sent into a region 2 in a gantry 1 is controlled with a bed driving part 14 and a computer 9. The laser transfer system 5 is controlled 7 with the computer 9. A laser-control part 8 also receives a control signal from the computer 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医療分野またはYAGレーザを透過する特性
を有する物質の非侵襲、非破壊針Δp1を必要とする産
業分野での生体針Al11方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to a bioneedle Al11 method for use in the medical field or in the industrial field requiring a non-invasive, non-destructive needle Δp1 made of a material that has the property of transmitting YAG laser. It is related to.

〔従来の技術〕[Conventional technology]

人体の断層像を表示する技術には「X線−CT」につい
て説明する。
"X-ray CT" will be explained as a technology for displaying tomographic images of the human body.

「X線−CTJはX線マイクロビームを人体の断層面上
で数十万本にわたって平行及び回転させて照射し、これ
をX線検出器で受け、その出力データから計算機によっ
て画像を再構成して断層画像を得る技術である。
"X-ray CTJ irradiates hundreds of thousands of parallel and rotated X-ray microbeams onto the tomographic plane of the human body, receives the beams with an X-ray detector, and uses the output data to reconstruct an image using a computer. This is a technology to obtain tomographic images.

第3図は「X線−CTJの一例を示すブロック図であり
、この「X線−CTJは、X線管aとこのX線管aのか
らのX線すを受けるX線検出器Cと、X線管aとxll
検出器色の間に設けた撮影領域dとを有するガントリe
1患者を寝かせてガントリe内へ送り込むための寝台f
1寝台駆動部gSX線検出器Cからの信号を受けて断層
画像を再構成処理などを行なうコンピュータhSX線発
生器11X線制御器j、ディスクに1画像を表示するデ
イスジ1401画像のハードコピーをとるためのポラロ
イドやマルチフォーマットカメラなどの記録部mなどよ
り構成されている。
FIG. 3 is a block diagram showing an example of an "X-ray CTJ", and this "X-ray CTJ" consists of an X-ray tube a and an X-ray detector C that receives , X-ray tubes a and xll
a gantry e having an imaging area d provided between the detector colors;
1 Bed f for placing a patient and transporting him into the gantry e
1 Bed drive unit g A computer that receives signals from the X-ray detector C and performs processing to reconstruct tomographic images hSX-ray generator 11 X-ray controller j, disk 1401 that displays one image on a disk 1401 Takes a hard copy of the image It consists of a recording section m of a Polaroid camera, a multi-format camera, etc.

X線管aから照射されたX線すは被検体(人体)を透過
し、その透過したXtIA量はX線検出器Cで検出され
投影データを収集する。この操作は全角度から行なわれ
る。そしてこれらの1次元データを再構成処理すること
により2次元の断層像を得る。
X-rays emitted from the X-ray tube a pass through the subject (human body), and the amount of XtIA that passes through is detected by the X-ray detector C to collect projection data. This operation is performed from all angles. A two-dimensional tomographic image is obtained by reconstructing these one-dimensional data.

上記投影データの収集方式に関しては、その−例として
Rotate/Rotate方式がある。これは第4図
に示すように、X線管aから30〜40″程度に広がっ
たフィン状X線を放射し、被検体nはこの扇状のフィン
状X線内に含まれる状態でX線管aとX線検出器Cと共
に回転して投影データを収集するようになっている。な
お図中o、pはX線管aとX線検出器Cの回転軌跡を示
す。上記X線検出器Cは256〜500個以上の素子で
構成されており、またこの検出素子としては高圧ゼノン
ガス検出器、またはシンチレータとPhoto−dio
deを組合わせた半導体検出器が主として用いられてい
る。
An example of the projection data acquisition method is the Rotate/Rotate method. As shown in Figure 4, X-ray tube a emits fin-shaped X-rays that spread out to about 30 to 40'', and subject n is included in the fan-shaped fin-shaped X-rays. The projection data is collected by rotating together with the tube a and the X-ray detector C. Note that o and p in the figure indicate the rotation loci of the X-ray tube a and the X-ray detector C. The device C is composed of 256 to 500 or more elements, and the detection elements include a high-pressure Zenon gas detector, a scintillator, and a Photo-dio.
Semiconductor detectors combined with de are mainly used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の「X線−CTJ等の生体計測方法にあっては
X線照射量が多く必要であった。例えば、胃検査の場合
、X線撮影のX線照射量は1回当り0.1rem程度で
あるのに対して、rX線−CTJの場合のX線照射量は
1回当り約l re−以上でX線撮影時の10倍以上も
ある。
The above-mentioned conventional biological measurement methods such as X-ray CTJ required a large amount of X-ray irradiation.For example, in the case of gastric examination, the amount of X-ray irradiation for X-ray photography was 0.1 rem per time. On the other hand, in the case of rX-ray-CTJ, the amount of X-ray irradiation is about 1 re- or more per time, which is more than 10 times that of X-ray photography.

このため、長時間の「X線−CTJの使用は人体などの
生体にX線障害を及ぼすため使用不可能であった。
For this reason, it has been impossible to use X-ray CTJ for a long time because it causes X-ray damage to living organisms such as the human body.

また光を用いた「光−CTJを実現しようとする試みが
行なわれているが、使用されている波長が500〜80
0 mm付近であり、CTを可能にするための十分な生
体に対する透過性が、この帯域で得られていない。
Also, attempts are being made to realize "optical CTJ" using light, but the wavelengths used are 500 to 80.
It is around 0 mm, and sufficient permeability to the living body to enable CT is not obtained in this band.

本発明は上記のことにかんがみなされたもので、生体に
対してX線を使用したとき心配しなければならないX線
障害などの生体障害を心配する必要がなく、このため、
長時間にわたってCT法により生体を計n1することが
できるようにした生体計測方法を提供することを目的と
するものである。
The present invention has been developed in consideration of the above, and there is no need to worry about biological damage such as X-ray damage when using X-rays on a living body, and therefore,
It is an object of the present invention to provide a living body measuring method that allows measuring n1 of a living body by CT method over a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明に係る生体計測方法
は、YAGレーザを生体に照射し、生体を透過したこの
YAGレーザを検出器で検出し、その出力データを用い
てコンピュータにて画像を再構成して上記生体の断層画
像を得るようにした。
In order to achieve the above object, the biological measurement method according to the present invention irradiates a living body with a YAG laser, detects this YAG laser that has passed through the living body with a detector, and uses the output data to generate an image on a computer. A tomographic image of the above-mentioned living body was obtained by reconstruction.

〔作 用〕[For production]

YAGレーザに約1064rvの波長のものを用いた場
合、ストリークカメラのダイナミックレンジに対して十
分な透過強度が得られた。このYAGレーザは微弱であ
るため生体に損傷を与えることがない。
When a YAG laser with a wavelength of about 1064 rv was used, sufficient transmission intensity was obtained for the dynamic range of the streak camera. Since this YAG laser is weak, it does not cause damage to living organisms.

〔実 施 例〕〔Example〕

本発明の実施例を第1図に基づいて説明する。 An embodiment of the present invention will be described based on FIG.

ガントリ1内の撮影領域2に対向させてYAGレーザ照
射部3を設けると共に、このYAGレーザ照射部3に撮
影領域2を隔てて対向する位置にYAGレーザ検出器4
を設ける。そして上記YAGレーザ照射部3はYAGレ
ーザ伝達系5に接続されており、このYAGレーザ伝達
系5はYAGレーザ発振器6とYAGレーザ伝達制御器
7に接続されている。8はYAGレーザ制御器、9は再
制御器7,9を制御すると共に、上記YAGレーザ険出
品出器らの信号を受けるコンピュータである。また1o
はディスク、11はデイスプレィ、12はポラロイドや
マルチフォーマットカメラ等の記録部、13は寝台、1
4は寝台駆動部である。
A YAG laser irradiation unit 3 is provided to face the imaging area 2 in the gantry 1, and a YAG laser detector 4 is provided at a position facing the YAG laser irradiation unit 3 across the imaging area 2.
will be established. The YAG laser irradiation section 3 is connected to a YAG laser transmission system 5, and this YAG laser transmission system 5 is connected to a YAG laser oscillator 6 and a YAG laser transmission controller 7. 8 is a YAG laser controller, and 9 is a computer that controls the recontrollers 7 and 9 and receives signals from the YAG laser exhibitor and others. Also 1o
is a disk, 11 is a display, 12 is a recording unit of a Polaroid or multi-format camera, etc., 13 is a bed, 1
4 is a bed driving section.

上記構成において、YAGレーザ発振器6はYAGレー
ザ制御器8にて制御され、YAGレーザ発振器6より出
力されたYAGレーザはYAGレーザ伝達系5、YAG
レーザ照射部3を通過し、撮影領域2上の人体に照射さ
れる。人体を通過したYAGレーザ15はYAGレーザ
検出器4で検出され、このときの投影データがコンピュ
ータ9に収集される。この操作は人体の周囲の全角度か
ら行なわれる。そしてこれらの1次元データを再構成処
理することにより2次元の断層像が得られる。
In the above configuration, the YAG laser oscillator 6 is controlled by the YAG laser controller 8, and the YAG laser output from the YAG laser oscillator 6 is transmitted to the YAG laser transmission system 5,
The light passes through the laser irradiation unit 3 and is irradiated onto the human body above the imaging area 2 . The YAG laser 15 that has passed through the human body is detected by the YAG laser detector 4, and projection data at this time is collected by the computer 9. This operation is performed from all angles around the human body. A two-dimensional tomographic image is obtained by reconstructing these one-dimensional data.

患者を寝かせてガントリ1内の撮影領域2へ送り込むた
めの寝台13はコンピュータ9より寝台駆動部14によ
って制御される。
A bed 13 on which a patient is placed and transported to an imaging area 2 within a gantry 1 is controlled by a bed driving section 14 from a computer 9.

YAGレーザ伝達系5はコンピュータ9よりYAGレー
ザ伝達系制御器7によって制御される。。またYAGレ
ーザ制御器8もコンピュータ9より制御信号を受ける。
The YAG laser transmission system 5 is controlled by a YAG laser transmission system controller 7 from a computer 9. . The YAG laser controller 8 also receives control signals from the computer 9.

2次元断層像のデータはディスク10に記憶されると共
に、デイスプレィ11にて画像表示される。そしてこの
画像のハードコピーは記録部12より得られる。
The data of the two-dimensional tomographic image is stored on the disk 10 and displayed on the display 11. A hard copy of this image is then obtained from the recording unit 12.

上記YAGレーザに数10ピコ秒からフェムト秒台の短
パルスを用いるとCWレーザを用いた場合より高分解な
2次元画像を得ることができる。
When a short pulse on the order of tens of picoseconds to femtoseconds is used in the YAG laser, a two-dimensional image with higher resolution can be obtained than when a CW laser is used.

第2図(A)、(I3)は生体に光を照射し、その透過
光をストリークカメラにて検出した透過光の強度を示す
もので、第2図(A)は波長が500〜800 nm付
近の光を用いた場合、第2図(B)は波長が11064
nのYAGレーザを用いた場合である。
Figures 2 (A) and (I3) show the intensity of the transmitted light when a living body is irradiated with light and the transmitted light is detected by a streak camera. Figure 2 (A) shows the intensity of the transmitted light when the wavelength is 500 to 800 nm. When using nearby light, the wavelength in Figure 2 (B) is 11064.
This is a case where a YAG laser of n is used.

この図から明らかなように、YAGレーザを使用すると
ストリークカメラのダイナミックレンジに対して十分な
透過強度が得られた。
As is clear from this figure, when the YAG laser was used, sufficient transmission intensity was obtained for the dynamic range of the streak camera.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、YAGレーザを生体に照射し、この生
体を透過するYAGレーザを検出することにより生体の
断層像を得るようにしたから、生体に対してX線を使用
したときのようなX線妨害などの生体障害を心配する必
要がなくなり、長時間にわたってCT法により生体を計
測することができる。
According to the present invention, a tomographic image of the living body is obtained by irradiating the living body with a YAG laser and detecting the YAG laser that passes through the living body. There is no need to worry about biological damage such as X-ray interference, and living bodies can be measured over long periods of time using the CT method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図(^
)、(B)は生体に光を照射したときの透過光強度を示
す線図であり、(A)は光は場合、(B)はYAGレー
ザの場合を示す。第3図は従来例を示すブロック図、第
4図はX線−CTのRotate/Rotate方式の
説明図である。 1はガントリ、2は撮影領域、3はYAGレーザ照射部
、4はYAGレーザ検出器、9はコンピュータ、10は
ディスク。 第1図
Figure 1 is a block diagram showing an embodiment of the present invention, Figure 2 (^
) and (B) are diagrams showing the transmitted light intensity when a living body is irradiated with light, where (A) shows the case of light and (B) shows the case of YAG laser. FIG. 3 is a block diagram showing a conventional example, and FIG. 4 is an explanatory diagram of the Rotate/Rotate method of X-ray CT. 1 is a gantry, 2 is an imaging area, 3 is a YAG laser irradiation unit, 4 is a YAG laser detector, 9 is a computer, and 10 is a disk. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)YAGレーザを生体に照射し、生体を透過したこ
のYAGレーザを検出器で検出し、その出力データを用
いてコンピュータにて画像を再構成して上記生体の断層
画像を得るようにしたことを特徴とする生体計測方法。
(1) A living body is irradiated with a YAG laser, this YAG laser that passes through the living body is detected by a detector, and the output data is used to reconstruct the image on a computer to obtain a tomographic image of the living body. A biological measurement method characterized by:
(2)数ピコ秒からフェムト秒台の短パルスのYAGレ
ーザを用いたことを特徴とする請求項1記載の生体計測
方法。
(2) The biological measurement method according to claim 1, characterized in that a YAG laser with short pulses on the order of several picoseconds to femtoseconds is used.
JP1646189A 1989-01-27 1989-01-27 Method for measuring human body Pending JPH02198338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1646189A JPH02198338A (en) 1989-01-27 1989-01-27 Method for measuring human body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1646189A JPH02198338A (en) 1989-01-27 1989-01-27 Method for measuring human body

Publications (1)

Publication Number Publication Date
JPH02198338A true JPH02198338A (en) 1990-08-06

Family

ID=11916890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1646189A Pending JPH02198338A (en) 1989-01-27 1989-01-27 Method for measuring human body

Country Status (1)

Country Link
JP (1) JPH02198338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275251A (en) * 1993-11-12 1995-10-24 Hiroaki Kumagai Multiple laser beam scanning type living body radioscopic diagnostic and therapeutic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072542A (en) * 1983-09-28 1985-04-24 株式会社島津製作所 Light ray ct apparatus
JPS62124443A (en) * 1985-11-26 1987-06-05 Hamamatsu Photonics Kk Device for obtaining information on inside of body with light
JPS62231625A (en) * 1986-03-31 1987-10-12 住友電気工業株式会社 Optical ct scanner
JPS63308586A (en) * 1987-06-10 1988-12-15 Hamamatsu Photonics Kk Evaluating system for voltage detector
JPS6418066A (en) * 1987-07-14 1989-01-20 Hamamatsu Photonics Kk Sampling apparatus by photoelectron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072542A (en) * 1983-09-28 1985-04-24 株式会社島津製作所 Light ray ct apparatus
JPS62124443A (en) * 1985-11-26 1987-06-05 Hamamatsu Photonics Kk Device for obtaining information on inside of body with light
JPS62231625A (en) * 1986-03-31 1987-10-12 住友電気工業株式会社 Optical ct scanner
JPS63308586A (en) * 1987-06-10 1988-12-15 Hamamatsu Photonics Kk Evaluating system for voltage detector
JPS6418066A (en) * 1987-07-14 1989-01-20 Hamamatsu Photonics Kk Sampling apparatus by photoelectron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275251A (en) * 1993-11-12 1995-10-24 Hiroaki Kumagai Multiple laser beam scanning type living body radioscopic diagnostic and therapeutic device

Similar Documents

Publication Publication Date Title
JP3984822B2 (en) Color and parametric composite map for CT perfusion
US6455856B1 (en) Gamma camera gantry and imaging method
US20030082104A1 (en) Imaging method and imaging apparatus, in particular for small animal imaging
US7286636B2 (en) Flat panel detector based slot scanning configuration
JP5392348B2 (en) Radiation tomography equipment
EP2727537A2 (en) Method and apparatus using infrared photothermal radiometry (PTR) and modulated laser luminescence (LUM) for diagnostics of defects in teeth
JP4871121B2 (en) Apparatus and method for locating an instrument in a body
JP4118535B2 (en) X-ray inspection equipment
KR100702148B1 (en) X-ray computed tomography apparatus to acquire the tomography and three-dimension surface image
KR20030068381A (en) An apparatus for generation of tomographic image, a method for generation of tomographic image and an x-ray inspection apparatus
JPH09135853A (en) Image measuring device
EP2078216B1 (en) Imaging system for imaging an object
JP2010151681A (en) Pet device
JPH04161145A (en) Biomeasuring instrument
JPH0433460B2 (en)
JP3592327B2 (en) Apparatus and method for optically and spatially determining density distribution in biological tissue
JP2009529948A (en) Turbid medium image forming apparatus
JPH02198338A (en) Method for measuring human body
JPH05130995A (en) Optical tomographinc imaging device using spatial difference
JP5274338B2 (en) Measuring object holder
JP2013536412A (en) Method for correcting radiation detectors using voltage
JPH05264475A (en) Industrial computed tomography equipment
US20230404496A1 (en) Computed tomography apparatus, manufacturing method thereof and operating method thereof
JP2005245797A (en) X-ray computed tomographic apparatus and method for tomogram reconstitution
JPS60181640A (en) Radiation tomography for industrial use